JPS61107759A - Complementary type semiconductor device - Google Patents

Complementary type semiconductor device

Info

Publication number
JPS61107759A
JPS61107759A JP59230608A JP23060884A JPS61107759A JP S61107759 A JPS61107759 A JP S61107759A JP 59230608 A JP59230608 A JP 59230608A JP 23060884 A JP23060884 A JP 23060884A JP S61107759 A JPS61107759 A JP S61107759A
Authority
JP
Japan
Prior art keywords
well
oxide film
semiconductor
burying
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59230608A
Other languages
Japanese (ja)
Inventor
Sotohisa Asai
浅井 外壽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59230608A priority Critical patent/JPS61107759A/en
Publication of JPS61107759A publication Critical patent/JPS61107759A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0928Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising both N- and P- wells in the substrate, e.g. twin-tub

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce junction leakage currents by displacing a burying oxide film from a junction surface between a P well and an N well and forming it. CONSTITUTION:A burying oxide film 10 is shaped on the N well 2 side from P-N junction surfaces formed by a P well 2 and both an N well 2 and an N type substrate 1. A fact that the current amplification factor of a lateral bipolar transistor is reduced and a feedback is difficult to be applied is adapted by limiting the diffusion of carriers in the lateral direction by the burying oxide film 10. An effect at a time when a groove for burying the oxide film 10 is shaped can further be inhibited, thus reducing junction leakage currents, then minimizing power consumption.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ランチアップを改善し、消費電力を減少さ
せた相補型半導体装置(以下CMO8という)に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a complementary semiconductor device (hereinafter referred to as CMO8) that improves launch-up and reduces power consumption.

〔従来の技術〕[Conventional technology]

微細化された0MO8において、高集積化を妨げる原因
の一つとして、ラッチアンプ耐圧の向上のために、Pチ
ャネルMOSトランジスタ(以下PMO8という)とN
チャネルMO8)ランジスタ(以下NMO8という)の
間隔を小さくできない点があった。これに対して、最近
では、各ウェル間の分離に深い溝を堀り、その中を酸化
膜または酸化膜とポリシリコンの積層により充填するト
レンチアイソレーションと呼ばれる方法が考えられてい
る(例えば、Kohyama  etal ’83  
I E D MTeChnlCal Digest  
pp  151〜154参照)。
In the miniaturized 0MO8, one of the reasons that hinders high integration is that the P-channel MOS transistor (hereinafter referred to as PMO8) and N
There was a problem in that the interval between channel MO8) transistors (hereinafter referred to as NMO8) could not be made small. In contrast, a method called trench isolation has recently been considered, in which deep trenches are dug to separate each well, and the trenches are filled with an oxide film or a stack of oxide films and polysilicon (for example, Kohyama etal '83
I E D MTeChnlCal Digest
(See pp. 151-154).

第2図は前記従来例のトレンチアイソレーションヲ用〜
為だ0MO8の断面図である。N型半纏体基板(以下N
型基板という)1の表面上に深いN型拡散領域(以下N
ウェルという)2と、深いP型拡散領域(以下Pウェル
という)3が形成され、Nウェル2中に前記PMO8の
ドレイン4.ソース5.コンタクト用のN 拡散層7が
形成され、Pウェル3中にNMO8のドレイン6、ソー
ス11、P+拡散層12が形成されている。また、前記
PMO8,NMO8の各トランジスタはポリシリコンの
ゲート電極8を有し、前記各トランジスタは厚い酸化膜
9によって分離されている。さらに、PウェルとNウェ
ルの間に反応性イオンエッチ技術号を用いて深い溝を堀
り、この中に酸化膜10が埋込まれている。
Figure 2 is for the trench isolation of the conventional example.
It is a sectional view of Tameda0MO8. N-type semi-integrated substrate (hereinafter referred to as N
A deep N-type diffusion region (hereinafter referred to as N-type substrate) 1 is formed on the surface of a
A deep P-type diffusion region (hereinafter referred to as P-well) 3 is formed, and a drain 4 of the PMO 8 is formed in the N-well 2. Source 5. An N 2 diffusion layer 7 for contact is formed, and a drain 6 of NMO 8, a source 11, and a P+ diffusion layer 12 are formed in the P well 3. Further, each of the transistors PMO 8 and NMO 8 has a gate electrode 8 made of polysilicon, and each transistor is separated by a thick oxide film 9. Further, a deep groove is dug between the P well and the N well using a reactive ion etching technique, and the oxide film 10 is buried in this groove.

