JPH0226052B2 - - Google Patents

Info

Publication number
JPH0226052B2
JPH0226052B2 JP58076221A JP7622183A JPH0226052B2 JP H0226052 B2 JPH0226052 B2 JP H0226052B2 JP 58076221 A JP58076221 A JP 58076221A JP 7622183 A JP7622183 A JP 7622183A JP H0226052 B2 JPH0226052 B2 JP H0226052B2
Authority
JP
Japan
Prior art keywords
correction coefficient
fuel ratio
air
injection amount
learning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58076221A
Other languages
Japanese (ja)
Other versions
JPS59203828A (en
Inventor
Naomi Tomizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP7622183A priority Critical patent/JPS59203828A/en
Priority to US06/604,025 priority patent/US4615319A/en
Priority to GB08411096A priority patent/GB2141839B/en
Publication of JPS59203828A publication Critical patent/JPS59203828A/en
Publication of JPH0226052B2 publication Critical patent/JPH0226052B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2477Methods of calibrating or learning characterised by the method used for learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Description

【発明の詳細な説明】 <技術分野> 本発明は電子制御燃料噴射式内燃機関における
空燃比の学習制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Technical Field> The present invention relates to an air-fuel ratio learning control device in an electronically controlled fuel injection type internal combustion engine.

<背景技術> 電子制御燃料噴射式内燃機関において、噴射量
Tiは次式によつて定められる。
<Background technology> In an electronically controlled fuel injection type internal combustion engine, the injection amount
Ti is determined by the following formula.

Ti=Tp×COEF×α+Ts ここで、Tpは基本噴射量で、Tp=K×Q/N
である。Kは定数、Qは吸入空気流量、Nはエン
ジン回転数である。COEFは各種増量補正係数
で、COEF=1+Ktw+Kas+Kai+Kmrである。
Ktwは水温増量補正係数、Kasは始動及び始動後
増量補正係数、Kaiはアイドル後増量補正係数、
Kmrは混合気補正係数である。αは後述する空
燃比のフイードバツク制御(λコントロール)の
ための空燃比フイードバツク補正係数である。
Tsは電圧補正分で、バツテリ電圧の変動を補正
するためのものである。
Ti=Tp×COEF×α+Ts Here, Tp is the basic injection amount, Tp=K×Q/N
It is. K is a constant, Q is the intake air flow rate, and N is the engine speed. COEF is various increase correction coefficient, COEF=1+Ktw+Kas+Kai+Kmr.
Ktw is the water temperature increase correction coefficient, Kas is the start and post-start increase correction coefficient, Kai is the after-idle increase correction coefficient,
Kmr is the mixture correction coefficient. α is an air-fuel ratio feedback correction coefficient for air-fuel ratio feedback control (λ control) to be described later.
Ts is a voltage correction amount, which is used to correct fluctuations in battery voltage.

空燃比のフイードバツク制御については、排気
系にO2センサを取付けて実際の空燃比を検出し、
空燃比が理論空燃比より濃いか薄いかをスライス
レベルにより判定し、理論空燃比になるように燃
料の噴射量を制御するわけであり、このため、前
記の空燃比フイードバツク補正係数αというもの
を定めて、このαを変化させることにより理論空
燃比に保つている。
For air-fuel ratio feedback control, an O 2 sensor is installed in the exhaust system to detect the actual air-fuel ratio.
The slice level determines whether the air-fuel ratio is richer or leaner than the stoichiometric air-fuel ratio, and the fuel injection amount is controlled to maintain the stoichiometric air-fuel ratio. By changing this α, the air-fuel ratio is maintained at the stoichiometric air-fuel ratio.

ここで、空燃比フイードバツク補正係数αの値
は比例積分(PI)制御により変化させ、安定し
た制御としている。
Here, the value of the air-fuel ratio feedback correction coefficient α is changed by proportional-integral (PI) control to ensure stable control.

すなわち、O2センサの出力とスライスレベル
とを比較し、スライスレベルよりも高い場合、低
い場合に、空燃比を急に濃くしたり、薄くしたり
することなく、空燃比が濃い(薄い)場合には始
めにP分だけ下げて(上げて)、それから1分の
傾きで徐々に下げて(上げて)いき、空燃比を薄
く(濃く)するように制御する。
In other words, the output of the O2 sensor is compared with the slice level, and if it is higher or lower than the slice level, the air-fuel ratio is rich (lean) without suddenly increasing or decreasing the air-fuel ratio. At first, the air-fuel ratio is controlled to be lowered (raised) by P, and then gradually lowered (raised) at a rate of 1 minute to make the air-fuel ratio leaner (richer).

