JPH0530978B2 - - Google Patents

Info

Publication number
JPH0530978B2
JPH0530978B2 JP58132894A JP13289483A JPH0530978B2 JP H0530978 B2 JPH0530978 B2 JP H0530978B2 JP 58132894 A JP58132894 A JP 58132894A JP 13289483 A JP13289483 A JP 13289483A JP H0530978 B2 JPH0530978 B2 JP H0530978B2
Authority
JP
Japan
Prior art keywords
correction coefficient
fuel ratio
air
learning
learning correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58132894A
Other languages
Japanese (ja)
Other versions
JPS6026137A (en
Inventor
Naomi Tomizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP13289483A priority Critical patent/JPS6026137A/en
Publication of JPS6026137A publication Critical patent/JPS6026137A/en
Publication of JPH0530978B2 publication Critical patent/JPH0530978B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1474Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method by detecting the commutation time of the sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • F02D41/2448Prohibition of learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Description

【発明の詳細な説明】 <技術分野> 本発明は電子制御燃料噴射式内燃機関の空燃比
学習制御装置に関し、特にO2センサの劣化等に
より空燃比の学習が誤つた方向へ進行するのを防
止するため、O2センサの信号の状態をモニター
しつつ適正な学習制御を行うようにした装置に関
する。
[Detailed Description of the Invention] <Technical Field> The present invention relates to an air-fuel ratio learning control device for an electronically controlled fuel injection internal combustion engine, and in particular, to prevent air-fuel ratio learning from progressing in the wrong direction due to deterioration of an O 2 sensor, etc. In order to prevent this, the present invention relates to a device that performs appropriate learning control while monitoring the state of the signal of an O 2 sensor.

<背景技術> 電子制御燃料噴射式内燃機関において、噴射量
Tiは次式によつて定まる。
<Background technology> In an electronically controlled fuel injection type internal combustion engine, the injection amount
Ti is determined by the following formula.

Ti=Tp×COEF×α+Ts ここで、Tpは基本噴射量で、Tp=K×Q/N
である。Kは定数、Qは吸入空気流量、Nはエン
ジン回転数である。COEFは各種補正係数であ
る。αは後述する空燃比のフイードバツク制御
(λコントロール)のための空燃比フイードバツ
ク補正係数である。Tsは電圧補正分で、バツテ
リ電圧の変動による燃料噴射弁の噴射流量変化を
補正するためのものである。
Ti=Tp×COEF×α+Ts Here, Tp is the basic injection amount, Tp=K×Q/N
It is. K is a constant, Q is the intake air flow rate, and N is the engine speed. COEF is various correction coefficients. α is an air-fuel ratio feedback correction coefficient for air-fuel ratio feedback control (λ control) to be described later. Ts is a voltage correction amount, which is used to correct changes in the injection flow rate of the fuel injector due to changes in battery voltage.

λコントロールについては、排気系にO2セン
サを設けて実際の空燃比を検出し、空燃比が理論
空燃比より濃いか薄いかをスライスレベルにより
判定し、理論空燃比になるように燃料の噴射量を
制御するわけであり、このため、前記の空燃比フ
イードバツク補正係数αというものを定めて、こ
のαを変化させることにより理論空燃比に保つて
いる。
Regarding λ control, an O 2 sensor is installed in the exhaust system to detect the actual air-fuel ratio, and the slice level determines whether the air-fuel ratio is richer or leaner than the stoichiometric air-fuel ratio, and fuel is injected to achieve the stoichiometric air-fuel ratio. For this purpose, the above-mentioned air-fuel ratio feedback correction coefficient α is determined, and by varying this α, the stoichiometric air-fuel ratio is maintained.

ここで、空燃比フイードバツク補正係数αの値
は比例積分(PI)制御により変化させ、安定し
た制御としている。
Here, the value of the air-fuel ratio feedback correction coefficient α is changed by proportional-integral (PI) control to ensure stable control.

すなわち、O2センサの出力電圧とスライスレ
ベル電圧とを比較し、スライスレベルよりも高い
場合、低い場合に、空燃比を急に濃くしたり、薄
くしたりすることなく、空燃比が濃い(薄い)場
合には始めにP分だけ下げて(上げて)、それか
らI分ずつ徐々に下げて(上げて)いき、空燃比
を薄く(濃く)するように制御する。
In other words, the output voltage of the O 2 sensor is compared with the slice level voltage, and if it is higher or lower than the slice level, the air-fuel ratio is rich (lean) without suddenly enriching or thinning the air-fuel ratio. ), the air-fuel ratio is controlled to be leaner (richer) by first lowering (raising) it by P, and then gradually lowering (raising) it by I.