従来の0MO8は上記のように構成され、たとえばPM
O8のドレイン4にNウェル2の電位よりも低い雑音電
圧が印加されると、PMO8のドレイン4よりNウェル
2に正孔が注入される。このmf[圧の一部はPMO8
のソース5より外部に流れるが、残りの正孔は横方向に
対しては、埋込みの酸化膜1,0により拡散することが
できず、N型基板1を経由してPウェル3に拡散し、コ
ンタクト用のP 拡散層12を通って外部に流れる。
The conventional 0MO8 is configured as described above, and for example, PM
When a noise voltage lower than the potential of the N-well 2 is applied to the drain 4 of the O8, holes are injected into the N-well 2 from the drain 4 of the PMO8. This mf [part of the pressure is PMO8
However, the remaining holes cannot be diffused in the horizontal direction due to the buried oxide films 1 and 0, and diffuse into the P well 3 via the N type substrate 1. , flows to the outside through the P diffusion layer 12 for contact.

しかし、通常の埋込みの酸化膜10がな〜・場合に比べ
て、その拡散長は長くなり途中のNウェル2やN型基板
1中で再結合する確率が増大し、Pウェル3内に到達す
る正孔数が減少し、Pウェル3の電位変化が小さくなり
、帰還がかかり難くなりて、ラッチアップ耐圧が向上す
る。特にN型基板1が高濃度基板の場合は効果的である
However, compared to the case where there is no ordinary buried oxide film 10, the diffusion length is longer, and the probability of recombination in the N-well 2 or N-type substrate 1 on the way increases, and it reaches the inside of the P-well 3. The number of holes flowing through the p-well 3 decreases, the potential change in the P well 3 becomes smaller, feedback becomes less likely to occur, and the latch-up breakdown voltage improves. This is particularly effective when the N-type substrate 1 is a highly doped substrate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の0MO8では、Nウェル2とPウェ
ル3を分離するように埋込みの酸化膜10が設置されて
いるので、Pウェル3とN型基板1で形成されるP−N
接合の端面が埋込みの酸化膜10に接している。したが
って、埋込みの溝を形成する場合忙シリコンエッチを使
用する結果、接合リーク′lE流が多くなるという問題
点があった。
In the conventional 0MO8 as described above, a buried oxide film 10 is installed to separate the N well 2 and P well 3, so the P-N formed by the P well 3 and the N type substrate 1
The end surface of the junction is in contact with the buried oxide film 10. Therefore, when forming a buried trench, a rough silicon etch is used, resulting in an increase in junction leakage.

この発明は、かかる問題点を解決するためになされたも
ので、埋込みの酸化膜をPウェルとNウェルの接合面よ
りもずらして設置すること釦より、接合リーク電流を減
少させることができる0MO8を得ることを目的とする
This invention was made in order to solve this problem, and it is possible to reduce the junction leakage current by placing the buried oxide film offset from the junction surface of the P well and the N well. The purpose is to obtain.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

この発明に係る0MO8は第1の導電型または第2の導
電型の半導体領域のうち少くとも一方のを埋込んだもの
である。
The OMO8 according to the present invention has at least one of the first conductivity type and the second conductivity type semiconductor region buried therein.

〔作用〕[Effect]

この発明においては、埋込みの酸化膜を、14接する互
いに異なる4電型の半導体領域の少くとも一方の領域内
に設けることによって、導電型の異なる拡散ノーと半導
体基板とで構成されるP−N接合面が埋込みのば化膜と
接しなくなるので、前記酸化膜を埋込むための溝形成圧
よる影響を抑制する作用を行う。
In this invention, by providing a buried oxide film in at least one region of four contacting semiconductor regions of four different conductivity types, a P-N formed of a diffusion node of different conductivity types and a semiconductor substrate is provided. Since the bonding surface is no longer in contact with the buried oxide film, the effect of the groove forming pressure for burying the oxide film is suppressed.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す0MO8の断面図で
ある。第1図において、1〜12は第2図と同一のもの
を示しており、N型基板1の表面lCNウェル2とPウ
ェル3を形成し、こ、のNウェル2中にPMO8のドレ
イン4.ゲート電極8゜ソース5.Nウェルコンタクト
用のN 拡散層1を形成し、Pウェル3中KNMO8の
ドレイン6゜ソース11、Pウェルコンタクト用のP 
拡散層12を形成する。さらに埋込みの酸化膜10をP
ウェル3とNウェル2、N型基板1とで形成されるP−
N接合面上りNウェル2側に設置する。
FIG. 1 is a sectional view of 0MO8 showing one embodiment of the present invention. In FIG. 1, 1 to 12 are the same as in FIG. .. Gate electrode 8° source 5. N diffusion layer 1 for N well contact is formed, drain 6° source 11 of KNMO8 in P well 3, P well contact
A diffusion layer 12 is formed. Furthermore, the buried oxide film 10 is
P− formed by well 3, N well 2, and N type substrate 1
Installed on the N well 2 side above the N junction surface.