但し、λコントロールを行なわない領域ではα
=1にクランプする。
However, in the region where λ control is not performed, α
=1.

ところで、λコントール領域でα=1のときの
ベース空燃比を理論空燃比(λ=1)に設定する
ことができればフイードバツク制御は不要なので
あるが、実際には構成部品(例えばエアフローメ
ータ、燃料噴射弁、プレツシヤレギユレータ、コ
ントロールユニツト)のバラツキや経時変化、燃
料噴射弁のパルス巾−流量特性の非直線性、運転
条件や環境の変化等の要因で、ベース空燃比のλ
=1からのズレを生じるので、フイードバツク制
御を行つている。
By the way, if the base air-fuel ratio when α = 1 in the λ control region could be set to the stoichiometric air-fuel ratio (λ = 1), feedback control would not be necessary. The base air-fuel ratio λ may vary due to factors such as variations in the valves, pressure regulators, control units), changes over time, non-linearity of the pulse width-flow rate characteristics of the fuel injector, and changes in operating conditions and environment.
Since a deviation from =1 occurs, feedback control is performed.

しかし、ベース空燃比がλ=1からずれている
と、運転領域が大きく変化したときに、ベース空
燃比の段差をフイードバツク制御によりλ=1に
PI制御するまでに時間がかかる。そして、この
ためにPI定数を大きくするので、オーバーシユ
ートやアンダーシユートを生じ、制御性が悪くな
る。つまり、ベース空燃比がλ=1からずれてい
ると、理論空燃比よりかなりズレをもつた範囲で
空燃比制御がなされるのである。
However, if the base air-fuel ratio deviates from λ = 1, when the operating range changes significantly, the step in the base air-fuel ratio can be adjusted to λ = 1 using feedback control.
It takes time to control PI. For this reason, the PI constant is increased, which causes overshoot and undershoot, resulting in poor controllability. In other words, if the base air-fuel ratio deviates from λ=1, the air-fuel ratio will be controlled within a range that deviates considerably from the stoichiometric air-fuel ratio.

その結果、三元触媒の転換効率の悪いところで
運転がなされることになり、触媒の貴金属量の増
大によるコストアツプの他、触媒の劣化に伴う転
換効率の更なる悪化により触媒の変換を余儀なく
されるという問題点があつた。
As a result, the three-way catalyst is operated at a point where its conversion efficiency is poor, and not only does the cost increase due to an increase in the amount of precious metal in the catalyst, but the conversion efficiency further deteriorates as the catalyst deteriorates, forcing the catalyst to be replaced. There was a problem.

<発明の目的> 本発明は、叙上の実状に鑑み、学習によりベー
ス空燃比をλ=1にすることにより、過渡時にベ
ース空燃比の段差から生じるλ=1からのずれを
なくし、かつ、PI定数を小さくすることを可能
にして制御性の向上を図り、これらにより触媒の
原価低減等を図ることを目的とする。
<Object of the invention> In view of the above-mentioned actual situation, the present invention sets the base air-fuel ratio to λ = 1 by learning, thereby eliminating the deviation from λ = 1 caused by the step in the base air-fuel ratio during transient times, and The purpose is to improve controllability by making it possible to reduce the PI constant, and thereby reduce the cost of the catalyst.