但し、λコントロールを行わない領域ではα=
1にクランプし、各種補正係数COEFの設定によ
り、所望の空燃比を得る。
However, in the region where λ control is not performed, α=
1 and set various correction coefficients COEF to obtain the desired air-fuel ratio.

ところで、λコントロール領域でα=1のとき
のベース空燃比を理論空燃比(λ=1)に設定す
ることができればフイードバツク制御は不要なの
であるが、実際には構成部品(例えばエアフロー
メータ、燃料噴射弁、プレツシヤレギユレータ、
コントロールユニツト)のバラツキや経時変化、
燃料噴射弁のパルス巾−流量特性の非直線性、運
転条件や環境の変化等の要因で、ベース空燃比の
λ=1からのズレを生じるので、フイードバツク
制御を行つている。
By the way, if the base air-fuel ratio when α = 1 in the λ control region could be set to the stoichiometric air-fuel ratio (λ = 1), feedback control would not be necessary. valves, pressure regulators,
control unit) variations and changes over time,
Feedback control is performed because the base air-fuel ratio deviates from λ=1 due to factors such as non-linearity of the pulse width-flow rate characteristic of the fuel injection valve and changes in operating conditions and environment.

しかし、ベース空燃比がλ=1からずれている
と、運転領域が大きく変化したときに、ベース空
燃比の段差をフイードバツク制御によりλ=1に
安定させるまでに時間がかかる。そして、このた
めに比例及び積分定数(P/I分)を大きくする
ので、オーバーシユートやアンダーシユートを生
じ、制御性が悪くなる。つまり、ベース空燃比が
λ=1からずれていると、理論空燃比よりかなり
ズレをもつた範囲で空燃比制御がなされるのであ
る。
However, if the base air-fuel ratio deviates from λ=1, it takes time to stabilize the step in the base air-fuel ratio to λ=1 through feedback control when the operating range changes significantly. For this purpose, the proportionality and integral constants (P/I) are increased, which causes overshoot and undershoot, resulting in poor controllability. In other words, if the base air-fuel ratio deviates from λ=1, the air-fuel ratio will be controlled within a range that deviates considerably from the stoichiometric air-fuel ratio.

その結果、三元触媒の転換効率が悪いところで
運転がなされることになり、触媒の貴金属量の増
大によるコストアツプの他、触媒の劣化に伴う転
換効率の更なる悪化により触媒の交換を余儀なく
されるという問題点があつた。
As a result, the three-way catalyst is operated at a point where its conversion efficiency is poor, and not only does the cost increase due to the increase in the amount of precious metal in the catalyst, but the conversion efficiency further deteriorates as the catalyst deteriorates, forcing the catalyst to be replaced. There was a problem.

そこで、本出願人は、特願昭58−76221号にお
いて、学習によりベース空燃比をλ=1にするこ
とにより、過渡時にベース空燃比の段差から生ず
るλ=1からのズレをなくし、かつ、P/I分を
小さくすることを可能にして制御性の向上を図
り、これらにより触媒の原価低減等を図るベース
空燃比の学習制御装置を提案した。
Therefore, in Japanese Patent Application No. 58-76221, the present applicant set the base air-fuel ratio to λ = 1 by learning, thereby eliminating the deviation from λ = 1 caused by the step in the base air-fuel ratio during transient times, and We have proposed a base air-fuel ratio learning control device that makes it possible to reduce the P/I ratio, improve controllability, and thereby reduce the cost of catalysts.

すなわち、RAM上にエンジン回転数及び負荷
等のエンジン運転条件に対応した学習補正係数
αoのマツプを設け、噴射量Tiを計算する際に次
式の如く基本噴射量Tpをαoで補正する。
That is, a map of learning correction coefficients αo corresponding to engine operating conditions such as engine speed and load is provided in the RAM, and when calculating the injection amount Ti, the basic injection amount Tp is corrected by αo as shown in the following equation.

Ti=Tp×COEF×α×αo+Ts そして、αoの学習が次の手順で進める。 Ti=Tp×COEF×α×αo+Ts Then, the learning of αo proceeds in the following steps.

定常状態においてそのときのエンジン運転条
件とαとを検出する。
In a steady state, the engine operating conditions and α are detected.

