JPS6090944A - Air-fuel ratio learning control apparatus for electronically controlled fuel injection type internal-combustion engine - Google Patents

Air-fuel ratio learning control apparatus for electronically controlled fuel injection type internal-combustion engine

Info

Publication number
JPS6090944A
JPS6090944A JP58197499A JP19749983A JPS6090944A JP S6090944 A JPS6090944 A JP S6090944A JP 58197499 A JP58197499 A JP 58197499A JP 19749983 A JP19749983 A JP 19749983A JP S6090944 A JPS6090944 A JP S6090944A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
correction coefficient
learning
correction factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58197499A
Other languages
Japanese (ja)
Other versions
JPS6346254B2 (en
Inventor
Naomi Tomizawa
富澤 尚己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP58197499A priority Critical patent/JPS6090944A/en
Publication of JPS6090944A publication Critical patent/JPS6090944A/en
Publication of JPS6346254B2 publication Critical patent/JPS6346254B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Abstract

PURPOSE:To obtain stable controllability of an engine, by executing learning control to converge the base air-fuel ratio to lambda=1 (lambda is the excess air ratio), and thereby minimizing deviation of the excess air ratio from lambda=1 caused by the change of the base air- fuel ratio at the time of transient operation of the engine. CONSTITUTION:The base injection quantity Tp is calculated by an arithmetic means 1 from the engine speed N and the quantity Q of intake air, and comparison is made between the actual air-fuel ratio detected by an O2-sensor and the theoretical air-fuel ratio. Further, an air-fuel ratio feedback correction factor alpha is determined by a correction factor determining means 2 by way of proportional plus integral control, and a learning correction factor alphaL stored in an RAM to correspond to the conditions of engine operation is searched at a searching means 3. The learning correction factor alphaL is renewed successively by adding a certain part of the deviation DELTAalpha between the correction factor alpha and a reference value to the learning correction factor alphaL by a renewing means 4, and then the injection quantity Ti is calculated by an arithmetic means 5 by correcting the base injection quantity Tp by use of the renewed data and the correction factor alpha.

Description

【発明の詳細な説明】 く技術分野〉 本発明は電子制御燃料噴射式内燃機関において望燃比の
学習制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a learning control device for a desired fuel-fuel ratio in an electronically controlled fuel injection type internal combustion engine.

〈背景技術〉 電子制御燃料噴射式内燃機関において、噴射量Tiは次
式によって定まる。
<Background Art> In an electronically controlled fuel injection type internal combustion engine, the injection amount Ti is determined by the following equation.

T 1=TpXCOEFXα+Ts ココテ、T p ハ基本噴射i”?’ T p = K
 X Q/ Nである。Kは定数、Qは吸入空気流量、
Nはエンジン回転数である。C0EFは各種補正係数で
ある。αは後述する空燃比のフィードバック制御(λコ
ントロール)のための空燃比フィードバック補正係数で
ある。Tsは電圧補正分で、バッテリ電圧の変動による
燃料噴射弁の噴射流量変化を補正するためのものである
T 1 = Tp
X Q/N. K is a constant, Q is the intake air flow rate,
N is the engine speed. C0EF is various correction coefficients. α is an air-fuel ratio feedback correction coefficient for air-fuel ratio feedback control (λ control) to be described later. Ts is a voltage correction amount, which is used to correct changes in the injection flow rate of the fuel injection valve due to fluctuations in battery voltage.

λコントロールについては、排気系に02センサを設け
て実際の空燃比を検出し、空燃比が理論空燃比よシ磯い
か薄いかをスライスレベルによシ判定し、理論空燃比に
なるように燃料の噴射量を制御するわけであり、このた
め、前記の空燃比フィードバック補正係数αというもの
を定めて、このαを変化させることによシ理論空燃比に
保っている。
Regarding λ control, an 02 sensor is installed in the exhaust system to detect the actual air-fuel ratio, and the slice level determines whether the air-fuel ratio is higher than or thinner than the stoichiometric air-fuel ratio, and the fuel is adjusted to the stoichiometric air-fuel ratio. Therefore, the above-mentioned air-fuel ratio feedback correction coefficient α is determined, and by changing this α, the air-fuel ratio is maintained at the stoichiometric air-fuel ratio.

ここで、空燃比フィードバック補正係数αの値は比例積
分(Pl)制御により変化させ、安定した制御としてい
る。
Here, the value of the air-fuel ratio feedback correction coefficient α is changed by proportional-integral (Pl) control to achieve stable control.

