JPH0226696B2 - - Google Patents

Info

Publication number
JPH0226696B2
JPH0226696B2 JP59009446A JP944684A JPH0226696B2 JP H0226696 B2 JPH0226696 B2 JP H0226696B2 JP 59009446 A JP59009446 A JP 59009446A JP 944684 A JP944684 A JP 944684A JP H0226696 B2 JPH0226696 B2 JP H0226696B2
Authority
JP
Japan
Prior art keywords
correction coefficient
learning
fuel ratio
air
injection amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59009446A
Other languages
Japanese (ja)
Other versions
JPS60153446A (en
Inventor
Naomi Tomizawa
Shoji Furuhashi
Seiichi Ootani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP944684A priority Critical patent/JPS60153446A/en
Priority to DE3590028A priority patent/DE3590028C2/de
Priority to PCT/JP1985/000024 priority patent/WO1985003329A1/en
Priority to DE19853590028 priority patent/DE3590028T/en
Priority to US06/768,480 priority patent/US4655188A/en
Priority to GB08522612A priority patent/GB2165063B/en
Publication of JPS60153446A publication Critical patent/JPS60153446A/en
Publication of JPH0226696B2 publication Critical patent/JPH0226696B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2477Methods of calibrating or learning characterised by the method used for learning

Description

【発明の詳細な説明】 <技術分野> 本発明は電子制御燃料噴射式内燃機関における
空燃比の学習制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Technical Field> The present invention relates to an air-fuel ratio learning control device in an electronically controlled fuel injection type internal combustion engine.

<背景技術> 電子制御燃料噴射式内燃機関において、噴射量
Tiは次式によつて求められる。
<Background technology> In an electronically controlled fuel injection type internal combustion engine, the injection amount
Ti is determined by the following formula.

Ti=Tp×COEF×α+Ts ここでTpは基本噴射量で、 Tp=K×Q/N である。Kは定数、Qは吸入空気流量、Nは機関
回転数である。COEFは各種補正係数である。α
は後述する空燃比のフイードバツク制御(λコン
トロール)のための空燃比フイードバツク補正係
数である。Tsは電圧補正分で、バツテリ電圧の
変動による電磁式燃料噴射弁の噴射量変化を補正
するためのものである。
Ti=Tp×COEF×α+Ts Here, Tp is the basic injection amount, and Tp=K×Q/N. K is a constant, Q is the intake air flow rate, and N is the engine speed. COEF is various correction coefficients. α
is an air-fuel ratio feedback correction coefficient for air-fuel ratio feedback control (λ control) to be described later. Ts is a voltage correction amount, which is used to correct changes in the injection amount of the electromagnetic fuel injector due to changes in battery voltage.

λコントロールについては、排気系にO2セン
サを設けて実際の空燃比を検出し、空燃比が理論
空燃比より濃いか薄いかをスライスレベルにより
判定し、理論空燃比になるように燃料の噴射量を
制御するわけであり、このため、前記の空燃比フ
イードバツク補正係数αというものを定めて、こ
のαを変化させることにより理論空燃比に保つて
いる。
Regarding λ control, an O 2 sensor is installed in the exhaust system to detect the actual air-fuel ratio, and the slice level determines whether the air-fuel ratio is richer or leaner than the stoichiometric air-fuel ratio, and fuel is injected to achieve the stoichiometric air-fuel ratio. For this purpose, the above-mentioned air-fuel ratio feedback correction coefficient α is determined, and by varying this α, the stoichiometric air-fuel ratio is maintained.

ここで、空燃比フイードバツク補正係数αの値
は比例積分(PI)制御により変化させ、安定し
た制御としている。
Here, the value of the air-fuel ratio feedback correction coefficient α is changed by proportional-integral (PI) control to ensure stable control.

すなわち、O2センサの出力とスライスレベル
とを比較し、スライスレベルよりも高い場合、低
い場合に、空燃比を急に濃くしたり薄くしたりす
ることなく、空燃比が濃い(薄い)場合には始め
にP分だけ下げて(上げて)、それからI分ずつ
徐々に下げて(上げて)いき、空燃比を薄く(濃
く)するように制御する。
In other words, the output of the O2 sensor is compared with the slice level, and if it is higher or lower than the slice level, the air-fuel ratio is not suddenly richer or leaner, but when the air-fuel ratio is rich (lean). is controlled to make the air-fuel ratio leaner (richer) by first lowering (raising) it by P, then gradually lowering (raising) it by I minutes.

但し、λコントロールを行わない領域ではα=
1にクランプし、各種補正係数COEFの設定によ
り、所望の空燃比を得る。
However, in the region where λ control is not performed, α=
1 and set various correction coefficients COEF to obtain the desired air-fuel ratio.

ところで、λコントロール領域でα=1のとき
のベース空燃比を理論空燃比(λ=1)に設定す
ることができればフイードバツク制御は不要なの
であるが、実際には構成部品(例えばエアフロー
メータ、燃料噴射弁、プレツシヤレギユレータ、
コントロールユニツト)のバラツキや経時変化、
燃料噴射弁のパルス巾−流量特性の非直線性、運
転条件や環境の変化等の要因でベース空燃比のλ
=1からのズレを生じるので)フイードバツク制
御を行つている。
By the way, if the base air-fuel ratio when α = 1 in the λ control region could be set to the stoichiometric air-fuel ratio (λ = 1), feedback control would not be necessary. valves, pressure regulators,
control unit) variations and changes over time,
Due to factors such as the non-linearity of the pulse width-flow rate characteristic of the fuel injector, and changes in operating conditions and environment, the base air-fuel ratio λ may change.
= 1), feedback control is performed.