前記エンジン運転条件に対応して現在までに
学習され記憶されているαoを検索する。
αo that has been learned and stored up to now in accordance with the engine operating conditions is searched.

前記αと前記αoとから加重平均により新た
にαoを設定して記憶させる。
A new value αo is set by weighted average from the α and αo and stored.

ところで、このような空燃比学習制御装置にお
いては、学習方式が加重平均方式であるため完全
な学習ができない一方、例えば経年変化によつて
O2センサが劣化した場合、正常に学習されない
ばかりか、異常な方向へ学習が進行してしまう恐
れがあり、この点での改善が求められていた。
By the way, in such an air-fuel ratio learning control device, since the learning method is a weighted average method, complete learning cannot be performed.
If the O 2 sensor deteriorates, there is a risk that not only the sensor will not learn properly, but also that the learning will progress in an abnormal direction, and improvements in this respect were needed.

<発明の目的> 本発明は叙上の実情に鑑み、学習方式を改善し
て空燃比の学習制御を極めて良好なものにすると
共に、O2センサの劣化等により空燃比の学習が
誤つた方向へ進行するのを防止し、学習制御の安
全性を向上させることを目的とする。
<Purpose of the Invention> In view of the above-mentioned actual situation, the present invention improves the learning method to achieve extremely good air-fuel ratio learning control, and also to prevent errors in air-fuel ratio learning due to deterioration of the O 2 sensor, etc. The purpose is to prevent this from progressing and improve the safety of learning control.

<発明の構成> このため、本発明は、第1図に示すように、吸
入空気流量とエンジン回転数とから基本噴射量を
演算する基本噴射量演算手段と、排気系に設けた
O2センサからの信号に基づいて検出される実際
の空燃比と理論空燃比とを比較して比例積分制御
により空燃比フイードバツク補正係数を設定する
空燃比フイードバツク補正係数設定手段と、エン
ジン回転数及び負荷等のエンジン運転条件からこ
れに対応させてRAMに記憶させた学習補正係数
を検索する学習補正係数検索手段と、学習補正係
数に空燃比フイードバツク補正係数の基準値から
の偏差量の所定割合を加算して新たな学習補正係
数を設定しRAM内の同一エンジン運転条件の学
習補正係数のデータを更新する学習補正係数更新
手段と、基本噴射量に空燃比フイードバツク補正
係数と学習補正係数とを乗算して噴射量を演算す
る噴射量演算手段と、この演算された噴射量に相
応する駆動パルス信号を燃料噴射弁に出力する駆
動パルス信号出力手段とを設ける他、O2センサ
の信号の反転周期を計測するO2センサ信号反転
周期計測手段と、エンジン回転数からO2センサ
の信号の正常時の反転周期の範囲を定める正常範
囲設定手段と、計測された反転周期がそのときの
エンジン回転数によつて定まる所定の範囲内にあ
るか否かを判定し範囲外のときに前記学習補正係
数更新手段の機能を停止させる更新停止手段とを
設けるようにしたものである。
<Structure of the Invention> For this reason, the present invention, as shown in FIG.
an air-fuel ratio feedback correction coefficient setting means that compares the actual air-fuel ratio detected based on the signal from the O2 sensor with the stoichiometric air-fuel ratio and sets an air-fuel ratio feedback correction coefficient by proportional-integral control; A learning correction coefficient search means for searching a learning correction coefficient stored in RAM corresponding to engine operating conditions such as load; A learning correction coefficient updating means that adds a new learning correction coefficient and updates the learning correction coefficient data for the same engine operating condition in the RAM, and multiplies the basic injection amount by the air-fuel ratio feedback correction coefficient and the learning correction coefficient. In addition to providing an injection amount calculating means for calculating the injection amount by calculating the injection amount, and a driving pulse signal output means for outputting a driving pulse signal corresponding to the calculated injection amount to the fuel injection valve, the inversion period of the signal of the O 2 sensor is provided. an O 2 sensor signal reversal period measuring means for measuring the normal reversal period of the O 2 sensor signal from the engine rotation speed; and a normal range setting means for determining the range of the normal reversal period of the O 2 sensor signal from the engine rotation speed; update stop means for determining whether or not the learning correction coefficient is within a predetermined range determined by , and stopping the function of the learning correction coefficient update means when it is outside the range.