すなわち、02七ンサの出力電圧とスライスレベルとを
比較し、スライスレベルよりも高い場合、低い場合に、
空燃比を急に濃くしたシ、薄くしたシすることなく、空
燃比が濃い(薄い)場合には始めにP分だけ下げて(上
げて)、それから1分ずつ徐々に下げて(上げて)いき
、空燃比を薄く(濃く)するように制御する。
That is, the output voltage of the 027 sensor is compared with the slice level, and if it is higher or lower than the slice level,
If the air-fuel ratio is rich (lean) without suddenly enriching or reducing the air-fuel ratio, first lower (raise) by P, then gradually lower (raise) one minute at a time. control the air-fuel ratio to make it leaner (richer).

但シ、λコントロールを行わない領域ではα=1にクラ
ンプし、各種補正係数C0EFの設定により、所望の空
燃比を得る。
However, in a region where λ control is not performed, α is clamped to 1, and a desired air-fuel ratio is obtained by setting various correction coefficients COEF.

ところで、λコントロール領域でα=1のときのベース
空燃比を理論空燃比(λ=1)に設定することができれ
ばフィードバック制御は不要なのであるが、実際には構
成部分(例えばエアフローメータ、燃料It射弁、プレ
ッシャレギュレータ、コントロールユニット)のバラツ
キや経時変化、燃料噴射弁のパルス巾−流量特性の非直
線性、運転条件や環境の変化等の要因で、ベース空燃比
のλ=1からのズレを生じるので、フィードバック制御
を行っている。
By the way, if the base air-fuel ratio when α = 1 in the λ control region could be set to the stoichiometric air-fuel ratio (λ = 1), feedback control would not be necessary. The deviation of the base air-fuel ratio from λ = 1 may occur due to factors such as variations in the fuel injection valve (injection valve, pressure regulator, control unit), changes over time, non-linearity of the pulse width-flow rate characteristic of the fuel injection valve, and changes in operating conditions and environment. , so feedback control is performed.

しかし、ベース空燃比がλ=1からずれていると、運転
領域が大きく変化したときに、ベース空燃比の段差をフ
ィードバック制御によりλ=1に安定させるまでに時間
がかかる。そして、このために比例及び積分定数(P/
I分)を大きくするので、オーバーシュートやアンダー
シュートラ生じ、制御性が悪くなる。つまシ、ベース空
燃比カλ二1からずれていると、理論空燃比よシかなシ
ズレを持った範囲で窒燃比制御がなされるのである。
However, if the base air-fuel ratio deviates from λ=1, it takes time to stabilize the step in the base air-fuel ratio to λ=1 through feedback control when the operating range changes significantly. And for this we need the constant of proportionality and integration (P/
Since the I minute) is increased, overshoot and undershoot error occur, resulting in poor controllability. However, if the base air-fuel ratio deviates from λ21, the nitrogen-fuel ratio will be controlled within a range with a slight deviation from the stoichiometric air-fuel ratio.

その結果、三元触媒の転換効率が悪いところで運転がな
されることになり、触媒の貴金属の増大によるコストア
ップの他、触媒の劣化に伴う転換効率の更なる悪化によ
る触媒の交換を余儀なくされるという問題点があった。
As a result, the three-way catalyst has to be operated at a point where its conversion efficiency is low, which not only increases costs due to the increase in precious metals in the catalyst, but also necessitates replacement of the catalyst due to further deterioration of conversion efficiency due to deterioration of the catalyst. There was a problem.

そこで、本出願人は、特願昭58−76221号におい
て、学習によシベース空燃比をλ=1にすることによシ
、過渡時にベース空燃比の段差から生じるλ=1からの
ズレをなくシ、かつ、量分を小さくすることを可能にし
て制御性の向上を図り、これらによシ触媒の原価低減等
を図るベース空燃比の学習制御装置を提案した。
Therefore, in Japanese Patent Application No. 58-76221, the present applicant has learned to set the base air-fuel ratio to λ = 1, thereby eliminating the deviation from λ = 1 caused by the step in the base air-fuel ratio during transient periods. We have proposed a base air-fuel ratio learning control device that makes it possible to improve controllability by making it possible to reduce the amount of air and fuel, and to reduce the cost of the catalyst.

すなわち、RAM上にエンジン回転数及び負荷等のエン
ジン運転条件に対応した学習補正係数αLのマツプを設
け、噴射量Tiを計算する際に次式の如く基本噴射量T
pをαして補正する。
That is, a map of the learning correction coefficient αL corresponding to engine operating conditions such as engine speed and load is provided in the RAM, and when calculating the injection amount Ti, the basic injection amount T is calculated as shown in the following formula.
Correct p by α.

T 1=TpXcOEFXα×αL+Tsそして、αL
の学習は次の手順で進める。
T 1=TpXcOEFXα×αL+Ts and αL
Proceed with the following steps to learn.

