JPS6356414B2 - - Google Patents

Info

Publication number
JPS6356414B2
JPS6356414B2 JP58076224A JP7622483A JPS6356414B2 JP S6356414 B2 JPS6356414 B2 JP S6356414B2 JP 58076224 A JP58076224 A JP 58076224A JP 7622483 A JP7622483 A JP 7622483A JP S6356414 B2 JPS6356414 B2 JP S6356414B2
Authority
JP
Japan
Prior art keywords
correction coefficient
fuel ratio
air
learning
learning correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58076224A
Other languages
Japanese (ja)
Other versions
JPS59203831A (en
Inventor
Naomi Tomizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denshi Kiki Co Ltd
Original Assignee
Nippon Denshi Kiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denshi Kiki Co Ltd filed Critical Nippon Denshi Kiki Co Ltd
Priority to JP7622483A priority Critical patent/JPS59203831A/en
Publication of JPS59203831A publication Critical patent/JPS59203831A/en
Publication of JPS6356414B2 publication Critical patent/JPS6356414B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2477Methods of calibrating or learning characterised by the method used for learning

Description

【発明の詳細な説明】 <技術分野> 本発明は電子制御燃料噴射式内燃機関における
空燃比の学習制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Technical Field> The present invention relates to an air-fuel ratio learning control device in an electronically controlled fuel injection type internal combustion engine.

<背景技術> 電子制御燃料噴射式内燃機関において、噴射量
Tiは次式によつて定められる。
<Background technology> In an electronically controlled fuel injection type internal combustion engine, the injection amount
Ti is determined by the following formula.

Ti=Tp×COEF×α+Ts ここで、Tpは基本噴射量で、Tp=K×Q/N
である。Kは定数、Qは吸入空気流量、Nはエン
ジン回転数である。COEFは各種補正係数であ
る。αは後述する空燃比のフイードバツク制御
(λコントロール)のための空燃比フイードバツ
ク補正係数である。Tsは電圧補正分で、バツテ
リ電圧の変動を補正するためのものである。
Ti=Tp×COEF×α+Ts Here, Tp is the basic injection amount, Tp=K×Q/N
It is. K is a constant, Q is the intake air flow rate, and N is the engine speed. COEF is various correction coefficients. α is an air-fuel ratio feedback correction coefficient for air-fuel ratio feedback control (λ control) to be described later. Ts is a voltage correction amount, which is used to correct fluctuations in battery voltage.

λコントロールについては、排気系にO2セン
サを設けて実際の空燃比を検出し、空燃比が理論
空燃比より濃いか薄いかをスライスレベルにより
判定し、理論空燃比になるように燃料の噴射量を
制御するわけであり、このため、前記の空燃比フ
イードバツク補正係数αというものを定めて、こ
のαを変化させることにより理論空燃比に保つて
いる。
Regarding λ control, an O 2 sensor is installed in the exhaust system to detect the actual air-fuel ratio, and the slice level determines whether the air-fuel ratio is richer or leaner than the stoichiometric air-fuel ratio, and fuel is injected to achieve the stoichiometric air-fuel ratio. For this purpose, the above-mentioned air-fuel ratio feedback correction coefficient α is determined, and by varying this α, the stoichiometric air-fuel ratio is maintained.

ここで、空燃比フイードバツク補正係数αの値
は比例積分(PI)制御により変化させ、安定し
た制御としている。
Here, the value of the air-fuel ratio feedback correction coefficient α is changed by proportional-integral (PI) control to ensure stable control.

すなわち、O2センサの出力とスライスレベル
とを比較し、スライスレベルよりも高い場合、低
い場合に、空燃比を急に濃くしたり、薄くしたり
することなく、空燃比が濃い(薄い)場合には始
めにP分だけ下げて(上げて)、それからI分ず
つ徐々に下げて(上げて)いき、空燃比を薄く
(濃く)するように制御する。
In other words, the output of the O2 sensor is compared with the slice level, and if it is higher or lower than the slice level, the air-fuel ratio is rich (lean) without suddenly increasing or decreasing the air-fuel ratio. At first, the air-fuel ratio is controlled to be lowered (raised) by P, and then gradually lowered (raised) by I minutes to make the air-fuel ratio leaner (richer).