すなわち、学習補正係数の設定に際しては、学
習補正係数αoに空燃比フイードバツク補正係数
αの基準値からの偏差量Δαの所定割合を加算す
ることにより新たな学習補正係数αoを設定し
(次式参照)、RAM内の同一エンジン運転条件の
学習補正係数のデータを更新する方式として、適
正な学習がなされるようにしたものである。
That is, when setting the learning correction coefficient, a new learning correction coefficient αo is set by adding a predetermined proportion of the deviation amount Δα of the air-fuel ratio feedback correction coefficient α from the reference value to the learning correction coefficient αo (see the following formula). ) is a method for updating learning correction coefficient data for the same engine operating conditions in RAM to ensure proper learning.

αo←αo+Δα/M (Mは定数) また、O2センサの信号のリツチ・リーンの反
転周期は、正常であれば、エンジン回転数に依存
した所定の範囲内にあることに着目し、反転周期
が前記の範囲外となつたときには、O2センサの
劣化等と判定して学習補正係数を更新しないよう
にしたものである。
αo ← αo + Δα/M (M is a constant) In addition, focusing on the fact that the rich/lean reversal period of the O 2 sensor signal is within a predetermined range depending on the engine speed under normal conditions, the reversal period When the value falls outside the above range, it is determined that the O 2 sensor has deteriorated, and the learning correction coefficient is not updated.

<実施例> 以下に実施例を説明する。<Example> Examples will be described below.

第2図にハードウエア構成を示す。 Figure 2 shows the hardware configuration.

1はCPU、2はP−ROM、3は学習制御用の
CMOS−RAM、4はアドレスデコーダである。
尚、RAM3に対しては、キースイツチOFF後も
記憶内容を保持させるためバツクアツプ電源回路
を使用する。
1 is CPU, 2 is P-ROM, 3 is for learning control
CMOS-RAM, 4 is an address decoder.
Note that a backup power supply circuit is used for the RAM 3 in order to retain the memory contents even after the key switch is turned off.

燃料噴射量の制御のためのCPU1へのアナロ
グ入力信号としては、熱線式エアフローメータ5
からの吸入空気流量信号、スロツトルセンサ6か
らのスロツトル開度信号、水温センサ7からの水
温信号、O2センサ8からの排気中酸素濃度信号、
バツテリ9からのバツテリ電圧があり、これらは
アナログ入力インタフエース10及びA/D変換
器11を介して入力されるようになつている。1
2はA/D変換タイミングコントローラである。
The hot wire air flow meter 5 is used as an analog input signal to the CPU 1 for controlling the fuel injection amount.
intake air flow rate signal from the throttle sensor 6, throttle opening signal from the throttle sensor 6, water temperature signal from the water temperature sensor 7, exhaust oxygen concentration signal from the O2 sensor 8,
There is a battery voltage from the battery 9, which is adapted to be input via an analog input interface 10 and an A/D converter 11. 1
2 is an A/D conversion timing controller.

デジタル入力信号としては、アイドルスイツチ
13、スタートスイツチ14及びニユートラルス
イツチ15からのON・OFF信号があり、これら
はデジタル入力インタフエース16を介して入力
されるようになつている。
Digital input signals include ON/OFF signals from an idle switch 13, a start switch 14, and a neutral switch 15, and these are inputted via a digital input interface 16.

その他、クランク角センサ17からの例えば
180°毎のリフアレンス信号と1°毎のポジシヨン信
号とがワンシヨツトマルチ回路18を介して入力
されるようになつている。また、車速センサ19
からの車速信号が波形整形回路20を介して入力
されるようになつている。
In addition, for example, from the crank angle sensor 17
Reference signals for every 180 degrees and position signals for every 1 degree are inputted via the one-shot multi-circuit 18. In addition, the vehicle speed sensor 19
The vehicle speed signal is inputted via the waveform shaping circuit 20.

CPU1からの出力信号(燃料噴射弁への駆動
パルス信号)は、電流制御回路21を介して燃料
噴射弁22に送られるようになつている。
An output signal from the CPU 1 (a drive pulse signal to the fuel injection valve) is sent to the fuel injection valve 22 via a current control circuit 21.

ここにおいて、CPU1は第3図に示すフロー
チヤート(燃料噴射量計算ルーチン)に基づくプ
ログラム(ROM2に記憶されている)に従つて
入出力操作並びに演算処理等を行い、燃料噴射量
を制御する。
Here, the CPU 1 performs input/output operations, arithmetic processing, etc. according to a program (stored in the ROM 2) based on the flowchart (fuel injection amount calculation routine) shown in FIG. 3, and controls the fuel injection amount.