1)定常状態においてそのときのエンジン運転条件とα
とを検出する。
1) Engine operating conditions and α in steady state
and detect.

11)前記エンジン運転条件に対応して現在までに学習
され記憶されているαLを検索する。
11) Search for αL that has been learned and stored up to now in accordance with the engine operating conditions.

111)前記αと前記αLとから加重平均等によシ新た
にαLを設定して記憶させる。
111) A new αL is set and stored using a weighted average or the like from the α and αL.

ところで、前記のようにαとαLとから加重平均によシ
新たなαLを設定して更新する方式では、ベース空燃比
のλ=1からのズレを一定値以下に押えることはできる
ものの、必ずしもλ=1に接近すべく収束制御させるも
のではないため、なお改善の余地があった。
By the way, in the above-mentioned method of setting and updating a new αL using a weighted average from α and αL, although it is possible to suppress the deviation of the base air-fuel ratio from λ = 1 to a certain value or less, it is not always possible to Since convergence control is not performed to approach λ=1, there is still room for improvement.

〈発明の目的〉 本発明は叙上の実情に鑑み、ベース空燃比をλ=1に収
束させるように学習することによシ過渡時の制御性をよ
り向上させ触媒の原価低減等を一層促進させるようにす
ることを目的とする。
<Purpose of the Invention> In view of the above-mentioned circumstances, the present invention provides learning to converge the base air-fuel ratio to λ=1 to further improve controllability during transient periods and further promote cost reduction of catalysts. The purpose is to make it possible.

〈発明の構成〉 このため、本発明は、第1図に示すように、吸入空気流
量とエンジン回転数とから基本噴射量を演算する基本噴
射量演算手段と、排気系に設けた02センサからの信号
に基づいて検出される実際の空燃比と理論空燃比とを比
較して比例積分制御により空燃比フィードバック補正係
数を設定する望燃比フィードバック補正係数設定手段と
、エンジン回転数及び負荷等のエンジン運転条件からこ
れに対応させてRAMに記憶させた学習補正係数を検索
する学習補正係数検索手段と、所定の運転条件下で空燃
比フィードバック補正係数と基準値との偏差量を所定割
合、学習補正係数に加算することによって学習補正係数
を設定してRAM内の同一エンジン運転条件の学習補正
係数のデータを更新する学習補正係数更新手段と、基本
噴射量に空燃比フィードバック補正係数と学習補正係数
とを乗算して噴射量を演算する噴射量演算手段と、この
演算された噴射量に相応する駆動パルス信号を燃料噴射
弁に出力する駆動パルス信号出力手段とを設けるように
構成したものである。
<Configuration of the Invention> For this reason, the present invention, as shown in FIG. desired fuel ratio feedback correction coefficient setting means for comparing the actual air-fuel ratio detected based on the signal with the stoichiometric air-fuel ratio and setting the air-fuel ratio feedback correction coefficient by proportional-integral control; A learning correction coefficient search means for searching a learning correction coefficient stored in the RAM corresponding to the operating conditions; and a learning correction coefficient that calculates a deviation amount between the air-fuel ratio feedback correction coefficient and a reference value by a predetermined ratio under predetermined operating conditions. learning correction coefficient updating means for setting a learning correction coefficient by adding it to the coefficient and updating the data of the learning correction coefficient for the same engine operating condition in the RAM; The fuel injection valve is configured to include an injection amount calculation means for calculating the injection amount by multiplying the injection amount by the fuel injection amount, and a drive pulse signal output means for outputting a drive pulse signal corresponding to the calculated injection amount to the fuel injection valve.

〈実施例〉 以下に実施例を説明する。<Example> Examples will be described below.

第2図にハードウェア構成を示す。Figure 2 shows the hardware configuration.

1はCPU、2はP−ROM、3は学習制御用の0MO
8−4℃AM、4はアドレスデコーダである。尚、)t
AM3に対しては、キースイッチOFF後も記憶内容を
保持させるためバンクアップ電源回路を使用する。
1 is CPU, 2 is P-ROM, 3 is 0MO for learning control
8-4°C AM, 4 is an address decoder. Furthermore, )t
For AM3, a bank-up power supply circuit is used to retain the memory contents even after the key switch is turned off.

燃料噴射量の制御のためのCPtJIへのアナログ入力
信号としては、熱線式エアフロメータ5からの吸入空気
流量信号、スロットルセン?6からのスロットル開度信
号、水温センサγからの水温信号、02七ンサ8からの
排気中酸素濃度信号、バッテリ9からのバッテリ電圧が
あシ、これらはアナログ入力インタフェース10及びA
/D変換器11を介して入力させるようになっている。
Analog input signals to CPtJI for controlling the fuel injection amount include the intake air flow rate signal from the hot wire airflow meter 5, and the throttle sensor? The throttle opening signal from 6, the water temperature signal from water temperature sensor γ, the exhaust oxygen concentration signal from 027 sensor 8, and the battery voltage from battery 9 are input to analog input interface 10 and A.
The signal is input via a /D converter 11.