但し、λコントロールを行わない領域ではα=
1にクランプし、各種補正係数COEFの設定によ
り、所望の空燃比を得る。
However, in the region where λ control is not performed, α=
1 and set various correction coefficients COEF to obtain the desired air-fuel ratio.

ところで、λコントロール領域でα=1のとき
のベース空燃比を理論空燃比(λ=1)に設定す
ることができればフイードバツク制御は不要なの
であるが、実際には構成部品(例えばエアフロー
メータ、燃料噴射弁、プレツシヤレギユレータ、
コントロールユニツト)のバラツキや経時変化、
燃料噴射弁のパルス巾−流量特性の非直線性、運
転条件や環境の変化等の要因で、ベース空燃比の
λ=1からのズレを生じるので、フイードバツク
制御を行つている。
By the way, if the base air-fuel ratio when α = 1 in the λ control region could be set to the stoichiometric air-fuel ratio (λ = 1), feedback control would not be necessary. valves, pressure regulators,
control unit) variations and changes over time,
Feedback control is performed because the base air-fuel ratio deviates from λ=1 due to factors such as non-linearity of the pulse width-flow rate characteristic of the fuel injection valve and changes in operating conditions and environment.

しかし、ベース空燃比がλ=1からずれている
と、運転領域が大きく変化したときに、ベース空
燃比の段差をフイードバツク制御によりλ=1に
整定するまでに時間がかかる。そして、このため
に比例及び積分定数(P/I分)を大きくするの
で、オーバーシユートやアンダーシユートを生
じ、制御性が悪くなる。つまり、ベース空燃比が
λ=1からずれていると、理論空燃比よりかなり
ズレをもつた範囲で空燃比制御がなされるのであ
る。
However, if the base air-fuel ratio deviates from λ=1, it takes time to settle the step in the base air-fuel ratio to λ=1 by feedback control when the operating range changes significantly. For this purpose, the proportionality and integral constants (P/I) are increased, which causes overshoot and undershoot, resulting in poor controllability. In other words, if the base air-fuel ratio deviates from λ=1, the air-fuel ratio will be controlled within a range that deviates considerably from the stoichiometric air-fuel ratio.

その結果、三元触媒の転換効率の悪いところで
運転がなされることになり、触媒の貴金属量の増
大によるコストアツプの他、触媒の劣化に伴う転
換効率の更なる悪化により触媒の交換を余儀なく
されるという問題点があつた。
As a result, the three-way catalyst is operated at a point where its conversion efficiency is poor, and not only does the cost increase due to the increase in the amount of precious metal in the catalyst, but the conversion efficiency further deteriorates as the catalyst deteriorates, forcing the catalyst to be replaced. There was a problem.

そこで、学習によりベース空燃比をλ=1にす
ることにより、過渡時にベース空燃比の段差から
生じるλ=1からのズレをなくし、かつ、P/I
分を小さくすることを可能にして制御性の向上を
図り、これらにより触媒の原価低減等を図るベー
ス空燃比の学習制御装置が考えられた。
Therefore, by setting the base air-fuel ratio to λ = 1 through learning, the deviation from λ = 1 caused by the step in the base air-fuel ratio during transient times can be eliminated, and the P/I
A learning control device for the base air-fuel ratio has been devised, which aims to improve controllability by making it possible to reduce the amount of air-fuel ratio, thereby reducing the cost of the catalyst.

すなわち、RAM上にエンジン回転数及び負荷
等のエンジン運転条件に対応した学習補正係数
αoのマツプを設け、噴射量Tiを計算する際に次
式の如く基本噴射量Tpをαoで補正する。
That is, a map of learning correction coefficients αo corresponding to engine operating conditions such as engine speed and load is provided in the RAM, and when calculating the injection amount Ti, the basic injection amount Tp is corrected by αo as shown in the following equation.