次に第3図のフローチヤートについて説明す
る。
Next, the flowchart shown in FIG. 3 will be explained.

S1でエアフローメータ5からの信号によつて
得られる吸入空気流量Qとクランク角センサ17
からの信号によつて得られるエンジン回転数Nと
から基本噴射量Tp(=K×Q/N)を演算する。
The intake air flow rate Q obtained from the signal from the air flow meter 5 at S1 and the crank angle sensor 17
The basic injection amount Tp (=K×Q/N) is calculated from the engine speed N obtained from the signal from the engine.

S2で各種補正係数COEFを設定する。 Set various correction coefficients COEF in S2.

S3でO2センサ8の出力電圧とスライスレベル
電圧とを比較して比例積分制御により空燃比フイ
ードバツク補正係数αを設定する。
In S3, the output voltage of the O 2 sensor 8 and the slice level voltage are compared and the air-fuel ratio feedback correction coefficient α is set by proportional-integral control.

S4でバツテリ9からのバツテリ電圧に基づい
て電圧補正分Tsを設定する。
In S4, a voltage correction amount Ts is set based on the battery voltage from the battery 9.

S5でエンジン回転数N及び基本噴射量(負荷)
Tpから対応する学習補正係数αoを検索する。
尚、回転数N及び基本噴射量Tpに対する学習補
正係数αoのマツプは書き換え可能なRAM3に記
憶されており、学習が開始されていない時点では
全てαo=1となつている。
Engine speed N and basic injection amount (load) at S5
Search for the corresponding learning correction coefficient αo from Tp.
Note that the map of the learning correction coefficient αo for the rotational speed N and the basic injection amount Tp is stored in the rewritable RAM 3, and all αo=1 at the time when learning has not started.

S6〜S9はO2センサ8の信号の状態を監視する
ために設けられており、S6でO2センサ8の出力
電圧(第4図参照)のリツチ・リーンの反転周期
Tを計測し、S7でその周波数=1/Tを演算
する。そして、S8でエンジン回転数Nからこれ
に応じて予め定められている正常時の周波数の範
囲( min〜 max)を検索する。そして、
S9で周波数がその範囲( min〜 max)
内にあるか否かを判定する。ここで、範囲内の場
合は次のS10へ進むが、範囲外の場合はO2センサ
8の劣化等と判定し、S16へ進む。
S6 to S9 are provided to monitor the state of the signal of the O 2 sensor 8. In S6, the rich/lean reversal period T of the output voltage of the O 2 sensor 8 (see Figure 4) is measured, and in S7 Then calculate the frequency = 1/T. Then, in S8, a predetermined normal frequency range (min to max) is searched from the engine speed N. and,
In S9 the frequency is within that range (min~max)
Determine whether it is within the range. Here, if it is within the range, the process proceeds to the next step S10, but if it is outside the range, it is determined that the O 2 sensor 8 has deteriorated, etc., and the process proceeds to S16.

すなわち、O2センサ8の信号の周波数はエ
ンジン回転数Nに比例して変化するが、エンジン
回転数Nが一定であれば、ある範囲内に定まる。
もし、実際のO2センサ8の信号の周波数が高く
なつて範囲外となれば、ノイズ等の影響と考えら
れ、低くなつて範囲外となれば、経年変化による
劣化や温度低下によるものと考えられる。したが
つて、これらの場合にはS14,S15での学習補正
係数αoの更新を行わないようにする。
That is, the frequency of the signal from the O 2 sensor 8 changes in proportion to the engine speed N, but is determined within a certain range if the engine speed N is constant.
If the frequency of the signal from the actual O 2 sensor 8 becomes high and goes out of range, it is considered to be due to the influence of noise, etc., and if it becomes low and goes out of range, it is thought to be due to deterioration due to aging or a drop in temperature. It will be done. Therefore, in these cases, the learning correction coefficient αo is not updated in S14 and S15.