12はA/D変換変換タイミングコロドロー2る。12 is the A/D conversion timing CoroDraw 2.

デジタル入力信号としては、アイドルスイッチ13、ス
タートスイッチ14及びニュートラルスイッチ15から
のON・OFF信号があシ、これらはデジタル入力イン
タフェース16を介して入力されるようになっている。
Digital input signals include ON/OFF signals from an idle switch 13, a start switch 14, and a neutral switch 15, and these are inputted via a digital input interface 16.

その他、クランク角センサ1Tからの例えば180”毎
のリファレンス信号と1°毎のポジション信号とがワン
ショットマルチ回路18を介して入力されるようになっ
ている。また、車速セ/す19からの車速信号が波形整
形回路20を介しで入力されるようになっている。
In addition, a reference signal every 180'' and a position signal every 1° from the crank angle sensor 1T are inputted via the one-shot multi-circuit 18. A vehicle speed signal is input via a waveform shaping circuit 20.

CPU1からの出力信号(燃料噴射弁への駆動パルス信
号)は、電流制御回路21を介して燃料噴射弁22に送
られるようになっている。
An output signal from the CPU 1 (a drive pulse signal to the fuel injection valve) is sent to the fuel injection valve 22 via a current control circuit 21.

ここにおいて、CPU1は第3図に示すフローチャート
(燃料噴射量演算ルーチン)に基づくプログラム(RO
M 2に記憶されている)に従って入出力操作並びに演
算処理等を行い、燃料噴射量を制御する。
Here, the CPU 1 executes a program (RO
(stored in M2), performs input/output operations, calculation processing, etc., and controls the fuel injection amount.

次に第3図のフローチャートについて説明する。Next, the flowchart shown in FIG. 3 will be explained.

Slでエアフローメータ5からの信号によって得られる
吸入空気流量Qとクランク角センサ11かもの信号によ
って得られるエンジン回転数Nとから基本噴射量Tp(
=KXQ/N)を演算する。
The basic injection amount Tp (
=KXQ/N).

S2で各種補正係数C0EFを設定する。In S2, various correction coefficients C0EF are set.

S3で02センサ8の出力電圧とスライスレベル電圧と
を比較して比例積分制御によシ空燃比フィードバック補
正係数αを設定する。
In S3, the output voltage of the 02 sensor 8 and the slice level voltage are compared, and the air-fuel ratio feedback correction coefficient α is set by proportional-integral control.

S4でバッテリ9からのバッテリ電圧に基づいて電圧補
正分子sを設定する。
In S4, a voltage correction numerator s is set based on the battery voltage from the battery 9.

S5では、エンジン運転状態を示すパラメータとして例
えばエンジン回転数N及び基本噴射量(負荷)Tpによ
シ運転領域を複数のエリアに区画し各エリア毎に後述す
る学習補正係数αLを記憶させたマツプ(RAM3に記
憶)から現在の(N。
In S5, a map is created in which the operating region is divided into a plurality of areas based on parameters indicating the engine operating state, such as engine speed N and basic injection amount (load) Tp, and a learning correction coefficient αL, which will be described later, is stored for each area. (stored in RAM3) to the current (N.

Tp)が存在するエリアを検索し、該エリアを示すデー
タをアドレスデコーダ4の所定番地Aにセットする。
Tp) is searched for, and data indicating the area is set in a predetermined location A of the address decoder 4.

S6では前記番地Aにセットされた現在の(N。In S6, the current (N.

Tp)が存在するエリアのデータを同じくアドレスデコ
ーダ40番地LAにセットされた前回検索された(N、
Tp)が存在するエリアのデータと比較し、同一である
か否かを判定する。そしてYESであるとき、即ち、運
転状態が略同−であると判定された場合はS7へ進む。
The data in the area where Tp) exists is searched previously (N,
Tp) is compared with the data of the area where it exists, and it is determined whether they are the same. If YES, that is, if it is determined that the operating conditions are substantially the same, the process advances to S7.

S7では、02センサ8の出力電圧(第4図参照)が8
6の判定がYESとなってからn回反転した−か否かを
判定し、YESの場合はS8へ進む。
In S7, the output voltage of 02 sensor 8 (see Figure 4) is 8.
After the determination in step 6 becomes YES, it is determined whether or not it has been reversed n times, and in the case of YES, the process advances to S8.