Ti=Tp×COEF×α×αo+Ts そして、αoの学習は次の手順で進める。 Ti=Tp×COEF×α×αo+Ts Then, the learning of αo proceeds in the following steps.

(i) 定常状態においてそのときのエンジン運転条
件とαとを検出する。
(i) Detect the engine operating conditions and α in a steady state.

(ii) 前記エンジン運転条件に対応して現在までに
学習され記憶されているαoを検索する。
(ii) Search for αo that has been learned and stored up to now in accordance with the engine operating conditions.

(iii) αとαoとから加重平均により新たにαoを設
定して記憶させる。
(iii) αo is newly set by weighted average from α and αo and stored.

ところで、このような学習制御装置の採用にあ
たつて、P/I分を初めから小さくすると、学習
が進んでいないうち、すなわち、ベース空燃比が
λ=1になつていない間において、過渡応答の悪
化を招くことになる。逆に学習が進んでベース空
燃比がλ=1になつているときに、大きなP/I
分でλコントロールを行うと、空燃比がλ=1付
近でふられ、回転数変動等を生じることになる。
By the way, when adopting such a learning control device, if the P/I component is made small from the beginning, the transient response will be This will lead to deterioration. Conversely, when learning progresses and the base air-fuel ratio reaches λ = 1, a large P/I
If λ control is performed in minutes, the air-fuel ratio will fluctuate around λ=1, causing fluctuations in the rotational speed, etc.

<発明の目的> 本発明は、このような実状に鑑み、上記の学習
制御装置において、学習の進行度合をモニター
し、これに応じてλコントロールのP/I分を補
正してゆくことにより、学習制御の効果をより一
層発揮させることを目的とする。
<Object of the Invention> In view of the above-mentioned circumstances, the present invention monitors the progress of learning in the learning control device described above, and corrects the P/I portion of the λ control accordingly. The purpose is to further demonstrate the effectiveness of learning control.

<発明の構成> このため、本発明は、第1図に示すように、吸
入空気流量とエンジン回転数とから基本噴射量を
演算する基本噴射量演算手段と、排気系に設けた
O2センサからの信号に基づいて検出される実際
の空燃比と理論空燃比とを比較して比例積分制御
により空燃比フイードバツク補正係数を設定する
空燃比フイードバツク補正係数設定手段と、エン
ジン回転数及び負荷等のエンジン運転条件からこ
れに対応させてRAMに記憶させた学習補正係数
を検索する学習補正係数検索手段と、定常状態を
検出する定常状態検出手段と、定常状態の検出時
に空燃比フイードバツク補正係数と学習補正係数
との加重平均をとりその値を新たな学習補正係数
とし且つその学習補正係数でRAM内の同一エン
ジン運転条件のデータを更新する学習補正係数修
正手段と、基本噴射量に空燃比フイードバツク補
正係数と学習補正係数とを乗算して噴射量を演算
する噴射量演算手段と、この演算された噴射量に
相応する駆動パルス信号を燃料噴射弁に出力する
駆動パルス信号出力手段と、学習補正係数の更新
回数をカウントする更新回数カウント手段と、そ
のカウント値の増大に伴つて前記空燃比フイード
バツク補正係数設定手段の比例積分制御における
比例及び積分定数(P/I分)を変化させる比例
及び積分定数補正手段とを設けて構成したもので
ある。
<Structure of the Invention> For this reason, the present invention, as shown in FIG.
an air-fuel ratio feedback correction coefficient setting means that compares the actual air-fuel ratio detected based on the signal from the O2 sensor with the stoichiometric air-fuel ratio and sets an air-fuel ratio feedback correction coefficient by proportional-integral control; A learning correction coefficient search means for searching a learning correction coefficient stored in RAM corresponding to engine operating conditions such as load, steady state detection means for detecting a steady state, and air-fuel ratio feedback correction when a steady state is detected. A learning correction coefficient correction means takes a weighted average of the coefficient and the learning correction coefficient, sets the value as a new learning correction coefficient, and updates data for the same engine operating condition in the RAM with the learning correction coefficient; an injection amount calculation means for calculating an injection amount by multiplying a fuel ratio feedback correction coefficient and a learning correction coefficient; a drive pulse signal output means for outputting a drive pulse signal corresponding to the calculated injection amount to the fuel injection valve; Update count means for counting the number of updates of the learning correction coefficient, and proportionality for changing the proportional and integral constant (P/I minute) in the proportional-integral control of the air-fuel ratio feedback correction coefficient setting means as the count value increases. and integral constant correction means.