S10〜S13は定常状態を検出するために設けら
れており、S10で車速センサ19からの信号に基
づいて車速の変化を判定し、S11でニユートラル
スイツチ15からの信号に基づいてギヤ位置を判
定し、S12でスロツトルセンサ6からの信号に基
づいてスロツトル開度の変化を判定し、S13で所
定時間経過したか否かを判定して所定時間内であ
れば、S10へ戻る。こうして、所定時間内に車速
の変化が所定値以下で、かつ、ギアが入つてお
り、かつ、スロツトル開度の変化が所定値以下の
場合は、定常状態であると判定し、S14,S15で
の学習補正係数αoの更新を行うようにする。ま
た、所定時間内の任意の時点で車速の変化が所定
値を越えた場合、ニユートラルになつた場合、又
はスロツトル開度の変化が所定値を越えた場合
は、過渡状態であると判定し、S14,S15での学
習補正係数αoの更新を行わないようにする。
S10 to S13 are provided to detect a steady state, and S10 determines a change in vehicle speed based on the signal from the vehicle speed sensor 19, and S11 determines the gear position based on the signal from the neutral switch 15. Then, in S12, a change in the throttle opening degree is determined based on the signal from the throttle sensor 6, and in S13, it is determined whether a predetermined time has elapsed, and if it is within the predetermined time, the process returns to S10. In this way, if the change in vehicle speed is less than a predetermined value within a predetermined time, the gear is engaged, and the change in throttle opening is less than a predetermined value, it is determined that the vehicle is in a steady state, and steps S14 and S15 are performed. The learning correction coefficient αo is updated. In addition, if the change in vehicle speed exceeds a predetermined value at any point within a predetermined time, if the vehicle speed becomes neutral, or if the change in throttle opening exceeds a predetermined value, it is determined that the state is in a transient state, The learning correction coefficient αo is not updated in S14 and S15.

O2センサの信号が正常でかつ定常状態と判定
された場合の学習補正係数αoの更新は次の通り
行われる。
When the O 2 sensor signal is determined to be normal and in a steady state, the learning correction coefficient αo is updated as follows.

S14でエンジン回転数N及び基本噴射量Tpから
検索された学習補正係数αoと今回の空燃比フイ
ードバツク補正係数αとから次式にしたがつて計
算を行い、その値を新たな学習補正係数αoとす
る。
Calculation is performed according to the following formula from the learning correction coefficient αo retrieved from the engine speed N and basic injection amount Tp in S14 and the current air-fuel ratio feedback correction coefficient α, and the value is set as the new learning correction coefficient αo. do.

αo←αo+Δα/M 尚、Δαはαの基準値からの偏差量を示し、Δα
=α−α1であり、基準値α1は一般には1.0となる。
また、Mは定数である。
αo←αo+Δα/M Note that Δα indicates the deviation amount of α from the standard value, and Δα
=α− α1 , and the reference value α1 is generally 1.0.
Moreover, M is a constant.

S15で新たな学習補正係数αoをRAM3の対応
するエンジン回転数Nと基本噴射量Tpのところ
へ書き込む。すなわち、RAM3内のデータを更
新する。
In S15, a new learning correction coefficient αo is written to the corresponding engine speed N and basic injection amount Tp in RAM3. That is, the data in RAM3 is updated.

S16では噴射量Tiを次式に従つて演算する。 In S16, the injection amount Ti is calculated according to the following formula.

Ti=Tp×COEF×α×αo+Ts ここで、O2センサ8の信号が正常でかつ定常
状態の場合はαoとして更新されたものが用いら
れ、O2センサ8の信号が異常又は過渡状態の場
合は検索されたものがそのまま用いられる。
Ti = Tp × COEF × α × αo + Ts Here, if the signal of O 2 sensor 8 is normal and in a steady state, the updated value is used as αo, and if the signal of O 2 sensor 8 is abnormal or in a transient state is used as is.

以上で噴射量Tiが計算され、この噴射量Tiに
相応する駆動パルス信号が電流制御回路21を介
して燃料噴射弁22に所定のタイミングで与えら
れる。
The injection amount Ti is calculated above, and a drive pulse signal corresponding to the injection amount Ti is given to the fuel injection valve 22 at a predetermined timing via the current control circuit 21.