こめ実施例におけるランチアンプ耐°圧の改善は、第2
図で説明した従来例と理論上は同じであり、埋込みの酸
化膜10により【横方向へのキャリアの拡散を制限する
ことにより、横方向バイポーラトランジスタの電流増幅
率を小さくして帰還をかかり難くすることを応用してい
る。
The improvement of the launch amplifier breakdown voltage in the embodiment is the second
The theory is the same as the conventional example explained in the figure, and the buried oxide film 10 [restricts the diffusion of carriers in the lateral direction, thereby reducing the current amplification factor of the lateral bipolar transistor and making it difficult to cause feedback. I am applying what I do.

さらに、酸化膜10をNウェル2内に入れることにより
、Pウェル3とNウェル2.N型基板1によってできる
P−N接合面は酸化膜10と接しなくなる0このため、
酸化膜10を埋込むための溝を形成した場合の影響を抑
制することができて、接合リーク電流が低減され、消費
電力が減少する。
Furthermore, by putting the oxide film 10 into the N well 2, the P well 3 and the N well 2. The P-N junction surface formed by the N-type substrate 1 no longer comes into contact with the oxide film 10. Therefore,
The influence of forming a trench for burying the oxide film 10 can be suppressed, reducing junction leakage current and reducing power consumption.

なお、上記実施例はNウェル2中に埋込みの酸化膜10
を形成した例であるが、Pウェル3に埋込んでもよく、
またNウェル2、Pウェル3の両方に埋込んでも同様の
効果があることは明らかである。
Note that the above embodiment has an oxide film 10 buried in the N well 2.
Although this is an example of forming a
Furthermore, it is clear that the same effect can be obtained even if both the N well 2 and the P well 3 are filled.

さらに、上記実施例はNウェル2とPウェル3の両方を
形成する場合の例であるが、基板とは反対のウェルのみ
を形成する場合も基板またはウェルの少くとも一方に埋
込みの酸化膜を形成すればよい。
Further, although the above embodiment is an example in which both the N well 2 and the P well 3 are formed, when only the well opposite to the substrate is formed, a buried oxide film may be provided on at least one of the substrate or the well. Just form it.

さらK、埋込む物質は電気的絶縁が可能であり、二酸化
硅素以外にシリコン窒化膜等の絶縁膜または絶縁膜と導
電膜の多層構造でもよい。
Furthermore, the material to be buried can be electrically insulated, and may be an insulating film such as a silicon nitride film or a multilayer structure of an insulating film and a conductive film other than silicon dioxide.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、第1または第20半導
体領域のうち少くとも一方の領域内で。
As described above, the present invention is performed in at least one of the first and twentieth semiconductor regions.