<実施例> 以下に実施例を説明する。<Example> Examples will be described below.

第2図にハードウエア構成を示す。 Figure 2 shows the hardware configuration.

1はCPU、2はP−ROM、3は学習制御用の
CMOS−RAM、4はアドレスデコーダである。
尚、RAM3に対しては、キースイツチOFF後も
記憶内容を保持させるためバツクアツプ電源回路
を使用する。
1 is CPU, 2 is P-ROM, 3 is for learning control
CMOS-RAM, 4 is an address decoder.
Note that a backup power supply circuit is used for the RAM 3 in order to retain the memory contents even after the key switch is turned off.

燃料噴射量の制御のためのCPU1へのアナロ
グ入力信号としては、熱線式エアフローメータ5
からの吸入空気流量信号、スロツトルセンサ6か
らのスロツトル開度信号、水温センサ7からの水
温信号、O2センサ8からの排気中酸素濃度信号、
バツテリ9からのバツテリ電圧があり、これらは
アナログ入力インタフエース10及びA/D変換
器11を介して入力されるようになつている。1
2はA/D変換タイミングコントローラである。
The hot wire air flow meter 5 is used as an analog input signal to the CPU 1 for controlling the fuel injection amount.
intake air flow rate signal from the throttle sensor 6, throttle opening signal from the throttle sensor 6, water temperature signal from the water temperature sensor 7, exhaust oxygen concentration signal from the O2 sensor 8,
There is a battery voltage from the battery 9, which is adapted to be input via an analog input interface 10 and an A/D converter 11. 1
2 is an A/D conversion timing controller.

デジタル入力信号としては、アルドルスイツチ
13、スタートスイツチ14及びニユートラルス
イツチ15からのON・OFF信号があり、これら
はデジタル入力インタフエース16を介して入力
されるようになつている。
As digital input signals, there are ON/OFF signals from an alarm switch 13, a start switch 14, and a neutral switch 15, and these are inputted via a digital input interface 16.

その他、クランク角センサ17からの例えば
180゜毎のリフアレンス信号と1゜毎のポジシヨン信
号とがワンシヨツトマルチ回路18を介して入力
されるようになつている。また、車速センサ19
からの車速信号が波形整形回路20を介して入力
されるようになつている。
In addition, for example, from the crank angle sensor 17
A reference signal every 180 degrees and a position signal every 1 degree are inputted via a one-shot multi-circuit 18. In addition, the vehicle speed sensor 19
The vehicle speed signal is inputted via the waveform shaping circuit 20.

CPU1からの出力信号(燃料噴射弁への駆動
パルス信号)は、電流波形制御回路21を介して
燃料噴射弁22に送られるようになつている。
An output signal from the CPU 1 (a drive pulse signal to the fuel injection valve) is sent to the fuel injection valve 22 via a current waveform control circuit 21.

ここにおいて、CPU1は第3図に示すフロー
チヤート(燃料噴射量計算ルーチン)に基づくプ
ログラム(ROM2に記憶されている)に従つて
入出力操作並びに演算処理等を行い、燃料噴射量
を制御する。
Here, the CPU 1 performs input/output operations, arithmetic processing, etc. according to a program (stored in the ROM 2) based on the flowchart (fuel injection amount calculation routine) shown in FIG. 3, and controls the fuel injection amount.

次に第3図のフローチヤートについて説明す
る。
Next, the flowchart shown in FIG. 3 will be explained.