<発明の効果> 以上説明したように本発明にによれば、学習方
式の改善により、その学習が適正なものとなり、
これによりベース空燃比をλ=1にすることがで
きて、過渡時にベース空燃比の段差から生じるλ
=1からのズレ等をなくして空燃比の学習制御を
極めて良好なものにすることができる。また、
O2センサの信号のリツチ・リーンの反転周期を
計測し、これに基づいてO2センサの劣化等の度
合を判定し、劣化等を生じたときには学習補正係
数の更新を行わないようにしたので、学習が誤つ
た方向へ進行してしまうことがなく、学習制御の
安全性が向上する。また、O2センサの劣化等の
度合を判定するに際し、O2センサのリツチ・リ
ーン信号の反転周期の判定用の範囲にエンジン回
転数依存性を与えることにより、全ての運転領域
に対しきめの細かな判定が可能となり、判定を精
度良く行うことができる。
<Effects of the Invention> As explained above, according to the present invention, by improving the learning method, the learning becomes appropriate.
As a result, the base air-fuel ratio can be set to λ = 1, and the λ generated from the step in the base air-fuel ratio during transient
By eliminating the deviation from =1, it is possible to achieve extremely good learning control of the air-fuel ratio. Also,
The rich/lean reversal period of the O 2 sensor signal is measured, and the degree of deterioration of the O 2 sensor is determined based on this, and the learning correction coefficient is not updated when deterioration occurs. , learning will not progress in the wrong direction, improving the safety of learning control. In addition, when determining the degree of deterioration of the O 2 sensor, by making the range for determining the reversal period of the rich/lean signal of the O 2 sensor dependent on the engine speed, it is possible to determine the degree of deterioration in all operating ranges. Detailed judgments can be made and judgments can be made with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロツク図、第2
図は本発明の一実施例を示すハードウエア構成
図、第3図は同上のフローチヤート、第4図は
O2センサの出力電圧の特性線図である。 1……CPU、3……学習制御用CMOS−
RAM、5……エアフローメータ、8……O2セン
サ、17……クランク角センサ、22……燃料噴
射弁。
Figure 1 is a block diagram showing the configuration of the present invention, Figure 2 is a block diagram showing the configuration of the present invention.
The figure is a hardware configuration diagram showing an embodiment of the present invention, FIG. 3 is a flowchart of the same, and FIG. 4 is a
FIG. 3 is a characteristic diagram of the output voltage of an O 2 sensor. 1...CPU, 3...CMOS for learning control
RAM, 5...Air flow meter, 8... O2 sensor, 17...Crank angle sensor, 22...Fuel injection valve.

Claims (1)

【特許請求の範囲】[Claims] 1 吸入空気流量とエンジン回転数とから基本噴
射量を演算する基本噴射量演算手段と、排気系に
設けたO2センサからの信号に基づいて検出され
る実際の空燃比と理論空燃比とを比較して比例積
分制御により空燃比フイードバツク補正係数を設
定する空燃比フイードバツク補正係数設定手段
と、エンジン回転数及び負荷等のエンジン運転条
件からこれに対応させてRAMに記憶させた学習
補正係数を検索する学習補正係数検索手段と、学
習補正係数に空燃比フイードバツク補正係数の基
準値からの偏差量の所定割合を加算して新たな学
習補正係数を設定しRAM内の同一エンジン運転
条件の学習補正係数のデータを更新する学習補正
係数更新手段と、基本噴射量に空燃比フイードバ
ツク補正係数と学習補正係数とを乗算して噴射量
を演算する噴射量演算手段と、この演算された噴
射量に相応する駆動パルス信号を燃料噴射弁に出
力する駆動パルス信号出力手段と、O2センサの
信号の反転周期を計測するO2センサ信号反転周
期計測手段と、エンジン回転数からO2センサの
信号の正常時の反転周期の範囲を定める正常範囲
設定手段と、計測された反転周期がそのときのエ
ンジン回転数によつて定まる所定の範囲内にある
か否かを判定し範囲外のときに前記学習補正係数
更新手段の機能を停止させる更新停止手段とを備
えることを特徴とする電子制御燃料噴射式内燃機
関の空燃比学習制御装置。
1 Basic injection amount calculation means that calculates the basic injection amount from the intake air flow rate and engine speed, and the actual air-fuel ratio and stoichiometric air-fuel ratio detected based on the signal from the O 2 sensor installed in the exhaust system. An air-fuel ratio feedback correction coefficient setting means that compares and sets an air-fuel ratio feedback correction coefficient by proportional-integral control, and searches for a learning correction coefficient stored in RAM corresponding to engine operating conditions such as engine speed and load. a learning correction coefficient search means for searching for a learning correction coefficient; and a learning correction coefficient for adding a predetermined percentage of the deviation amount from the reference value of the air-fuel ratio feedback correction coefficient to the learning correction coefficient to set a new learning correction coefficient; learning correction coefficient updating means for updating the data of; injection amount calculation means for calculating the injection amount by multiplying the basic injection amount by the air-fuel ratio feedback correction coefficient and the learning correction coefficient; A drive pulse signal output means that outputs a drive pulse signal to the fuel injection valve, an O 2 sensor signal reversal period measuring means that measures the reversal period of the O 2 sensor signal, and an O 2 sensor signal reversal period measuring means that measures the O 2 sensor signal from the engine rotation speed when it is normal. a normal range setting means for determining the range of the reversal period; and a normal range setting means for determining whether the measured reversal period is within a predetermined range determined by the engine speed at that time, and determining the learning correction coefficient when it is outside the range. 1. An air-fuel ratio learning control device for an electronically controlled fuel injection type internal combustion engine, comprising update stopping means for stopping the function of the updating means.
JP13289483A 1983-07-22 1983-07-22 Air-fuel ratio learning control device in electronic control fuel injection type internal-combustion engine Granted JPS6026137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13289483A JPS6026137A (en) 1983-07-22 1983-07-22 Air-fuel ratio learning control device in electronic control fuel injection type internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13289483A JPS6026137A (en) 1983-07-22 1983-07-22 Air-fuel ratio learning control device in electronic control fuel injection type internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS6026137A JPS6026137A (en) 1985-02-09
JPH0530978B2 true JPH0530978B2 (en) 1993-05-11