<発明の構成> このため、本発明は、第1図に示すように、吸
入空気流量とエンジン回転数とから基本噴射量を
演算する基本噴射量演算手段と、排気系に設けた
O2センサからの信号に基づいて検出される実際
の空燃比と理論空燃比とを比較して比例積分制御
により空燃比フイードバツク補正係数を設定する
空燃比フイードバツク補正係数設定手段と、エン
ジン回転数及び負荷等のエンジン運転条件からこ
れに対応させてRAMに記憶させた学習補正係数
を検索する学習補正係数検索手段と、所定時間内
に車速の変化が所定値以下でかつギアが入つてお
りかつスロツトル開度の変化が所定値以下の場合
に定常状態を検出する定常状態検出手段と、定常
状態の検出時に空燃比フイードバツク補正係数と
学習補正係数との重みづけ平均をそりその値を新
たな学習補正係数とし且つその学習補正係数で
RAM内の同一エンジン運転条件のデータを更新
する学習補正係数修正手段と、基本噴射量に空燃
比フイードバツク補正係数と学習補正係数とを乗
算して噴射量を演算する噴射量演算手段と、この
演算された噴射量に相応する駆動パルス信号を燃
料噴射弁に出力する駆動パルス信号出力手段とを
設けて構成したものである。
<Structure of the Invention> For this reason, the present invention, as shown in FIG.
an air-fuel ratio feedback correction coefficient setting means that compares the actual air-fuel ratio detected based on the signal from the O2 sensor with the stoichiometric air-fuel ratio and sets an air-fuel ratio feedback correction coefficient by proportional-integral control; A learning correction coefficient search means for searching a learning correction coefficient stored in RAM corresponding to engine operating conditions such as load; Steady state detection means detects a steady state when the change in opening is less than a predetermined value, and when the steady state is detected, the weighted average of the air-fuel ratio feedback correction coefficient and the learning correction coefficient is calculated and the value is used for new learning correction. coefficient and its learning correction coefficient.
learning correction coefficient correction means for updating data for the same engine operating condition in RAM; injection quantity calculation means for calculating the injection quantity by multiplying the basic injection quantity by the air-fuel ratio feedback correction coefficient and the learning correction coefficient; The fuel injection valve is configured to include a drive pulse signal output means for outputting a drive pulse signal corresponding to the injection amount to the fuel injection valve.

<実施例> 以下に実施例を説明する。<Example> Examples will be described below.

第2図はハードウエア構成を示す。 FIG. 2 shows the hardware configuration.

1はCPU、2はP−ROM、3は学習制御用の
CMOS−RAM、4はアドレスデコーダである。
1 is CPU, 2 is P-ROM, 3 is for learning control
CMOS-RAM, 4 is an address decoder.

燃料噴射量の制御のためのCPU1へのアナロ
グ入力信号としては、熱線式エアフローメータ5
からの吸入空気流量信号、スロツトルセンサ6か
らのスロツトル開度信号、水温センサ7からの水
温信号、O2センサ8からの排気中酸素濃度信号、
バツテリ9からのバツテリ電圧があり、これらは
アナログ入力インタフエース10及びA/D変換
器11を介して入力されるようになつている。1
2はA/D変換タイミングコントローラである。
The hot wire air flow meter 5 is used as an analog input signal to the CPU 1 for controlling the fuel injection amount.
intake air flow rate signal from the throttle sensor 6, throttle opening signal from the throttle sensor 6, water temperature signal from the water temperature sensor 7, exhaust oxygen concentration signal from the O2 sensor 8,
There is a battery voltage from the battery 9, which is adapted to be input via an analog input interface 10 and an A/D converter 11. 1
2 is an A/D conversion timing controller.

デジタル入力信号としては、アルドルスイツチ
13、スタートスイツチ14及びニユートラルス
イツチ15からのON・OFF信号があり、これら
はデジタル入力インタフエース16を介して入力
されるようになつている。
As digital input signals, there are ON/OFF signals from an alarm switch 13, a start switch 14, and a neutral switch 15, and these are inputted via a digital input interface 16.

その他、クランク角センサ17からの例えば
180゜毎のリフアレンス信号と1゜毎のポジシヨン信
号とがワンシヨツトマルチ回路18を介して入力
されるようになつている。また、車速センサ19
からの車速信号が波形整形回路20を介して入力
されるようになつている。
In addition, for example, from the crank angle sensor 17
A reference signal every 180 degrees and a position signal every 1 degree are inputted via a one-shot multi-circuit 18. In addition, the vehicle speed sensor 19
The vehicle speed signal is inputted via the waveform shaping circuit 20.

CPU1からの出力信号(燃料噴射弁への駆動
パルス信号)は、電流波形制御回路21を介して
燃料噴射弁22に送られるようになつている。
An output signal from the CPU 1 (a drive pulse signal to the fuel injection valve) is sent to the fuel injection valve 22 via a current waveform control circuit 21.

ここにおいて、CPU1は第3図に示すフロー
チヤート(燃料噴射量計算ルーチン)に基づくプ
ログラム(ROM2に記憶されている)に従つて
入出力操作並びに演算処理等を行い、燃料噴射量
を制御する。
Here, the CPU 1 performs input/output operations, arithmetic processing, etc. according to a program (stored in the ROM 2) based on the flowchart (fuel injection amount calculation routine) shown in FIG. 3, and controls the fuel injection amount.