即ち、S6、S7は運転状態が定常状態であるか否かを
判別するため設けられてお!り、S6.S7の判定が共
にYESである場合は定常状態であると判定される。か
かる定常状態判定方法は簡易にして、かつ、高精度に行
えるが、この他例えば車速一定、=¥ア位置がニュート
ラル、スロツ)ルpJ度一定で所定時間f:経過したか
否かによって判定する方法等を採用し−Cもよい。そし
て、S6又はS7のいずれかの判定がNOである場合は
非定常状態と判定され、この場合は後述する88〜SI
Oまでの学習を行うことなく811へ進む。
That is, S6 and S7 are provided to determine whether the operating state is a steady state or not! ri, S6. If both determinations in S7 are YES, it is determined that the state is in a steady state. Such a steady state determination method can be performed easily and with high accuracy, but it can also be determined based on, for example, whether or not a predetermined time f has elapsed with the vehicle speed constant, the =\A position in neutral, and the throttle pJ degree constant. -C may also be used. If the determination in either S6 or S7 is NO, it is determined that the state is unsteady, and in this case, 88 to SI described later
Proceed to 811 without performing learning up to O.

S8では空燃比フィードバック補正係数αの定常運転時
における現在及び過去の複数回の値の平均値αを演算す
る。これはンローが行われる毎に平均値をめてもよいが
、例えばαの値の増減が反転してから反転するまでの間
の平均値をめるか、反転時のαの値だけの平均値をめる
ようにしてもよく、このようにすれば定常状態における
αの制御中心をよシ適確にめることができる。
In S8, the average value α of the current and past values of the air-fuel ratio feedback correction coefficient α during steady operation is calculated. This can be done by calculating the average value every time the rotation is performed, but for example, you can calculate the average value from the time when the increase/decrease in the value of α is reversed until it is reversed, or the average value of only the value of α at the time of reversal. The value may be increased, and in this way, the control center of α in the steady state can be set more accurately.

S9では、エンジン回転数N及び基本噴射量TpからR
AM3の前記(N、Tp)が存在するエリアに記憶され
ているN、Tpに対応する学習補正係数αLを検索する
。尚、前記マツプに記憶されるαLの値は学習が開始さ
れていない時点では全てαLL12なっている。
In S9, the engine rotation speed N and the basic injection amount Tp to R
The learning correction coefficient αL corresponding to N and Tp stored in the area where the above-mentioned (N, Tp) exists in AM3 is searched. Note that all the values of αL stored in the map are αLL12 at the time when learning has not started.

SIOではS9において検索された学習補正係数αLと
88において演算された空燃比フィードバック補正係数
の平均値αとから次式にしたがって演算を行い、その値
を新たな学習補正係数αLとして設定し、αLマツプの
当該エリア内の値を更新する。
The SIO calculates the learning correction coefficient αL retrieved in S9 and the average value α of the air-fuel ratio feedback correction coefficients calculated in 88 according to the following formula, sets the value as a new learning correction coefficient αL, and sets αL as the new learning correction coefficient αL. Update the value in the corresponding area of the map.

αL−αL十Δα/M 尚、Δαはαと基準値との偏差量を示しΔα=α−αλ
=1であシ、基準備αλ二1は一般には1.0となる。
αL−αL+Δα/M In addition, Δα represents the deviation amount between α and the reference value Δα=α−αλ
=1, the base preparation αλ21 is generally 1.0.

またMは定数でおる。Also, M is a constant.

811では、アドレスデコーダ4の番地LAにセットさ
れている前回の(N、Tp)のエリアのデータを、番地
Aにセットされている現在の(N。
At 811, the data of the previous area (N, Tp) set in the address LA of the address decoder 4 is transferred to the data of the current area (N, Tp) set in the address A.

Tp)のエリアのデータを転送することによって更新す
る。
Tp) is updated by transferring the data in the area.

最後に812で噴射量Tiを次式にしたがって演算する
Finally, in 812, the injection amount Ti is calculated according to the following equation.

Ti=TpxcOEFXαXαL+TS以上で噴射量T
iが演算され、この噴射量Tiに相当する駆動パルス信
号が電流制御回路21を介して燃料噴射弁22所定のタ
イミングで与えられる。
Ti=TpxcOEFXαXαL+Injection amount T above TS
i is calculated, and a drive pulse signal corresponding to this injection amount Ti is given to the fuel injection valve 22 at a predetermined timing via the current control circuit 21.