しかし、ベース空燃比がλ=1からずれている
と、運転領域が大きく変化した時に、ベース空燃
比の段差をフイードバツク制御によりλ=1に設
定するまでに時間がかかる。そして、このために
比例及び積分定数(P/I分)を大きくするの
で、オーバーシユートやアンダーシユートを生
じ、制御性が悪くなる。つまり、ベース空燃比が
λ=1からずれていると、理論空燃比よりかなり
ズレをもつた範囲で空燃比制御がなされるのであ
る。
However, if the base air-fuel ratio deviates from λ=1, it takes time to set the step in the base air-fuel ratio to λ=1 by feedback control when the operating range changes significantly. For this purpose, the proportionality and integral constants (P/I) are increased, which causes overshoot and undershoot, resulting in poor controllability. In other words, if the base air-fuel ratio deviates from λ=1, the air-fuel ratio will be controlled within a range that deviates considerably from the stoichiometric air-fuel ratio.

その結果、三元触媒の転換効率の悪いところで
運転がなされることになり、触媒の貴金属量の増
大によるコストアツプの他、触媒の劣化に伴う転
換効率の更なる悪化により触媒の交換を余儀なく
されるという問題点があつた。
As a result, the three-way catalyst is operated at a point where its conversion efficiency is poor, and not only does the cost increase due to the increase in the amount of precious metal in the catalyst, but the conversion efficiency further deteriorates as the catalyst deteriorates, forcing the catalyst to be replaced. There was a problem.

そこで、学習によりベース空燃比をλ=1にす
ることにより、過渡時にベース空燃比の段差から
生じるλ=1からのズレをなくし、かつ、P/I
分を小さくすることを可能にして制御性の向上を
図り、これらにより触媒の原価低減等を図るベー
ス空燃比学習装置が考えられた。
Therefore, by setting the base air-fuel ratio to λ = 1 through learning, the deviation from λ = 1 caused by the step in the base air-fuel ratio during transient times can be eliminated, and the P/I
A base air-fuel ratio learning device has been devised to improve controllability by making it possible to reduce the amount of fuel, thereby reducing the cost of the catalyst.

すなわち、RAMに機関回転数及び負荷の運転
条件に対応した学習補正係数α0のマツプを設け、
噴射量Tiを計算する際に次式の如く基本噴射量
Tpをα0で補正する。
In other words, a map of the learning correction coefficient α 0 corresponding to the engine speed and load operating conditions is provided in the RAM.
When calculating the injection amount Ti, use the basic injection amount as shown in the following formula.
Correct Tp by α 0 .

Ti=Tp×COEF×α×α0+Ts そして、α0の学習は次の手順で進める。 Ti=Tp×COEF×α×α 0 +Ts Then, the learning of α 0 proceeds as follows.

(i) 定常状態においてそのときの機関運転条件と
αの制御中心値αcとを検出する。
(i) Detect the engine operating conditions and the control center value αc of α in a steady state.

(ii) 前記機関運転条件に対応して現在までに学習
され記憶されているα0を検索する。
(ii) Search for α 0 that has been learned and stored up to now in accordance with the engine operating conditions.

(iii) αcとα0よりα0+Δα/Mの値を求め、その結
果(学習値)を新たなα0として記憶を更新す
る。
(iii) Find the value of α 0 +Δα/M from αc and α 0 and update the memory with the result (learning value) as new α 0 .

なお、Δαは基準値α1からの偏差量を示し、 Δα=αc−α1 であり、基準値α1は一般には1.0となる。また、
Mは定数である。
Note that Δα indicates the amount of deviation from the reference value α 1 , Δα=αc−α 1 , and the reference value α 1 is generally 1.0. Also,
M is a constant.

ところで、このような従来の空燃比フイードバ
ツク制御における学習方式では、偏差量Δαは定
常状態でないと検出の精度が得られないため、定
常状態でのみΔαを検出して学習を行つているが、
これでは過渡運転状態時に、一時的にしか運転し
ない運転領域では学習が行われない。
By the way, in such a conventional learning method in air-fuel ratio feedback control, since the deviation amount Δα cannot be detected accurately unless it is in a steady state, learning is performed by detecting Δα only in a steady state.
In this case, learning is not performed in the operating range where the vehicle operates only temporarily during the transient operating state.

このため、学習の進行度が大きな領域(以下学
習領域という)と、それ以外の学習の進行度が小
さな領域(以下未学習領域という)とを生じてし
まう。そして、この状態で運転状態が変化したと
すると、系に空燃比のズレを生じた場合、学習領
域と未学習領域とではαと空燃比λとの対応にズ
レを生じているため、学習領域と未学習領域との
間を移動する際に空燃比λに段差を生じ、過渡状
態における排気エミツシヨン特性の悪化や燃費の
悪化等を招き、実質的に学習による効果が挙らな
かつた。
For this reason, there are areas where the learning progress is large (hereinafter referred to as learning areas) and other areas where the learning progress is small (hereinafter referred to as unlearning areas). If the operating condition changes in this state, if a deviation occurs in the air-fuel ratio in the system, there will be a deviation in the correspondence between α and the air-fuel ratio λ between the learning area and the unlearning area, so the learning area A difference in the air-fuel ratio λ occurs when moving between the and unlearned region, leading to deterioration of exhaust emission characteristics and deterioration of fuel efficiency in a transient state, and there is virtually no effect of learning.