次に第3図のフローチヤートについて説明す
る。
Next, the flowchart shown in FIG. 3 will be explained.

S1でエアフローメータ5からの信号によつて
得られる吸入空気流量Qとクランク角センサ17
からの信号によつて得られるエンジン回転数Nと
から基本噴射量Tp(=K×Q/N)を演算する。
The intake air flow rate Q obtained from the signal from the air flow meter 5 at S1 and the crank angle sensor 17
The basic injection amount Tp (=K×Q/N) is calculated from the engine speed N obtained from the signal from the engine.

S2で各種増量補正係数COEFを設定する。 Set various increase correction coefficients COEF in S2.

S3でO2センサ8からの出力とスライスレベル
とを比較して比例積分制御により空燃比フイード
バツク補正係数αを設定する。
In S3, the output from the O 2 sensor 8 is compared with the slice level, and an air-fuel ratio feedback correction coefficient α is set by proportional-integral control.

S4でバツテリ9からのバツテリ電圧に基づい
て電圧補正分Tsを設定する。
In S4, a voltage correction amount Ts is set based on the battery voltage from the battery 9.

S5でエンジン回転数N及び基本噴射量(負荷)
Tpからの学習補正係数α0を検索する。尚、回転
数N及び負荷Tpに対する学習補正係数α0のマツ
プは書換え可能なRAM3に記憶されており、学
習が開始されていない時点では全てα0=1となつ
ている。
Engine speed N and basic injection amount (load) at S5
Search for learning correction coefficient α 0 from Tp. The map of the learning correction coefficient α 0 with respect to the rotational speed N and the load Tp is stored in the rewritable RAM 3, and all α 0 =1 at the time when learning has not started.

S6〜S9は定常状態を検出するために設けられ
ており、S6で車速センサ19からの信号に基づ
いて車速の変化を判定し、S7でニユートラルス
イツチ15からの信号に基づいてギア位置を判定
し、S8でスロツトルセンサ6から信号に基づい
てスロツトル開度の変化を判定し、S9で所定時
間経過したか否かを判定して所定時間内であれ
ば、S6へ戻る。こうして、所定時間内に車速の
変化が所定値以下で、かつ、ギアが入つており、
かつ、スロツトル開度の変化が所定値以下の場合
は、定常状態であると判定し、S10、S11での学
習補正係数α0の修正を行うようにする。また、所
定時間内の任意の時点で車速の変化が所定値を越
えた場合、ニユートラルになつた場合、又はスロ
ツトル開度の変化が所定値を越えた場合は、過渡
状態であると判定し、S10、S11での学習補正係
数α0の修正を行わないようにする。
S6 to S9 are provided to detect a steady state, and S6 determines a change in vehicle speed based on the signal from the vehicle speed sensor 19, and S7 determines the gear position based on the signal from the neutral switch 15. Then, in S8, a change in the throttle opening degree is determined based on the signal from the throttle sensor 6, and in S9, it is determined whether a predetermined time has elapsed, and if it is within the predetermined time, the process returns to S6. In this way, the change in vehicle speed is less than a predetermined value within a predetermined time, and the gear is engaged.
Further, if the change in the throttle opening is less than or equal to a predetermined value, it is determined that the state is steady, and the learning correction coefficient α 0 is corrected in S10 and S11. In addition, if the change in vehicle speed exceeds a predetermined value at any point within a predetermined time, if the vehicle speed becomes neutral, or if the change in throttle opening exceeds a predetermined value, it is determined that the state is in a transient state, The learning correction coefficient α 0 is not corrected in S10 and S11.

尚、定常状態であることの検出は、O2センサ
出力のリツチ/リーン反転、αの状態、運転パラ
メータの組合せ等の方法も考えられるが、応答と
マツチングを考えると、車速変化分、ギア位置
(ニユートラル以外)、スロツトル開度変化分の組
合わせが所定状態になつた後、所定時間経過する
という条件で判断するのが容易である。
In addition, methods such as rich/lean reversal of the O 2 sensor output, α status, and combination of operating parameters can be considered to detect the steady state, but when considering response and matching, it is possible to (Other than neutral), it is easy to judge on the condition that a predetermined period of time elapses after the combination of throttle opening changes reaches a predetermined state.