このよりに空燃比フィードバック補正係数αの定常状態
における平均値αと基準値との偏差量Δαに基づいてこ
の偏差量を減少すべく学習値αLを更新しているため、
ベース空燃比をノ・ンチングを生じさせることなくλ=
1に収束させることかでき、過渡時におけるλ=1から
のズレを可及的に減少させ、かつ、これに伴ってPI定
数を小さくすることを可能にして制御性を充分に向上さ
せることができ、ひいては触媒原価低減に大きく寄与す
ることができる。
As a result, the learning value αL is updated based on the deviation amount Δα between the average value α of the air-fuel ratio feedback correction coefficient α in the steady state and the reference value in order to reduce this deviation amount.
The base air-fuel ratio is adjusted to λ= without any
It is possible to converge to λ = 1, reduce the deviation from λ = 1 as much as possible during transients, and accordingly reduce the PI constant, thereby sufficiently improving controllability. This can greatly contribute to reducing catalyst costs.

尚、グLの学習時1差量Δαを加える割合を決定するM
の値は一定としてもよいが、エンジン回転数に比例した
値とすれはαのPI制御係数を噴射周期の増大に応じて
減少させることができるのでよシ高精度な噴射量制御が
行える。
In addition, when learning G L, M determines the rate at which 1 difference amount Δα is added.
The value of α may be constant, but if it is proportional to the engine speed, the PI control coefficient of α can be decreased as the injection cycle increases, allowing for highly accurate injection amount control.

又、αを平均せず直接αと基準値との偏差量をめ、該偏
差量を所定割合加算することによって学習補正係数を更
新するようにしたものでおってもよい。
Alternatively, the learning correction coefficient may be updated by directly calculating the deviation amount between α and the reference value without averaging α, and adding the deviation amount by a predetermined percentage.

〈発明の効果〉 以上説明したように本発明によればベース空燃比をλ=
1に収束させるように学習を行う構成としたため、過渡
時におけるベース空燃比の段差から生じるλ=1からの
ズレを可及的に減少させ、かつ、これに伴ってPI定数
を小さくすることができるので極めて安定した制御性が
得られ、ひいては、三元触媒を転換効率の良いところで
使用でき貴金属量の低減によるコストダウン他、触媒の
交換が不要となる等の効果が犬である。
<Effects of the Invention> As explained above, according to the present invention, the base air-fuel ratio is
Since the configuration is configured to perform learning so as to converge to 1, it is possible to reduce as much as possible the deviation from λ = 1 caused by the step in the base air-fuel ratio during transient times, and to reduce the PI constant accordingly. As a result, extremely stable controllability can be obtained, and in turn, the three-way catalyst can be used in areas with high conversion efficiency, reducing costs by reducing the amount of precious metals and eliminating the need to replace the catalyst.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロック図、第2図は本発
明の一実施例を示すハードウェア構成図、第3図は同上
実施例の制御過程を示すフローチャート、第4図は同上
実施例に使用される02センサの出力電圧の特性線図で
ある。 1・・・CPU 3・・・学習制御用CMO8−RAM
 5・・・エアフローメータ 8・・・02センサ1T
・・・クランク角センサ 22・・・燃料噴射弁時 許
 出 願 人 日本電子機器株式会社代理人弁理士 笹
 島 富二雄
Fig. 1 is a block diagram showing the configuration of the present invention, Fig. 2 is a hardware configuration diagram showing an embodiment of the invention, Fig. 3 is a flowchart showing the control process of the above embodiment, and Fig. 4 is an implementation of the same. FIG. 2 is a characteristic diagram of the output voltage of the 02 sensor used in the example. 1...CPU 3...CMO8-RAM for learning control
5...Air flow meter 8...02 sensor 1T
...Crank angle sensor 22...Fuel injection valve time Applicant: Japan Electronics Co., Ltd. Representative Patent Attorney Fujio Sasashima

Claims (1)