Family

ID=15092034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13289483A Granted JPS6026137A (en) 1983-07-22 1983-07-22 Air-fuel ratio learning control device in electronic control fuel injection type internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6026137A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190142A (en) * 1985-09-12 1986-08-23 Japan Electronic Control Syst Co Ltd Learning control device of internal-combustion engine
JPS61190141A (en) * 1985-09-12 1986-08-23 Japan Electronic Control Syst Co Ltd Learning control device of internal-combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381824A (en) * 1976-12-27 1978-07-19 Nissan Motor Co Ltd Diagnostic device of air fuel ratio controller
JPS562437A (en) * 1979-06-19 1981-01-12 Nippon Denso Co Ltd Air-fuel ratio controller
JPS5770934A (en) * 1980-10-20 1982-05-01 Nippon Denso Co Ltd Air fuel ratio control method
JPS57210137A (en) * 1981-05-15 1982-12-23 Honda Motor Co Ltd Feedback control device of air-fuel ratio in internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381824A (en) * 1976-12-27 1978-07-19 Nissan Motor Co Ltd Diagnostic device of air fuel ratio controller
JPS562437A (en) * 1979-06-19 1981-01-12 Nippon Denso Co Ltd Air-fuel ratio controller
JPS5770934A (en) * 1980-10-20 1982-05-01 Nippon Denso Co Ltd Air fuel ratio control method
JPS57210137A (en) * 1981-05-15 1982-12-23 Honda Motor Co Ltd Feedback control device of air-fuel ratio in internal combustion engine

Also Published As

Publication number Publication date
JPS6026137A (en) 1985-02-09

Similar Documents

Publication Publication Date Title
JPH0331548A (en) Mixed fuel supply device of internal combustion engine
JPS6346254B2 (en)
JPH0226052B2 (en)
JPS60101243A (en) Learning control device of internal-combustion engine
JPS6356414B2 (en)
JPH051373B2 (en)
JPH0530978B2 (en)
JPH0529775B2 (en)
JPS6045749A (en) Air-fuel ratio learning controller of electronic fuel injection type internal-combustion engine
JPH0686839B2 (en) Feedback controller with learning function
JPS6054005A (en) On-vehicle electronic feedback controller
JPS6313016B2 (en)
JPH0455235Y2 (en)
JPH0226696B2 (en)
JPS61190142A (en) Learning control device of internal-combustion engine
JPH0228700B2 (en)
JPS60153504A (en) Feedback control device having learning function
JPH0243900B2 (en) NAINENKIKANNOGAKUSHUSEIGYOSOCHI
JPH0423099B2 (en)
JPH03229942A (en) Air-fuel ratio learning control device for electronically controlled fuel injection type internal combustion engine
JPH0445659B2 (en)
JPH0740673Y2 (en) Air-fuel ratio learning controller for internal combustion engine
JPH0226695B2 (en)
JP2510857B2 (en) Feedback Controller with Learning Function for Internal Combustion Engine
JPS6232259A (en) Monitor of learning controller for internal combustion engine