S1でエアフローメータ5からの信号によつて
得られる吸入空気流量Qとクランク角センサ17
からの信号によつて得られるエンジン回転数Nと
から基本噴射量Tp(K=K×Q/N)を演算す
る。
The intake air flow rate Q obtained from the signal from the air flow meter 5 and the crank angle sensor 17 at S1
The basic injection amount Tp (K=K×Q/N) is calculated from the engine rotational speed N obtained from the signal from the engine.

S2で各種補正係数COEFを設定する。 In S2, various correction coefficients COEF are set.

S3で学習補正係数αoの更新回数をカウント
する更新回数カウンター(後述するS15でカウ
ントアツプされS4でクリアされる)のカウント
値Cを所定値と比較し、所定値以上の場合は、S
4でカウント値Cをクリアし、S5でλコントロ
ールのP/I分を所定量減少させた後、S6へ進
む。所定値未満の場合は、P/I分を変更するこ
となく、そのままS6へ進む。
In S3, the count value C of an update counter (counted up in S15 and cleared in S4, which will be described later) that counts the number of updates of the learning correction coefficient αo is compared with a predetermined value, and if it is greater than the predetermined value, S
After clearing the count value C in step 4 and decreasing the P/I portion of the λ control by a predetermined amount in step S5, the process proceeds to step S6. If it is less than the predetermined value, the process directly proceeds to S6 without changing the P/I portion.

S6でO2センサ8からの出力とスライスレベ
ルとを比較して前記P/I分に基づく比例積分制
御により空燃比フイードバツク補正係数αを設定
する。
In S6, the output from the O 2 sensor 8 is compared with the slice level, and an air-fuel ratio feedback correction coefficient α is set by proportional-integral control based on the P/I component.

S7でバツテリ9からのバツテリ電圧に基づい
て電圧補正分Tsを設定する。
In S7, a voltage correction amount Ts is set based on the battery voltage from the battery 9.

S8でエンジン回転数N及び基本噴射量(負
荷)Tpから対応する学習補正係数α0を検索する。
尚、回転数N及び基本噴射量Tpに対する学習補
正係数αoのマツプは書き換え可能なRAM3に記
憶されており、学習が開始されていない時点では
全てαo=1となつている。また、このマツプは
N=8格子、Tp=4格子程度である。
In S8, a corresponding learning correction coefficient α 0 is searched from the engine speed N and the basic injection amount (load) Tp.
Note that the map of the learning correction coefficient αo for the rotational speed N and the basic injection amount Tp is stored in the rewritable RAM 3, and all αo=1 at the time when learning has not started. Furthermore, this map has approximately N=8 grids and Tp=4 grids.

S9〜S12は定常状態を検出するために設け
られており、S9で車速センサ19からの信号に
基づいて車速の変化を判定し、S10でニユート
ラルスイツチ15からの信号に基づいてギア位置
を判定し、S11でスロツトルセンサ6から信号
に基づいてスロツトル開度の変化を判定し、S1
2で所定時間経過したか否かを判定して所定時間
内であれば、S9へ戻る。こうして、所定時間内
に車速の変化が所定値以下で、かつ、ギアが入つ
ており、かつ、スロツトル開度の変化が所定値以
下の場合は、定常状態であると判定し、S13〜
S15での学習補正係数α0の修正を行うようにす
る。また、所定時間内の任意の時点で車速の変化
が所定値を越えた場合、ニユートラルになつた場
合、又はスロツトル開度の変化が所定値を越えた
場合は、過渡状態であると判定し、S13〜S1
5での学習補正係数α0の修正を行わないようにす
る。
S9 to S12 are provided to detect a steady state, and in S9, a change in vehicle speed is determined based on the signal from the vehicle speed sensor 19, and in S10, the gear position is determined based on the signal from the neutral switch 15. Then, in S11, a change in the throttle opening is determined based on the signal from the throttle sensor 6, and S1
In step 2, it is determined whether the predetermined time has elapsed or not, and if it is within the predetermined time, the process returns to S9. In this way, if the change in vehicle speed is less than or equal to a predetermined value within a predetermined time, the gear is engaged, and the change in throttle opening is less than or equal to a predetermined value, it is determined that the vehicle is in a steady state.
The learning correction coefficient α 0 is corrected in S15. In addition, if the change in vehicle speed exceeds a predetermined value at any point within a predetermined time, if the vehicle speed becomes neutral, or if the change in throttle opening exceeds a predetermined value, it is determined that the state is in a transient state, S13~S1
The learning correction coefficient α 0 in step 5 is not corrected.