【特許請求の範囲】[Claims] 吸入空気流量とエンジン回転数とから基本噴射量を演算
する基本噴射量演算手段と、排気系に設けた02センサ
からの信号に基づいて検出される実際の空燃比と理論空
燃比とを比較して比例積分制御により空燃比フィードバ
ック補正係数を設定する空燃比フィードバック補正係数
設定手段と、エンジン回転数及び負荷等のエンンン運転
条件からこれに対応させてRAMに記憶させた学習補正
係数を検索する学習補正係数検索手段と、所定運転条件
下で空燃比フィードバック補正係数と基準値との偏差量
を所定割合学習補正係数に加算することによって新たな
学習補正係数を設定してRAM内の同一エンンン運転条
件の学習補正係数のデータを更新する学習補正係数更新
手段と、基本噴射量に空燃比フィードバック補正係数と
学習補正係数とを乗算して噴射量を演算する噴射量演算
手段と、この演算された噴射量に相応する駆動パルス信
号を燃料噴射弁に出力する駆動パルス信号出力手段とを
設けたことを特徴とする電子制御燃料噴射式内燃機関の
空燃比学習制御装置。
The basic injection amount calculating means calculates the basic injection amount from the intake air flow rate and engine speed, and the actual air-fuel ratio detected based on the signal from the 02 sensor installed in the exhaust system is compared with the theoretical air-fuel ratio. an air-fuel ratio feedback correction coefficient setting means for setting an air-fuel ratio feedback correction coefficient by proportional-integral control, and a learning means for retrieving a learning correction coefficient stored in a RAM corresponding to engine operating conditions such as engine speed and load. A correction coefficient retrieval means sets a new learning correction coefficient by adding the deviation amount between the air-fuel ratio feedback correction coefficient and the reference value under a predetermined operating condition to a predetermined ratio learning correction coefficient. learning correction coefficient updating means for updating learning correction coefficient data; injection quantity calculation means for calculating the injection quantity by multiplying the basic injection quantity by the air-fuel ratio feedback correction coefficient and the learning correction coefficient; 1. An air-fuel ratio learning control device for an electronically controlled fuel injection type internal combustion engine, comprising drive pulse signal output means for outputting a drive pulse signal corresponding to the fuel injection amount to a fuel injection valve.
JP58197499A 1983-10-24 1983-10-24 Air-fuel ratio learning control apparatus for electronically controlled fuel injection type internal-combustion engine Granted JPS6090944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58197499A JPS6090944A (en) 1983-10-24 1983-10-24 Air-fuel ratio learning control apparatus for electronically controlled fuel injection type internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58197499A JPS6090944A (en) 1983-10-24 1983-10-24 Air-fuel ratio learning control apparatus for electronically controlled fuel injection type internal-combustion engine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP32951490A Division JPH03229942A (en) 1990-11-30 1990-11-30 Air-fuel ratio learning control device for electronically controlled fuel injection type internal combustion engine

Publications (2)

Publication Number Publication Date
JPS6090944A true JPS6090944A (en) 1985-05-22
JPS6346254B2 JPS6346254B2 (en) 1988-09-14