また、未学習領域相互間を移動する過渡運転時
も学習補正係数α0の信頼性に劣るため空燃比フイ
ードバツク補正係数αのオーバーシユートやアン
ダーシユートを抑制できず、この面からも排気エ
ミツシヨン特性の悪化、燃費の悪化を招いてい
た。一方、前記したベース空燃比のλ=1からの
ズレを生じる要因の中、エアフローメータによる
吸入空気流量Qの計算誤差によるものは可なり大
きな割合であると考えられ、例えば熱線式エアフ
ローメータの場合、熱線へのゴミの付着や熱線自
体の劣化により計測誤差の進行は著しくなる。
Furthermore, even during transient operation when moving between unlearned regions, the reliability of the learning correction coefficient α 0 is poor, making it impossible to suppress overshoot or undershoot of the air-fuel ratio feedback correction coefficient α. This resulted in deterioration of characteristics and fuel consumption. On the other hand, among the factors that cause the base air-fuel ratio to deviate from λ = 1, the error in calculating the intake air flow rate Q by the air flow meter is thought to account for a fairly large proportion; for example, in the case of a hot-wire air flow meter, , the measurement error progresses significantly due to dust adhering to the heating wire and deterioration of the heating wire itself.

この場合、吸入空気流量Qの等しい領域ではQ
の計測誤差ΔQも等しくなると考えられる。
In this case, in the region where the intake air flow rate Q is equal, Q
It is considered that the measurement errors ΔQ of are also equal.

<発明の目的> 本発明は以上の点に鑑みなされたもので、学習
進行度の大きな運転領域で学習された学習値に基
づいて、当該運転領域と吸入空気流量Qが等しい
学習進行度の小さな運転領域における学習を行う
ことにより学習値の信頼性を向上し、もつて空燃
比制御精度を向上した電子制御燃料噴射式内燃機
関における空燃比の学習制御装置を提供すること
を目的とする。
<Purpose of the Invention> The present invention has been made in view of the above points, and is based on the learning value learned in the driving region where the learning progress is large. It is an object of the present invention to provide an air-fuel ratio learning control device for an electronically controlled fuel injection type internal combustion engine, which improves the reliability of learned values by performing learning in the operating region, and improves the accuracy of air-fuel ratio control.

<発明の構成> このため本発明は、第1図に示すように、吸入
空気流量と機関回転数とから基本噴射量を演算す
る基本噴射量演算手段と、排気系に設けたO2
ンサからの信号に基づいて検出される実際の空燃
比と理論空燃比とを比較して比例積分制御による
空燃比フイードバツク補正係数を設定する空燃比
フイードバツク補正係数設定手段と、機関回転数
及び負荷等の機関運転条件から、これに対応させ
てRAM上のマツプに記憶させた学習補正係数を
検索する学習補正係数検索手段と、空燃比フイー
ドバツク補正係数と学習補正係数とから新たな学
習補正係数を設定し、且つ、その学習補正係数で
RAM内の同一機関の運転条件のデータを更新す
る第1の学習補正係数更新手段と、前記第1の学
習補正係数更新手段における各種運転条件毎のデ
ータ更新回数に基づき学習進行度を判定する学習
進行度判定手段と、学習補正係数のデータの更新
時、該更新されるデータに基づいて更新される運
転条件に対して吸入空気流量が等しく、且つ前記
学習進行度判定手段により学習進行度が小と判定
される他の運転条件における学習補正係数のデー
タを設定し、RAMのマツプを記憶更新させる第
2の学習補正係数更新手段と、基本噴射量に空燃
比フイードバツク補正係数と学習補正係数とを乗
算して噴射量を演算する噴射量演算手段と、この
演算された噴射量に相応する駆動パルス信号を燃
料噴射弁に出力する駆動パルス信号出力手段と、
を設けた構成とする。
<Configuration of the Invention> For this reason, the present invention, as shown in FIG . an air-fuel ratio feedback correction coefficient setting means for setting an air-fuel ratio feedback correction coefficient by proportional-integral control by comparing the actual air-fuel ratio detected based on the signal of the stoichiometric air-fuel ratio with the stoichiometric air-fuel ratio; a learning correction coefficient search means for searching a learning correction coefficient stored in a map on the RAM corresponding to the operating conditions; and setting a new learning correction coefficient from the air-fuel ratio feedback correction coefficient and the learning correction coefficient; And with that learning correction coefficient
a first learning correction coefficient updating means for updating data on the operating conditions of the same engine in RAM; and learning for determining the learning progress based on the number of data updates for each operating condition in the first learning correction coefficient updating means. When the progress determining means and the learning correction coefficient data are updated, the intake air flow rate is equal to the operating condition updated based on the updated data, and the learning progress determining means determines that the learning progress is small. a second learning correction coefficient updating means for setting learning correction coefficient data under other operating conditions determined as such and updating the memory map in the RAM; an injection amount calculation means that calculates the injection amount by multiplication; a drive pulse signal output means that outputs a drive pulse signal corresponding to the calculated injection amount to the fuel injection valve;
The configuration includes the following.