定常状態と判定された場合の学習補正係数α0
修正は次の通り行われる。
The learning correction coefficient α 0 is corrected as follows when it is determined that the steady state is present.

S13で今回の空燃比フイードバツク補正係数
αとエンジン回転数Nと基本噴射量Tpとから検
索された学習補正係数α0との加重平均(次式参
照)をとつて、その加重平均値を新たな学習補正
係数α0とする。
In S13, a weighted average (see the following formula) of the current air-fuel ratio feedback correction coefficient α, the learning correction coefficient α 0 retrieved from the engine speed N and the basic injection amount Tp is taken, and the weighted average value is calculated as a new value. The learning correction coefficient α is set to 0 .

α0←(α+(M−1)×α0)/M Mは定数 S14で新たな学習補正係数α0をRAM3の対
応するエンジン回転数Nと基本噴射量Tpのとこ
ろへ書き込む。すなわち、RAM3内のデータを
更新する。
α 0 ← (α+(M-1)×α 0 )/M M is a constant In S14, a new learning correction coefficient α 0 is written to the corresponding engine speed N and basic injection amount Tp in the RAM 3. That is, the data in RAM3 is updated.

S15で学習補正係数αoの更新回数をカウン
トする更新回数カウンターのカウント値Cをカウ
ントアツプする。
In S15, a count value C of an update number counter that counts the number of updates of the learning correction coefficient αo is incremented.

定常状態と判定されて学習補正係数α0を修正し
た後、あるいは過渡状態と判定された後は、S1
6へ進む。
After determining the steady state and correcting the learning correction coefficient α 0 , or after determining the transient state, S1
Proceed to step 6.

S16では噴射量Tiを次式に従つて演算する。 In S16, the injection amount Ti is calculated according to the following equation.

Ti=Tp×COEF×α×α0+Ts ここで、定常状態の場合はα0として更新された
ものが用いられ、過渡状態の場合は検索されたも
のがそのまま用いられる。
Ti=Tp×COEF×α×α 0 +Ts Here, in the case of a steady state, the updated value as α 0 is used, and in the case of a transient state, the retrieved value is used as is.

以上で噴射量Tiが計算され、この噴射量Tiに
相応する駆動パルス信号が電流波形制御回路21
を介して燃料噴射弁22に所定のタイミングで与
えられる。
The injection amount Ti is calculated in the above manner, and the drive pulse signal corresponding to this injection amount Ti is sent to the current waveform control circuit 21.
is applied to the fuel injection valve 22 at a predetermined timing.

尚、学習補正係数αoの更新回数のトータル値
をカウントするのでなく、マツプの各格子点毎の
更新回数をカウントし、各カウント値の全てが所
定値以上となつたところでP/I分を減少させる
ようにすれば、より正確に学習の進行度合をモニ
ターできるので、好適である。
Note that instead of counting the total number of updates of the learning correction coefficient αo, the number of updates for each grid point of the map is counted, and when all of the count values are equal to or greater than a predetermined value, the P/I is decreased. This is preferable because the progress of learning can be monitored more accurately.

また、P/I分をやたらに小さくすると制御性
が悪化するため、必要い応じ、空燃比フイードバ
ツク補正係数αのズレの最大値を検出し、ズレが
生じたら、P/I分を逆に増加するようにしても
よい。あるいはP/I分の最小値を予め設定して
それ以下に減少させないようにしておくようにし
てもよい。
In addition, if the P/I component is made excessively small, controllability deteriorates, so if necessary, the maximum value of the deviation of the air-fuel ratio feedback correction coefficient α is detected, and if a deviation occurs, the P/I portion is increased. You may also do so. Alternatively, a minimum value for P/I may be set in advance to prevent the amount from decreasing below that value.