定常状態と判定された場合の学習補正係数α0
修正は次の通り行われる。
The learning correction coefficient α 0 is corrected as follows when it is determined that the steady state is present.

S10で今回の空燃比フイードバツク補正係数α
とエンジン回転数Nと負荷Tpとから検索された
学習補正係数α0との加重平均(次止参照)をとつ
て、その加重平均値を新たな学習補正係数α0とす
る。
Current air-fuel ratio feedback correction coefficient α in S10
and the learning correction coefficient α 0 retrieved from the engine speed N and the load Tp (see next page), and the weighted average value is set as the new learning correction coefficient α 0 .

α0←(α+(M−1)×α0)/M Mは定数 S11で新たな学習補正係数α0をRAM3の対応
するエンジン回転数Nと負荷Tpのところへ書き
込む。すなわち、RAM3内のデータを更新す
る。
α 0 ← (α+(M−1)×α 0 )/M M is a constant At S11, a new learning correction coefficient α 0 is written to the corresponding engine speed N and load Tp in the RAM 3. That is, the data in RAM3 is updated.

定常状態と判定されて学習補正係数α0を修正し
た後、あるいは過渡状態と判定された後は、S12
で噴射量Tiを次式に従つて演算する。
After it is determined to be a steady state and the learning correction coefficient α 0 is corrected, or after it is determined to be a transient state, S12
The injection amount Ti is calculated according to the following formula.

Ti=Tp×COEF×α×α0+Ts ここで、定常状態の場合はα0として更新された
ものが用いられ、過渡状態の場合は検索されたも
のがそのまま用いられる。
Ti=Tp×COEF×α×α 0 +Ts Here, in the case of a steady state, the updated value as α 0 is used, and in the case of a transient state, the retrieved value is used as is.

以上で噴射量Tiが計算され、この噴射量Tiに
相応する駆動パルス信号が電流波形制御回路21
を介して燃料噴射弁22に所定のタイミングで与
えられる。
The injection amount Ti is calculated in the above manner, and the drive pulse signal corresponding to this injection amount Ti is sent to the current waveform control circuit 21.
is applied to the fuel injection valve 22 at a predetermined timing.

尚、学習補正係数α0のマツプはマツチングを考
えると、N=8格子、Tp=4格子程度でよく、
α0の更新に関しては補間なしで、Tiの演算に際
しては補間付が良いと思われる。
In addition, considering matching, the map for the learning correction coefficient α 0 may be approximately N = 8 grids, Tp = 4 grids,
It seems better to update α 0 without interpolation, and to calculate Ti with interpolation.

尚、学習制御によつて修正するパラメータを別
途設定せず、例えばK定数、Q−Us(エアフロー
メータ出力)マツプ、Kmrマツプ等を修正する
ようにしてもよい。但し、シングルポイントイン
ジエクシヨン(SRI)方式で吸入空気量の計測に
バイパスタイプの熱線式エアフローメータを用い
ると、計測誤差の影響は回転とブーストで変化る
可能性があり、Kmrマツプによる修正を行うの
が良いと考えられる。この場合、Kmrマツプ自
身を修正してゆく方法と、マツチングで決定した
KmrマツプはROMに固定してさらにキヤリブレ
ーシヨンKmrマツプを別に持つ方法とが考えら
れるが、λコントロール領域の設定等マツチング
上の問題を考えると後者の方が有利と考えられ
る。従つて、学習制御用のキヤリブレーシヨン
KmrマツプをCMOS−RAM上に持たせるのが望
ましいと思われる。
Note that the parameters to be corrected by learning control may not be set separately, and for example, the K constant, Q-Us (air flow meter output) map, Kmr map, etc. may be corrected. However, if a bypass type hot wire air flow meter is used to measure the intake air amount using the single point injection (SRI) method, the influence of measurement errors may change depending on the rotation and boost, so correction using the Kmr map is necessary. It is considered a good idea to do so. In this case, the method determined by modifying the Kmr map itself and the method determined by matching
One possible method is to fix the Kmr map in the ROM and have a separate calibration Kmr map, but the latter is considered more advantageous when considering matching problems such as setting the λ control area. Therefore, calibration for learning control
It seems desirable to have the Kmr map on CMOS-RAM.