<実施例> 以下に実施例を説明する。<Example> Examples will be described below.

第2図にハードウエア構成を示す。 Figure 2 shows the hardware configuration.

1はCPU、2はP−ROM、3は学習制御用の
CMOS−RAM、4はアドレスデコーダである。
尚、RAM3に対しては、キースイツチOFF後も
記憶内容を保持させるためバツクアツプ電源回路
を使用する。
1 is CPU, 2 is P-ROM, 3 is for learning control
CMOS-RAM, 4 is an address decoder.
Note that a backup power supply circuit is used for the RAM 3 in order to retain the memory contents even after the key switch is turned off.

燃料噴射量の制御のためのCPU1へのアナロ
グ入力信号としては、熱線式エアフローメータ5
からの吸入空気流量信号、スロツトルセンサ6か
らのスロツトル開度信号、水温センサ7からの水
温信号、O2センサ8からの排気中酸素濃度信号、
バツテリ9からのバツテリ電圧があり、これらは
アナログ入力インタフエース10及びA/D変換
器11を介して入力されるようになつている。1
2はA/D変換タイミングコントローラである。
The hot wire air flow meter 5 is used as an analog input signal to the CPU 1 for controlling the fuel injection amount.
intake air flow rate signal from the throttle sensor 6, throttle opening signal from the throttle sensor 6, water temperature signal from the water temperature sensor 7, exhaust oxygen concentration signal from the O2 sensor 8,
There is a battery voltage from the battery 9, which is adapted to be input via an analog input interface 10 and an A/D converter 11. 1
2 is an A/D conversion timing controller.

デジタル入力信号としては、アイドルスイツチ
13、スタートスイツチ14及びニユートラルス
イツチ15からのON・OFF信号があり、これら
はデジタル入力インタフエース16を介して入力
されるようになつている。
Digital input signals include ON/OFF signals from an idle switch 13, a start switch 14, and a neutral switch 15, and these are inputted via a digital input interface 16.

その他、クランク角センサ17からの例えば
180゜毎のリフアレンス信号と1゜毎のポジシヨン信
号とがワンシヨツトマルチ回路を介して入力され
るようになつている。また、車速センサ19から
の車速信号が波形整形回路20を介して入力され
るようになつている。
In addition, for example, from the crank angle sensor 17
A reference signal every 180 degrees and a position signal every 1 degree are inputted via a one-shot multi-circuit. Further, a vehicle speed signal from a vehicle speed sensor 19 is inputted via a waveform shaping circuit 20.

CPU1からの出力信号(燃料噴射弁への駆動
パルス信号)は、電流波形制御回路21を介して
燃料噴射弁22に送られるようになつている。
An output signal from the CPU 1 (a drive pulse signal to the fuel injection valve) is sent to the fuel injection valve 22 via a current waveform control circuit 21.

ここにおいて、CPU1は第3図に示すフロー
チヤート(燃料噴射量計算ルーチン)に基づくプ
ログラム(ROM2に記憶されている)に従つて
入出力操作並びに演算処理等を行い、燃料噴射量
を制御する。
Here, the CPU 1 performs input/output operations, arithmetic processing, etc. according to a program (stored in the ROM 2) based on the flowchart (fuel injection amount calculation routine) shown in FIG. 3, and controls the fuel injection amount.

次に第3図のフローチヤートについて説明す
る。
Next, the flowchart shown in FIG. 3 will be explained.

S1でエアフローメータ5からの信号によつて
得られる吸入空気流量Qとクランク角センサ17
からの信号によつて得られる機関回転数Nとから
基本噴射量Tp(=K×Q/N)を演算する。
The intake air flow rate Q obtained from the signal from the air flow meter 5 at S1 and the crank angle sensor 17
The basic injection amount Tp (=K×Q/N) is calculated from the engine speed N obtained from the signal from the engine.

S2で各種補正係数COEFを設定する。 Set various correction coefficients COEF in S2.

S3でO2センサ8の出力電圧とスライスレベル
電圧とを比較して比例積分制御により空燃比フイ
ードバツク補正係数αを設定する。但し、λコン
トロールを行わない領域でα=1にクランプす
る。また、RAM3上の学習MAPから既に学習
されているデータα0をその時点の(N、Tp)に
対応して参照する。
In S3, the output voltage of the O 2 sensor 8 and the slice level voltage are compared and the air-fuel ratio feedback correction coefficient α is set by proportional-integral control. However, in the region where λ control is not performed, α is clamped to 1. Further, the data α 0 already learned from the learning MAP on the RAM 3 is referred to in correspondence with (N, Tp) at that time.

S4でバツテリ9からのバツテリ電圧に基づい
て電圧補正分Tsを設定する。
In S4, a voltage correction amount Ts is set based on the battery voltage from the battery 9.