<発明の効果> 以上説明したように本発明によれば、λコント
ロール時の空燃比フイードバツク補正係数を学習
して学習補正係数を設定し、これを用いてλコン
トロール領域でのベース空燃比を学習によりλ=
1にするようにしたため、過渡時にベース空燃比
の段差から生ずるλ=1からのずれをなくし、か
つλコントロール時のP/I分を小さくすること
ができるので、制御性が向上する。そして、特に
学習補正係数の更新回数をカウントすることによ
り、学習の進行度合をモニターし、学習の進行と
共にP/I分を小さくするようにしたから、制御
性が極めて向上し混合比の状態が安定する。
<Effects of the Invention> As explained above, according to the present invention, the air-fuel ratio feedback correction coefficient during λ control is learned, the learning correction coefficient is set, and the base air-fuel ratio in the λ control region is learned using this learning correction coefficient. Therefore, λ=
1, it is possible to eliminate the deviation from λ=1 caused by a step in the base air-fuel ratio during a transient period, and to reduce the P/I component during λ control, thereby improving controllability. In particular, by counting the number of updates to the learning correction coefficient, the progress of learning is monitored, and as the learning progresses, the P/I component is reduced, resulting in extremely improved controllability and the state of the mixture ratio. Stabilize.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロツク図、第2
図は本発明の一実施例を示すハードウエア構成
図、第3図は同上のフローチヤートである。 1……CPU、3……学習制御用CMOS−
RAM、5……エアフローメータ、8……O2セン
サ、17……クランク角センサ、22……燃料噴
射弁。
Figure 1 is a block diagram showing the configuration of the present invention, Figure 2 is a block diagram showing the configuration of the present invention.
The figure is a hardware configuration diagram showing one embodiment of the present invention, and FIG. 3 is a flowchart of the same. 1...CPU, 3...CMOS for learning control
RAM, 5...Air flow meter, 8... O2 sensor, 17...Crank angle sensor, 22...Fuel injection valve.

Claims (1)

【特許請求の範囲】[Claims] 1 吸入空気流量とエンジン回転数とから基本噴
射量を演算する基本噴射量演算手段と、排気系に
設けたO2センサからの信号に基づいて検出され
る実際の空燃比と理論空燃比とを比較して比例積
分制御により空燃比フイードバツク補正係数を設
定する空燃比フイードバツク補正係数設定手段
と、エンジン回転数及び負荷等のエンジン運転条
件からこれに対応させてRAMに記憶させた学習
補正係数を検索する学習補正係数検索手段と、定
常状態を検出する定常状態検出手段と、定常状態
の検出時に空燃比フイードバツク補正係数と学習
補正係数との加重平均をとりその値を新たな学習
補正係数とし且つその学習補正係数でRAM内の
同一エンジン運転条件のデータを更新する学習補
正係数修正手段と、基本噴射量に空燃比フイード
バツク補正係数と学習補正係数とを乗算して噴射
量を演算する噴射量演算手段と、この演算された
噴射量に相応する駆動パルス信号を燃料噴射弁に
出力する駆動パルス信号出力手段と、学習補正係
数の更新回数をカウントする更新回数カウント手
段と、そのカウント値の増大に伴つて前記空燃比
フイードバツク補正係数設定手段の比例積分制御
における比例及び積分定数を変化させる比例及び
積分定数補正手段とを備えることを特徴とする電
子制御燃料噴射式内燃機関における空燃比の学習
制御装置。
1 Basic injection amount calculation means that calculates the basic injection amount from the intake air flow rate and engine speed, and the actual air-fuel ratio and stoichiometric air-fuel ratio detected based on the signal from the O 2 sensor installed in the exhaust system. An air-fuel ratio feedback correction coefficient setting means that compares and sets an air-fuel ratio feedback correction coefficient by proportional-integral control, and searches for a learning correction coefficient stored in RAM corresponding to engine operating conditions such as engine speed and load. a learning correction coefficient search means for detecting a steady state; a steady state detecting means for detecting a steady state; learning correction coefficient correction means for updating data for the same engine operating condition in RAM with the learning correction coefficient; and injection quantity calculation means for calculating the injection quantity by multiplying the basic injection quantity by the air-fuel ratio feedback correction coefficient and the learning correction coefficient. a drive pulse signal output means for outputting a drive pulse signal corresponding to the calculated injection amount to the fuel injection valve; an update count means for counting the number of updates of the learning correction coefficient; An air-fuel ratio learning control device for an electronically controlled fuel injection internal combustion engine, characterized in that the air-fuel ratio feedback correction coefficient setting means includes proportional and integral constant correction means for changing proportional and integral constants in the proportional-integral control of the air-fuel ratio feedback correction coefficient setting means.
JP7622483A 1983-05-02 1983-05-02 Air-fuel ratio learning control apparatus for electronically controlled fuel injection type internal-combustion engine Granted JPS59203831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7622483A JPS59203831A (en) 1983-05-02 1983-05-02 Air-fuel ratio learning control apparatus for electronically controlled fuel injection type internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7622483A JPS59203831A (en) 1983-05-02 1983-05-02 Air-fuel ratio learning control apparatus for electronically controlled fuel injection type internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS59203831A JPS59203831A (en) 1984-11-19
JPS6356414B2 true JPS6356414B2 (en) 1988-11-08