尚、このような学習制御を行う場合は、学習制
御した内容を記憶保持するため、キースイツチ
OFF後もRAM3のバツクアツプを行うことは勿
論であり、バツクアツプ電源回路を使用する。
CMOS−RAM3を使用したのは保持電流が少な
くて済むからである。
In addition, when performing such learning control, the key switch must be turned off in order to memorize and retain the learned and controlled contents.
Of course, RAM 3 can be backed up even after it is turned off, and a backup power supply circuit is used.
CMOS-RAM3 was used because it requires less holding current.

また、学習制御は、自ら制御パラメータを修正
してゆく方式であるため、システムとして学習で
きる状態にあるかどうかを常にモニターしておか
ないと、当初の目的とは異なる方向に学習が進ん
でしまう可能性がある。
Furthermore, learning control is a method that modifies the control parameters by itself, so unless you constantly monitor whether the system is in a state where it can learn, learning will progress in a direction different from the original purpose. there is a possibility.

そこで、空燃比の学習を行うためには、O2
ンサの出力が正常であることを条件であるため、
常にO2センサが学習を行える状態にあるかどう
かチエツクする必要がある。
Therefore, in order to learn the air-fuel ratio, it is necessary that the output of the O 2 sensor is normal.
It is always necessary to check whether the O 2 sensor is in a state where it can learn.

このためには、例えばO2センサの起電力が正
常な範囲内にあるか否かを判定するモニター、又
はクローズ状態のリツチ/リーンの反転周期が正
常な範囲内にあるか否かを判定するモニター等を
用いればよい。
For this purpose, for example, a monitor that determines whether the electromotive force of the O 2 sensor is within the normal range, or a monitor that determines whether the rich/lean reversal period in the closed state is within the normal range. A monitor or the like may be used.

<発明の効果> 以上説明したように本発明によれば、空燃比の
フイードバツク制御時の空燃比フイードバツク補
正係数を学習して学習補正係数を設定し、これを
用いてλコントロールゾーンのベース空燃比を学
習によりλ=1にするようにしたため、過渡時に
ベース空燃比の段差から生ずるλ=1からのずれ
をなくし、かつλコントロール時のPI定数を小
さくすることができるので、制御性が大巾に向上
する。従つて、触媒を転換効率の良いところで使
用でき、貴金属量の低減によるコストダウンの
他、触媒の交換が不要となる。また、所定時間内
に車速の変化が所定値以下でかつギアが入つてお
りかつスロツトル開度の変化が所定値以下の場合
に定常状態を検出して、定常状態で学習を行なう
ので、学習の信頼性が向上し、しかも上記の組合
わせで定常状態を検出することから、応答とマツ
チングよく、定常状態の検出が可能で、学習の信
頼性が極めて大である。
<Effects of the Invention> As explained above, according to the present invention, the air-fuel ratio feedback correction coefficient during air-fuel ratio feedback control is learned and the learning correction coefficient is set, and this is used to set the base air-fuel ratio of the λ control zone. By learning to set λ = 1, it is possible to eliminate deviations from λ = 1 caused by differences in the base air-fuel ratio during transients, and to reduce the PI constant during λ control, greatly improving controllability. improve. Therefore, the catalyst can be used at a location with high conversion efficiency, and in addition to cost reduction due to the reduction in the amount of precious metals, there is no need to replace the catalyst. In addition, if the change in vehicle speed is less than a predetermined value within a predetermined time, the gear is engaged, and the change in throttle opening is less than a predetermined value, a steady state is detected and learning is performed in the steady state. The reliability is improved, and since the steady state is detected using the above combination, the steady state can be detected with good matching with the response, and the reliability of learning is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロツク図、第2
図は本発明の一実施例を示すハードウエア構成
図、第3図はフローチヤートである。 1……CPU、3……学習制御用CMOS−
RAM、5……エアフローメータ、6……スロツ
トルセンサ、8……O2センサ、15……ニユー
トラルスイツチ、17……クランク角センサ、1
9……車速センサ、22……燃料噴射弁。
Figure 1 is a block diagram showing the configuration of the present invention, Figure 2 is a block diagram showing the configuration of the present invention.
The figure is a hardware configuration diagram showing one embodiment of the present invention, and FIG. 3 is a flowchart. 1...CPU, 3...CMOS for learning control
RAM, 5... Air flow meter, 6... Throttle sensor, 8... O 2 sensor, 15... Neutral switch, 17... Crank angle sensor, 1
9...Vehicle speed sensor, 22...Fuel injection valve.