Family

ID=16375485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58197499A Granted JPS6090944A (en) 1983-10-24 1983-10-24 Air-fuel ratio learning control apparatus for electronically controlled fuel injection type internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6090944A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270641A (en) * 1985-09-24 1987-04-01 Japan Electronic Control Syst Co Ltd Learning control device for internal combustion engine
US4715344A (en) * 1985-08-05 1987-12-29 Japan Electronic Control Systems, Co., Ltd. Learning and control apparatus for electronically controlled internal combustion engine
US4800857A (en) * 1987-01-21 1989-01-31 Nippon Denshi Kiki Co., Ltd. Apparatus for learn-controlling air-fuel ratio for internal combustion engine
JPS6473148A (en) * 1987-09-11 1989-03-17 Japan Electronic Control Syst Air-fuel ratio control device for internal combustion engine
US4850326A (en) * 1986-10-21 1989-07-25 Japan Electronic Control Systems, Co., Ltd. Apparatus for learning and controlling air/fuel ratio in internal combustion engine
US4854288A (en) * 1987-04-14 1989-08-08 Japan Electronic Control Systems Co. Air-fuel ratio control apparatus in internal combustion engine
US4854287A (en) * 1986-10-21 1989-08-08 Japan Electronic Control Systems Co., Ltd. Apparatus for learning and controlling air/fuel ratio in internal combustion engine
JPH03229942A (en) * 1990-11-30 1991-10-11 Japan Electron Control Syst Co Ltd Air-fuel ratio learning control device for electronically controlled fuel injection type internal combustion engine
US5099817A (en) * 1989-12-06 1992-03-31 Japan Electronic Control Systems Co., Ltd. Process and apparatus for learning and controlling air/fuel ratio in internal combustion engine
US5243951A (en) * 1989-11-01 1993-09-14 Japan Electronic Control Systems Co., Ltd. Method of and apparatus for learning and controlling air-fuel ratio of internal combustion engine
US5297046A (en) * 1991-04-17 1994-03-22 Japan Electronic Control Systems Co., Ltd. System and method for learning and controlling air/fuel mixture ratio for internal combustion engine
US5331940A (en) * 1992-03-09 1994-07-26 Unisia Jecs Corporation Engine control with positive crankcase ventilation
US5638800A (en) * 1994-12-08 1997-06-17 Unisia Jecs Corporation Method and apparatus for controlling air-fuel ratio learning of an internal combustion engine
JP2010168905A (en) * 2009-01-20 2010-08-05 Denso Corp Air-fuel ratio learning control device for internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270548A (en) * 1988-09-06 1990-03-09 Taiyo Kogyo Kk Sticking of lining material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143134A (en) * 1981-03-02 1982-09-04 Nippon Denso Co Ltd Method of controlling air fuel ratio
JPS5813130A (en) * 1981-07-15 1983-01-25 Nippon Denso Co Ltd Air-fuel ratio control method
JPS5825540A (en) * 1981-08-10 1983-02-15 Nippon Denso Co Ltd Air-to-fuel ratio control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143134A (en) * 1981-03-02 1982-09-04 Nippon Denso Co Ltd Method of controlling air fuel ratio
JPS5813130A (en) * 1981-07-15 1983-01-25 Nippon Denso Co Ltd Air-fuel ratio control method
JPS5825540A (en) * 1981-08-10 1983-02-15 Nippon Denso Co Ltd Air-to-fuel ratio control method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4715344A (en) * 1985-08-05 1987-12-29 Japan Electronic Control Systems, Co., Ltd. Learning and control apparatus for electronically controlled internal combustion engine
JPS6270641A (en) * 1985-09-24 1987-04-01 Japan Electronic Control Syst Co Ltd Learning control device for internal combustion engine
JPH0445659B2 (en) * 1985-09-24 1992-07-27 Japan Electronic Control Syst
US4854287A (en) * 1986-10-21 1989-08-08 Japan Electronic Control Systems Co., Ltd. Apparatus for learning and controlling air/fuel ratio in internal combustion engine
US4850326A (en) * 1986-10-21 1989-07-25 Japan Electronic Control Systems, Co., Ltd. Apparatus for learning and controlling air/fuel ratio in internal combustion engine
US4800857A (en) * 1987-01-21 1989-01-31 Nippon Denshi Kiki Co., Ltd. Apparatus for learn-controlling air-fuel ratio for internal combustion engine
US4854288A (en) * 1987-04-14 1989-08-08 Japan Electronic Control Systems Co. Air-fuel ratio control apparatus in internal combustion engine
JPS6473148A (en) * 1987-09-11 1989-03-17 Japan Electronic Control Syst Air-fuel ratio control device for internal combustion engine
US5243951A (en) * 1989-11-01 1993-09-14 Japan Electronic Control Systems Co., Ltd. Method of and apparatus for learning and controlling air-fuel ratio of internal combustion engine
US5099817A (en) * 1989-12-06 1992-03-31 Japan Electronic Control Systems Co., Ltd. Process and apparatus for learning and controlling air/fuel ratio in internal combustion engine
JPH03229942A (en) * 1990-11-30 1991-10-11 Japan Electron Control Syst Co Ltd Air-fuel ratio learning control device for electronically controlled fuel injection type internal combustion engine
US5297046A (en) * 1991-04-17 1994-03-22 Japan Electronic Control Systems Co., Ltd. System and method for learning and controlling air/fuel mixture ratio for internal combustion engine
US5331940A (en) * 1992-03-09 1994-07-26 Unisia Jecs Corporation Engine control with positive crankcase ventilation
US5638800A (en) * 1994-12-08 1997-06-17 Unisia Jecs Corporation Method and apparatus for controlling air-fuel ratio learning of an internal combustion engine
JP2010168905A (en) * 2009-01-20 2010-08-05 Denso Corp Air-fuel ratio learning control device for internal combustion engine

Also Published As

Publication number Publication date
JPS6346254B2 (en) 1988-09-14

Similar Documents

Publication Publication Date Title
JPS6090944A (en) Air-fuel ratio learning control apparatus for electronically controlled fuel injection type internal-combustion engine
JPH0226052B2 (en)
JPS60101243A (en) Learning control device of internal-combustion engine
JPS6093150A (en) Learnig control device for air-fuel ratio in electronically controlled fuel injection type internal- combustion engine
JPS6356414B2 (en)
JP2690482B2 (en) Air-fuel ratio control device for internal combustion engine
JPH051373B2 (en)
JPH0226696B2 (en)
JPH0686839B2 (en) Feedback controller with learning function
JPH03229942A (en) Air-fuel ratio learning control device for electronically controlled fuel injection type internal combustion engine
JPS6313016B2 (en)
JPH0455235Y2 (en)
JPS61190142A (en) Learning control device of internal-combustion engine
JPS6045749A (en) Air-fuel ratio learning controller of electronic fuel injection type internal-combustion engine
JPH0226695B2 (en)
JPH0530978B2 (en)
JPH0243900B2 (en) NAINENKIKANNOGAKUSHUSEIGYOSOCHI
JPS60153504A (en) Feedback control device having learning function
JPH0740673Y2 (en) Air-fuel ratio learning controller for internal combustion engine
JPH0423099B2 (en)
JPS6356413B2 (en)
JPH0228700B2 (en)
JPH0416625B2 (en)
JPH0445659B2 (en)
JPS6059415B2 (en) Air-fuel ratio control method for internal combustion engine