Family

ID=13599200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7622483A Granted JPS59203831A (en) 1983-05-02 1983-05-02 Air-fuel ratio learning control apparatus for electronically controlled fuel injection type internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59203831A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655188A (en) * 1984-01-24 1987-04-07 Japan Electronic Control Systems Co., Ltd. Apparatus for learning control of air-fuel ratio of air-fuel mixture in electronically controlled fuel injection type internal combustion engine
JPS627951A (en) * 1985-07-04 1987-01-14 Mazda Motor Corp Electronic fuel injection control device
JPS6270641A (en) * 1985-09-24 1987-04-01 Japan Electronic Control Syst Co Ltd Learning control device for internal combustion engine
US4854287A (en) * 1986-10-21 1989-08-08 Japan Electronic Control Systems Co., Ltd. Apparatus for learning and controlling air/fuel ratio in internal combustion engine
JPH0431643A (en) * 1990-05-28 1992-02-03 Japan Electron Control Syst Co Ltd Fuel supply device of internal combustion engine
JP4501769B2 (en) * 2005-05-02 2010-07-14 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59196942A (en) * 1983-04-14 1984-11-08 Mazda Motor Corp Air-fuel ratio controlling apparatus for engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59196942A (en) * 1983-04-14 1984-11-08 Mazda Motor Corp Air-fuel ratio controlling apparatus for engine

Also Published As

Publication number Publication date
JPS59203831A (en) 1984-11-19

Similar Documents

Publication Publication Date Title
JPS6346254B2 (en)
JPH0226052B2 (en)
JPH0323735B2 (en)
JPS6356414B2 (en)
JPS60101243A (en) Learning control device of internal-combustion engine
JPH0529775B2 (en)
JPH051373B2 (en)
JPH0686839B2 (en) Feedback controller with learning function
JPS6054005A (en) On-vehicle electronic feedback controller
JPH0530978B2 (en)
JPH0226696B2 (en)
JPH0455235Y2 (en)
JPS6313016B2 (en)
JPS61190142A (en) Learning control device of internal-combustion engine
JPS6045749A (en) Air-fuel ratio learning controller of electronic fuel injection type internal-combustion engine
JPH0228700B2 (en)
JPS6356413B2 (en)
JPS60153504A (en) Feedback control device having learning function
JPH0226695B2 (en)
JPH0740673Y2 (en) Air-fuel ratio learning controller for internal combustion engine
JPH03229942A (en) Air-fuel ratio learning control device for electronically controlled fuel injection type internal combustion engine
JPH0543868B2 (en)
JPS6326269B2 (en)
JPH0423099B2 (en)
JPH0243900B2 (en) NAINENKIKANNOGAKUSHUSEIGYOSOCHI