S5では、機関運転状態を示すパラメータとし
て例えば機関回転数N及び基本噴射量(負荷)
Tpによる運転領域を複数のエリアに区画し、各
エリア毎に後述する学習補正係数α0に記憶させた
マツプ(RAM3に記憶)から現在の(N、Tp)
が存在するエリアを検索し該エリアを示すデータ
をRAM3の所定番地Aにセツトする。
In S5, parameters indicating the engine operating state include engine speed N and basic injection amount (load).
The driving area according to Tp is divided into multiple areas, and the current (N, Tp) is calculated from a map (stored in RAM3) stored in the learning correction coefficient α 0 described later for each area.
The area where the area exists is searched and data indicating the area is set in a predetermined location A of the RAM 3.

S6では前記番地Aにセツトされた現在の(N、
Tp)が存在するエリアのデータを同じくRAM3
の番地LAにセツトされた前回検索された(N、
Tp)が存在するエリアのデータと比較し、同一
であるか否かを判定する。そして、YESである
とき、即ち、運転状態が略同一であると判定され
た場合はS7へ進む。
In S6, the current (N,
The data in the area where Tp) exists is also stored in RAM3.
Last searched (N,
Tp) is compared with the data of the area where it exists to determine whether they are the same. If the answer is YES, that is, if it is determined that the operating conditions are substantially the same, the process advances to S7.

S7では、O2センサ8の出力電圧がS6の判定が
YESとなつてからn回反転したか否かを判定し、
YESの場合はS8へ進む。
In S7, the output voltage of O 2 sensor 8 is determined by S6.
Determine whether it has been reversed n times after becoming YES,
If YES, proceed to S8.

即ち、S6、S7は運転状態が定常状態であるか
否かを判別するために設けられており、S6、S7
の判定がYESである場合は定常状態であると判
定される。かかる定常状態判定方法は簡易にし
て、かつ、高精度に行えるが、この他例えば車速
一定、ギヤ位置が非ニユートラル、スロツトル開
度一定で所定時間を経過したか否かをによつて判
定する方法等を採用してもよい。そして、S6又
はS7いずれかの判定がNOである場合は非定常状
態と判別され、この場合は後述するS8〜S15まで
の過程を経ることなくS16へ進む。
In other words, S6 and S7 are provided to determine whether the operating state is in a steady state.
If the determination is YES, it is determined that the state is in a steady state. Although such a steady state determination method can be performed easily and with high accuracy, there is also a method of determining whether a predetermined time has elapsed with the vehicle speed constant, the gear position non-neutral, and the throttle opening constant. etc. may be adopted. If the determination in either S6 or S7 is NO, it is determined that the state is unsteady, and in this case, the process proceeds to S16 without going through the processes from S8 to S15, which will be described later.

S8では空燃比フイードバツク補正係数αの定
常運転状態における制御中心値αcを演算する。
これは、例えば空燃比フイードバツク補正係数α
の値が増減して反転してから反転するまでの平均
値を求めるか、反転時の空燃比フイードバツク補
正係数αの値だけの平均値を求めるようにしても
よく、このようにすれば定常状態における制御値
αcをより的確に求めることができる。
In S8, the control center value αc of the air-fuel ratio feedback correction coefficient α in the steady operating state is calculated.
This is, for example, the air-fuel ratio feedback correction coefficient α
It is also possible to find the average value from the time when the value of increases or decreases until the time of reversal, or to find the average value of only the value of the air-fuel ratio feedback correction coefficient α at the time of reversal.In this way, the steady state The control value αc can be determined more accurately.

S9では機関回転数N及び基本噴射量Tpから
RAM3の前記(N、Tp)が存在するエリアに記
憶されている(N、Tp)に対応する学習補正係
数α0を検索する。尚、前記マツプに記憶されるα0
の値は学習が開始されていない時点では全てα0
1となつている。
In S9, from engine speed N and basic injection amount Tp
The learning correction coefficient α 0 corresponding to (N, Tp) stored in the area of the RAM 3 where (N, Tp) exists is searched. Note that α 0 stored in the map
The values of are all α 0 = at the time when learning has not started.
1.

S10ではS9において検索された学習補正係数α0
とS8において演算された制御中心値αcとから次
式にしたがつて演算を行い、その値を新たな学習
補正係数α0として設定し、α0マツプの当該エリア
内の値を更新すると共に、該エリア毎に設けられ
た学習カウンタのカウント値を更新する。
In S10, the learning correction coefficient α 0 found in S9
and the control center value αc calculated in S8 according to the following formula, set the value as a new learning correction coefficient α 0 , update the value in the corresponding area of the α 0 map, and The count value of the learning counter provided for each area is updated.

α0←α0+Δα/M 尚、Δαはαcは基準値との偏差量を示し、 Δα=αc−α1 であり、基準値α1は一般には1.0となる。またM
は定数である。
α 0 ← α 0 + Δα/M In addition, in Δα, αc indicates the amount of deviation from the reference value, Δα=αc−α 1 , and the reference value α 1 is generally 1.0. Also M
is a constant.

学習補正係数α0の学習時偏差量Δαを加える割
合を決定するMの値は一定としてもよいが、機関
回転数に比例した値とすればαのPI制御係数を
噴射周期の増大に応じて減少させることができる
ので、より高精度な噴射量制御が行える。
The value of M, which determines the rate at which the learning deviation amount Δα of the learning correction coefficient α 0 is added, may be constant, but if it is set to a value proportional to the engine speed, the PI control coefficient of α can be adjusted according to the increase in the injection cycle. Since the injection amount can be decreased, more accurate injection amount control can be performed.