Claims (1)

【特許請求の範囲】[Claims] 1 吸入空気流量とエンジン回転数とから基本噴
射量を演算する基本噴射量演算手段と、排気系に
設けたO2センサからの信号に基づいて検出され
る実際の空燃比と理論空燃比とを比較して比例積
分制御により空燃比フイードバツク補正係数を設
定する空燃比フイードバツク補正係数設定手段
と、エンジン回転数及び負荷等のエンジン運転条
件からこれに対応させてRAMに記憶させた学習
補正係数を検索する学習補正係数検索手段と、所
定時間内に車速の変化が所定値以下でかつギアが
入つておりかつスロツトル開度の変化が所定値以
下の場合に定常状態を検出する定常状態検出手段
と、定常状態の検出時に空燃比フイードバツク補
正係数と学習補正係数との重みづけ平均をとりそ
の値を新たな学習補正係数とし且つその学習補正
係数でRAM内の同一エンジン運転条件のデータ
を更新する学習補正係数修正手段と、基本噴射量
に空燃比フイードバツク補正係数と学習補正係数
とを乗算して噴射量を演算する噴射量演算手段
と、この演算された噴射量に相応する駆動パルス
信号を燃料噴射弁に出力する駆動パルス信号出力
手段とを備えることを特徴とする電子制御燃料噴
射式内燃機関における空燃比の学習制御装置。
1 Basic injection amount calculation means that calculates the basic injection amount from the intake air flow rate and engine speed, and the actual air-fuel ratio and stoichiometric air-fuel ratio detected based on the signal from the O 2 sensor installed in the exhaust system. An air-fuel ratio feedback correction coefficient setting means that compares and sets an air-fuel ratio feedback correction coefficient by proportional-integral control, and searches for a learning correction coefficient stored in RAM corresponding to engine operating conditions such as engine speed and load. steady state detection means that detects a steady state when a change in vehicle speed is less than a predetermined value within a predetermined time, a gear is engaged, and a change in throttle opening is less than a predetermined value; Learning correction that takes a weighted average of the air-fuel ratio feedback correction coefficient and learning correction coefficient when a steady state is detected, uses that value as a new learning correction coefficient, and updates data for the same engine operating condition in RAM with the learning correction coefficient. coefficient correction means; injection amount calculation means for calculating the injection amount by multiplying the basic injection amount by an air-fuel ratio feedback correction coefficient and a learning correction coefficient; and a drive pulse signal corresponding to the calculated injection amount for controlling the fuel injection valve. 1. A learning control device for an air-fuel ratio in an electronically controlled fuel injection type internal combustion engine, characterized in that it is provided with a drive pulse signal output means for outputting a drive pulse signal.
JP7622183A 1983-05-02 1983-05-02 Air-fuel ratio learning control apparatus for electronically controlled fuel injection type internal-combustion engine Granted JPS59203828A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7622183A JPS59203828A (en) 1983-05-02 1983-05-02 Air-fuel ratio learning control apparatus for electronically controlled fuel injection type internal-combustion engine
US06/604,025 US4615319A (en) 1983-05-02 1984-04-26 Apparatus for learning control of air-fuel ratio of airfuel mixture in electronically controlled fuel injection type internal combustion engine
GB08411096A GB2141839B (en) 1983-05-02 1984-05-01 Automatic control of the air-fuel mixture ratio in an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7622183A JPS59203828A (en) 1983-05-02 1983-05-02 Air-fuel ratio learning control apparatus for electronically controlled fuel injection type internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS59203828A JPS59203828A (en) 1984-11-19
JPH0226052B2 true JPH0226052B2 (en) 1990-06-07