前記半導体憤域内に形成されるトランジスタに対して周
辺側に絶縁膜または絶縁膜と導電膜の積層膜を埋込んだ
ことにより、接合リーク電流の少いCMOSが得られる
効果がある。
By embedding an insulating film or a laminated film of an insulating film and a conductive film on the peripheral side of the transistor formed in the semiconductor region, there is an effect that a CMOS with low junction leakage current can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す0MO8の断面図、
第2図は従来の0MO8の断面図である。 図において、1はN型基板、2はNウェル、3はPウェ
ル、4はドレイン、5はソース、6はドレイン、7はN
 拡散層、8はゲート電極、9は酸化膜、1Gは酸化膜
、11はソース、12はP+拡散層である。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a cross-sectional view of 0MO8 showing an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a conventional 0MO8. In the figure, 1 is an N-type substrate, 2 is an N-well, 3 is a P-well, 4 is a drain, 5 is a source, 6 is a drain, and 7 is an N-type substrate.
8 is a gate electrode, 9 is an oxide film, 1G is an oxide film, 11 is a source, and 12 is a P+ diffusion layer. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板と、この半導体基板と同一の第1の導電型
を有する第1の半導体領域と、この第1の導電型と逆の
導電型である第2の導電型を有する第2の半導体領域と
からなり、第1の半導体領域内に第2の導電型チャネル
のトランジスタを、第2の半導体領域内に第1の導電型
チャネルのトランジスタを形成した相補型半導体装置に
おいて、第1または第2の半導体領域のうち少くとも一
方の領域内で、前記半導体領域内に形成される前記トラ
ンジスタに対して周辺側に絶縁膜または絶縁膜と導電膜
の積層膜を埋込んだことを特徴とする相補型半導体装置
a semiconductor substrate; a first semiconductor region having the same first conductivity type as the semiconductor substrate; and a second semiconductor region having a second conductivity type opposite to the first conductivity type. In a complementary semiconductor device in which a transistor of a second conductivity type channel is formed in a first semiconductor region and a transistor of a first conductivity type channel is formed in a second semiconductor region, A complementary type characterized in that, in at least one of the semiconductor regions, an insulating film or a laminated film of an insulating film and a conductive film is embedded on the peripheral side of the transistor formed in the semiconductor region. Semiconductor equipment.
JP59230608A 1984-10-30 1984-10-30 Complementary type semiconductor device Pending JPS61107759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59230608A JPS61107759A (en) 1984-10-30 1984-10-30 Complementary type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59230608A JPS61107759A (en) 1984-10-30 1984-10-30 Complementary type semiconductor device

Publications (1)

Publication Number Publication Date
JPS61107759A true JPS61107759A (en) 1986-05-26

Family

ID=16910420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59230608A Pending JPS61107759A (en) 1984-10-30 1984-10-30 Complementary type semiconductor device

Country Status (1)

Country Link
JP (1) JPS61107759A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02166761A (en) * 1988-12-21 1990-06-27 Nec Kyushu Ltd Semiconductor device
US4980953A (en) * 1987-08-26 1991-01-01 Sumitomo Metal Industries, Ltd. Binding-up band with locking structure
JPH05251551A (en) * 1992-03-03 1993-09-28 Mitsubishi Electric Corp Semiconductor device
EP0948044A1 (en) * 1998-03-25 1999-10-06 Nec Corporation Trench isolated wells in a semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980953A (en) * 1987-08-26 1991-01-01 Sumitomo Metal Industries, Ltd. Binding-up band with locking structure
JPH02166761A (en) * 1988-12-21 1990-06-27 Nec Kyushu Ltd Semiconductor device
JPH05251551A (en) * 1992-03-03 1993-09-28 Mitsubishi Electric Corp Semiconductor device
EP0948044A1 (en) * 1998-03-25 1999-10-06 Nec Corporation Trench isolated wells in a semiconductor device

Similar Documents

Publication Publication Date Title
JP2965783B2 (en) Semiconductor device and manufacturing method thereof
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US6605843B1 (en) Fully depleted SOI device with tungsten damascene contacts and method of forming same
US20100127330A1 (en) Semiconductor device and method of manufacturing the same
JPS62156873A (en) Semiconductor device
JPS61107759A (en) Complementary type semiconductor device
US5122855A (en) Semiconductor device with latch-up prevention structure
JP2825038B2 (en) Semiconductor device
JP2000068372A (en) Semiconductor device and manufacture thereof
JPH07120705B2 (en) Method for manufacturing semiconductor device having element isolation region
JPH01155654A (en) Complementary type integrated circuit
JPS624338A (en) Manufacture of semiconductor device
JPH03239368A (en) Semiconductor device
JP2508218B2 (en) Complementary MIS integrated circuit
JPS5944784B2 (en) Complementary MOS semiconductor device
JPS61265859A (en) Complementary mos semiconductor device
JPS6146062A (en) Semiconductor device
JPS6312148A (en) Semiconductor device
JPH06151740A (en) Power semiconductor device
JPS6129149A (en) Semiconductor integrated circuit device
JPH0481339B2 (en)
KR100332473B1 (en) Semiconductor device and device isolation method using it
JPH1041483A (en) Semiconductor device and its manufacturing method
JPH0222858A (en) Semiconductor device
JP2676769B2 (en) Semiconductor device