S11ではRAM3の番地LAにセツトされている
前回の(N、Tp)のエリアのデータを番地Aに
セツトされている現在の(N、Tp)のエリアの
データを転送することによつて更新する。
In S11, the data of the previous area (N, Tp) set at address LA of RAM 3 is updated by transferring the data of the current area (N, Tp) set at address A. .

S12でRAM3のα0マツプから、現在の運転条
件(N、Tp)における吸入空気流量Q(=Tp・
N)と等しいQを持つ運転条件のエリアを検索す
る。
In S12, from the α 0 map of RAM3, the intake air flow rate Q (=Tp・
Search for an area with operating conditions that have Q equal to N).

S13では、S12で検索した各エリアにおける学
習カウンタのカウント値Cを検索し、次いでS14
において、前記各エリアのカウント値が所定値
C1以下であるか否かを判定することによつて学
習進行度を判定する。
In S13, the count value C of the learning counter in each area searched in S12 is searched, and then in S14
, the count value of each area is a predetermined value.
The degree of learning progress is determined by determining whether C is 1 or less.

そして、前記S14における判定がYESの場合、
即ち学習進行度が小のエリアと判定された場合は
S15に進んで当該エリアにおける学習補正係数α0
のデータを現在のエリアで学習された学習補正係
数α0のデータと置換して更新する。
Then, if the determination in S14 is YES,
In other words, if it is determined that the learning progress is in a small area,
Proceed to S15 and set the learning correction coefficient α 0 in the area
is updated by replacing the data with the data of learning correction coefficient α 0 learned in the current area.

S14の判定がNOの場合、即ち、学習進行度が
大と判定されたエリアでは、データを更新せず現
状に保持する。
If the determination in S14 is NO, that is, in areas where the degree of learning progress is determined to be high, the data is not updated and is maintained at the current state.

S16では噴射量Tiを次式に従つて演算する。 In S16, the injection amount Ti is calculated according to the following formula.

Ti=Tp×COEF×α×α0+Ts ここで、定常状態の場合は学習補正係数α0とし
てS10で更新されたものが用いられ、過渡状態の
場合はS10による更新がなされない状態のものが
用いれる。
Ti=Tp×COEF×α×α 0 +Ts Here, in a steady state, the learning correction coefficient α 0 updated in S10 is used, and in a transient state, the one updated in S10 is used. Used.

以上で噴射量Tiが計算され、S17でこの噴射量
Tiに相応する駆動パルス信号が電流波形制御回
路21を介して燃料噴射弁22に所定のタイミン
グで与えられる。
The injection amount Ti is calculated above, and this injection amount is calculated in S17.
A drive pulse signal corresponding to Ti is given to the fuel injection valve 22 at a predetermined timing via the current waveform control circuit 21.

一方、λコントロールを行わない領域では前述
したように空燃比フイードバツク補正係数αが1
にクランプされ、S5〜S14のステツプが省略され
るが、等吸入空気流量線上で設定された学習結果
をS3でα0として参照する。よつて噴射量は次式
で与えられる。
On the other hand, in the region where λ control is not performed, the air-fuel ratio feedback correction coefficient α is 1.
Although the steps S5 to S14 are omitted, the learning result set on the equal intake air flow rate line is referred to as α 0 in S3. Therefore, the injection amount is given by the following equation.

Ti=Tp×COEF×α0+Ts 但し、Tp=K×Q/N このようにすれば、学習進行度小のエリアにお
いても学習補正係数α0が学習が行われたエリアの
信頼性に優れた学習補正係数に基づいて更新され
るため、学習領域と未学習領域の間を移動する際
の空燃比λの段差を解消でき、かつ、未学習領域
相互間を移動する過渡運転時にも、実質的に学習
の進行度が高められていることにより、空燃比フ
イードバツク補正係数αのオーバーシユートやア
ンダーシユートを抑制でき、λ=1への整定が早
められ、制御性が大幅に向上する。
Ti=Tp×COEF×α 0 +Ts However, Tp=K×Q/ N In this way, even in areas where the learning progress is small, the learning correction coefficient Since it is updated based on the learning correction coefficient, it is possible to eliminate the difference in the air-fuel ratio λ when moving between the learning area and the unlearning area, and even during transient operation when moving between the unlearning area. By increasing the learning progress, overshoot and undershoot of the air-fuel ratio feedback correction coefficient α can be suppressed, and the settling to λ=1 is accelerated, resulting in a significant improvement in controllability.

尚、本実施例では学習されたデータでそのまま
未学習領域におけるデータを更新する構成とした
が、λ=1からのズレに対して吸入空気流量Qの
計測誤差が及ぼす影響の割合を考慮し、未学習領
域におけるデータの所定割合分を更新するように
してもよい。この他、学習されたデータと未学習
領域における旧データとを加重平均等により平均
化した値で更新するようにしてもよい。
In this embodiment, the data in the unlearned area is updated using the learned data, but considering the influence of the measurement error of the intake air flow rate Q on the deviation from λ=1, A predetermined percentage of data in the unlearned area may be updated. In addition, the learned data and the old data in the unlearned area may be updated with a value obtained by averaging them using a weighted average or the like.