Family

ID=13599121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7622183A Granted JPS59203828A (en) 1983-05-02 1983-05-02 Air-fuel ratio learning control apparatus for electronically controlled fuel injection type internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59203828A (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2165063B (en) * 1984-01-24 1987-08-12 Japan Electronic Control Syst Air/fuel mixture ratio learning controller in electronic control fuel injection internal combustion engine
JPH07107376B2 (en) 1984-11-29 1995-11-15 富士重工業株式会社 Learning control method for automobile engine
US4729359A (en) * 1985-06-28 1988-03-08 Japan Electronic Control Systems Co., Ltd. Learning and control apparatus for electronically controlled internal combustion engine
US4715344A (en) * 1985-08-05 1987-12-29 Japan Electronic Control Systems, Co., Ltd. Learning and control apparatus for electronically controlled internal combustion engine
JPS61190141A (en) * 1985-09-12 1986-08-23 Japan Electronic Control Syst Co Ltd Learning control device of internal-combustion engine
JPS61190142A (en) * 1985-09-12 1986-08-23 Japan Electronic Control Syst Co Ltd Learning control device of internal-combustion engine
JPH0713491B2 (en) * 1986-06-04 1995-02-15 本田技研工業株式会社 Air-fuel ratio control method for internal combustion engine
US4854287A (en) * 1986-10-21 1989-08-08 Japan Electronic Control Systems Co., Ltd. Apparatus for learning and controlling air/fuel ratio in internal combustion engine
US4850326A (en) * 1986-10-21 1989-07-25 Japan Electronic Control Systems, Co., Ltd. Apparatus for learning and controlling air/fuel ratio in internal combustion engine
US4957705A (en) * 1986-11-10 1990-09-18 Japan Electronic Control Systems Co., Ltd. Oxygen gas concentration-detecting apparatus
JPS63255541A (en) * 1987-04-14 1988-10-21 Japan Electronic Control Syst Co Ltd Air-to-fuel ratio control device of internal combustion engine
JP2582804B2 (en) * 1987-10-08 1997-02-19 富士通テン株式会社 Fuel injection amount control device for internal combustion engine
JPH01221654A (en) * 1988-03-01 1989-09-05 Japan Electron Control Syst Co Ltd Enzyme sensor for internal combustion engine
JP3581762B2 (en) * 1996-06-20 2004-10-27 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476723A (en) * 1977-12-01 1979-06-19 Nissan Motor Co Ltd Device of controlling number of idling revolution of internal combustion engine
JPS5596339A (en) * 1979-01-13 1980-07-22 Nippon Denso Co Ltd Air-fuel ratio control method
JPS56110539A (en) * 1980-02-01 1981-09-01 Toyota Motor Corp Controlling method for internal combustion engine
JPS56121842A (en) * 1980-02-28 1981-09-24 Toyota Motor Corp Engine control method
JPS57210137A (en) * 1981-05-15 1982-12-23 Honda Motor Co Ltd Feedback control device of air-fuel ratio in internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476723A (en) * 1977-12-01 1979-06-19 Nissan Motor Co Ltd Device of controlling number of idling revolution of internal combustion engine
JPS5596339A (en) * 1979-01-13 1980-07-22 Nippon Denso Co Ltd Air-fuel ratio control method
JPS56110539A (en) * 1980-02-01 1981-09-01 Toyota Motor Corp Controlling method for internal combustion engine
JPS56121842A (en) * 1980-02-28 1981-09-24 Toyota Motor Corp Engine control method
JPS57210137A (en) * 1981-05-15 1982-12-23 Honda Motor Co Ltd Feedback control device of air-fuel ratio in internal combustion engine

Also Published As

Publication number Publication date
JPS59203828A (en) 1984-11-19

Similar Documents

Publication Publication Date Title
JPH0226052B2 (en)
JPS6346254B2 (en)
JPH0331548A (en) Mixed fuel supply device of internal combustion engine
JPS6340933B2 (en)
JPS6356414B2 (en)
JPH051373B2 (en)
JPH0529775B2 (en)
JPS6313016B2 (en)
JPH0686839B2 (en) Feedback controller with learning function
JPH0530978B2 (en)
JPS61190142A (en) Learning control device of internal-combustion engine
JPH0226696B2 (en)
JPS6054005A (en) On-vehicle electronic feedback controller
JPS6045749A (en) Air-fuel ratio learning controller of electronic fuel injection type internal-combustion engine
JPH0455235Y2 (en)
JPH0228700B2 (en)
JPS6356413B2 (en)
JPH0226695B2 (en)
JPH0543868B2 (en)
JPH0445659B2 (en)
JPH0243900B2 (en) NAINENKIKANNOGAKUSHUSEIGYOSOCHI
JPH07113841B2 (en) Feedback control device with learning function
JPS6232259A (en) Monitor of learning controller for internal combustion engine
JPH0423099B2 (en)
JP2510857B2 (en) Feedback Controller with Learning Function for Internal Combustion Engine