又、未学習領域の学習カウント値による判定
も、学習された領域における学習カウント値と比
較し、これより下回る領域を未学習領域と判定し
て行つたり、あるいは全エリアに対する各エリア
毎のカウント値の割合によつて判定する方法でも
よい。このようにすれば、学習初期から未学習領
域における学習補正係数の更新即ち実質的な学習
を行えると共に、全体的に学習が進行した後も実
質的な未学習領域(実際の学習頻度が小さく学習
の信頼性に乏しい領域)の学習補正係数を更新で
き、永続的に良好な学習を行える利点がある。
Also, the judgment based on the learned count value of the unlearned area can be done by comparing it with the learning count value in the learned area and determining the area below this as an unlearned area, or by calculating the count for each area for all areas. A method of determining based on the ratio of values may also be used. In this way, it is possible to update the learning correction coefficient in the unlearned area from the beginning of learning, that is, to perform actual learning, and even after the overall learning has progressed, it is possible to update the learning correction coefficient in the unlearned area (the actual learning frequency is small and the learning This has the advantage of being able to update the learning correction coefficients (areas with poor reliability), allowing good learning to be performed permanently.

さらに、本実施例では省略したが、学習進行度
大のエリアでは空燃比フイードバツク補正係数α
のP、I分を減少して、オーバーシユート、アン
ダーシユートの抑制を図るようにしてもよい。
Furthermore, although omitted in this example, in areas where the learning progress is large, the air-fuel ratio feedback correction coefficient α
It is also possible to suppress overshoot and undershoot by reducing the P and I components.

<発明の効果> 以上説明したように本発明によれば最新の学習
補正係数α0のデータに基づいて該学習された運転
領域と吸入空気流量Qの等しい学習進行度小の運
転領域のデータを更新する構成としたため、学習
領域と未学習領域との間を移動する際の空燃比の
段差を解消できると共に、学習領域相互間は勿論
のこと未学習領域相互間を移動する過渡運転時に
も、空燃比フイードバツク補正係数のオーバーシ
ユートやアンダーシユートを抑制でき、λ=1へ
の整定が早められる。この結果、空燃比フイード
バツク制御精度を大幅に向上でき、もつて排気エ
ミツシヨン特性を良化でき燃費向上にもつながる
等優れた特長を備えるものである。
<Effects of the Invention> As explained above, according to the present invention, based on the data of the latest learning correction coefficient α 0 , the data of the learned operating area and the operating area where the intake air flow rate Q is equal and the learning progress is small are calculated. Since it is configured to update, it is possible to eliminate the difference in air-fuel ratio when moving between the learning area and the unlearning area, and also during transient operation when moving between the learning areas as well as between the unlearning areas. Overshoot and undershoot of the air-fuel ratio feedback correction coefficient can be suppressed, and the settling to λ=1 can be accelerated. As a result, the accuracy of air-fuel ratio feedback control can be greatly improved, which in turn improves exhaust emission characteristics, leading to improved fuel efficiency, and other excellent features.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成をブロツク図、第2図は
本発明の一実施例を示すハードウエア構成図、第
3図は同上実施例の制御過程を示すフローチヤー
トである。 1……CPU、3……学習制御用CMOS−
RAM、5……エアフローメータ、8……O2セン
サ、17……クランク角センサ、22……燃料噴
射弁。
FIG. 1 is a block diagram of the configuration of the present invention, FIG. 2 is a hardware configuration diagram showing one embodiment of the present invention, and FIG. 3 is a flowchart showing the control process of the same embodiment. 1...CPU, 3...CMOS for learning control
RAM, 5...Air flow meter, 8... O2 sensor, 17...Crank angle sensor, 22...Fuel injection valve.

Claims (1)

【特許請求の範囲】[Claims] 1 吸入空気流量と機関回転数とから基本噴射量
を演算する基本噴射量演算手段と、排気系に設け
たO2センサからの信号に基づいて検出される実
際の空燃比と理論空燃比とを比較して比例積分制
御による空燃比フイードバツク補正係数を設定す
る空燃比フイードバツク補正係数設定手段と、機
関回転数及び負荷等の機関運転条件から、これに
対応させてRAM上のマツプに記憶させた学習補
正係数を検索する学習補正係数検索手段と、空燃
比フイードバツク補正係数と学習補正係数とから
新たな学習補正係数を設定し且つその学習補正係
数でRAM内の同一の機関運転条件のデータを更
新する第1の学習補正係数更新手段と、前記第1
の学習補正係数更新手段における各種運転条件毎
のデータ更新回数に基づき学習進行度を判定する
学習進行度判定手段と、学習補正係数のデータの
更新時、該更新されるデータに基づいて更新され
る運転条件に対して吸入空気流量が等しく、且つ
前記学習進行度判定手段により学習進行度が小と
判定される他の運転条件における学習補正係数の
データを設定し、RAMのマツプを記憶更新させ
る第2の学習補正係数更新手段と、基本噴射量に
空燃比フイードバツク補正係数と学習補正係数と
を乗算して噴射量を演算する噴射量演算手段と、
この演算された噴射量に相応する駆動パルス信号
を燃料噴射弁に出力する駆動パルス信号出力手段
と、を設けて構成したことを特徴とする電子制御
燃料噴射式内燃機関における空燃比の学習制御装
置。
1 Basic injection amount calculation means that calculates the basic injection amount from the intake air flow rate and engine speed, and the actual air-fuel ratio and theoretical air-fuel ratio detected based on the signal from the O 2 sensor installed in the exhaust system. An air-fuel ratio feedback correction coefficient setting means that compares and sets an air-fuel ratio feedback correction coefficient by proportional-integral control, and learning that corresponds to engine operating conditions such as engine speed and load and is stored in a map on the RAM. A learning correction coefficient search means for searching a correction coefficient, setting a new learning correction coefficient from the air-fuel ratio feedback correction coefficient and the learning correction coefficient, and updating data for the same engine operating condition in the RAM with the learning correction coefficient. a first learning correction coefficient updating means;
learning progress determining means for determining the degree of learning progress based on the number of times data is updated for each type of driving condition in the learning correction coefficient updating means; Setting learning correction coefficient data under other operating conditions in which the intake air flow rate is equal to the operating condition and the learning progress is determined to be small by the learning progress determining means, and updating the memory map in the RAM. 2, learning correction coefficient updating means, and injection amount calculation means for calculating the injection amount by multiplying the basic injection amount by the air-fuel ratio feedback correction coefficient and the learning correction coefficient;
A learning control device for an air-fuel ratio in an electronically controlled fuel injection type internal combustion engine, comprising a drive pulse signal output means for outputting a drive pulse signal corresponding to the calculated injection amount to the fuel injection valve. .
JP944684A 1984-01-24 1984-01-24 Learning controller for air-fuel ratio in electronically- controlled fuel injection type internal-combustion engine Granted JPS60153446A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP944684A JPS60153446A (en) 1984-01-24 1984-01-24 Learning controller for air-fuel ratio in electronically- controlled fuel injection type internal-combustion engine
DE3590028A DE3590028C2 (en) 1984-01-24 1985-01-23
PCT/JP1985/000024 WO1985003329A1 (en) 1984-01-24 1985-01-23 Air/fuel mixture ratio learning controller in electronic control fuel injection internal combustion engine
DE19853590028 DE3590028T (en) 1984-01-24 1985-01-23 Learning fuel injection control device
US06/768,480 US4655188A (en) 1984-01-24 1985-01-23 Apparatus for learning control of air-fuel ratio of air-fuel mixture in electronically controlled fuel injection type internal combustion engine
GB08522612A GB2165063B (en) 1984-01-24 1985-01-23 Air/fuel mixture ratio learning controller in electronic control fuel injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP944684A JPS60153446A (en) 1984-01-24 1984-01-24 Learning controller for air-fuel ratio in electronically- controlled fuel injection type internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS60153446A JPS60153446A (en) 1985-08-12
JPH0226696B2 true JPH0226696B2 (en) 1990-06-12

Family

ID=11720517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP944684A Granted JPS60153446A (en) 1984-01-24 1984-01-24 Learning controller for air-fuel ratio in electronically- controlled fuel injection type internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60153446A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101862A (en) * 1985-10-29 1987-05-12 Japan Electronic Control Syst Co Ltd Learning control device for air-fuel ratio in electronically controlled fuel-injection type internal combustion engine
JPH02308950A (en) * 1989-05-25 1990-12-21 Japan Electron Control Syst Co Ltd Air leakage self-diagnostic device for control device of internal combustion engine and air leakage learning correcting device
JP5829954B2 (en) 2012-03-09 2015-12-09 トヨタ自動車株式会社 Fuel injection control device for internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105532A (en) * 1980-12-24 1982-07-01 Toyota Motor Corp Air-fuel ratio controlling method
JPS6065254A (en) * 1983-09-20 1985-04-15 Hitachi Ltd Electronic controller for internal-combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105532A (en) * 1980-12-24 1982-07-01 Toyota Motor Corp Air-fuel ratio controlling method
JPS6065254A (en) * 1983-09-20 1985-04-15 Hitachi Ltd Electronic controller for internal-combustion engine

Also Published As

Publication number Publication date
JPS60153446A (en) 1985-08-12

Similar Documents

Publication Publication Date Title
JP2742431B2 (en) Engine air-fuel ratio control device
JP3444675B2 (en) Air-fuel ratio learning control device for internal combustion engine
JPS6346254B2 (en)
JPH0226052B2 (en)
JPH0529775B2 (en)
JPH0226696B2 (en)
JPH0476241A (en) Air-fuel ratio controller of internal combustion engine
JPS6356414B2 (en)
JPH0226695B2 (en)
JPH051373B2 (en)
JPH0686839B2 (en) Feedback controller with learning function
JPH0228700B2 (en)
JPS6313016B2 (en)
JPH0530978B2 (en)
JPS61190142A (en) Learning control device of internal-combustion engine
JPH0455235Y2 (en)
JPS6045749A (en) Air-fuel ratio learning controller of electronic fuel injection type internal-combustion engine
JP2757064B2 (en) Air-fuel ratio control device for internal combustion engine
JPS60153504A (en) Feedback control device having learning function
JPH02191850A (en) Air-fuel ratio control device for engine
JP2510857B2 (en) Feedback Controller with Learning Function for Internal Combustion Engine
JPH0416625B2 (en)
JPH0243900B2 (en) NAINENKIKANNOGAKUSHUSEIGYOSOCHI
JPS6356413B2 (en)
JPH0423099B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term