JPH0686839B2 - Feedback controller with learning function - Google Patents

Feedback controller with learning function

Info

Publication number
JPH0686839B2
JPH0686839B2 JP59009445A JP944584A JPH0686839B2 JP H0686839 B2 JPH0686839 B2 JP H0686839B2 JP 59009445 A JP59009445 A JP 59009445A JP 944584 A JP944584 A JP 944584A JP H0686839 B2 JPH0686839 B2 JP H0686839B2
Authority
JP
Japan
Prior art keywords
learning
value
amount
control
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59009445A
Other languages
Japanese (ja)
Other versions
JPS60153448A (en
Inventor
尚己 富澤
Original Assignee
株式会社ユニシアジェックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニシアジェックス filed Critical 株式会社ユニシアジェックス
Priority to JP59009445A priority Critical patent/JPH0686839B2/en
Priority to DE3590028A priority patent/DE3590028C2/de
Priority to DE19853590028 priority patent/DE3590028T/en
Priority to GB08522612A priority patent/GB2165063B/en
Priority to PCT/JP1985/000024 priority patent/WO1985003329A1/en
Priority to US06/768,480 priority patent/US4655188A/en
Publication of JPS60153448A publication Critical patent/JPS60153448A/en
Publication of JPH0686839B2 publication Critical patent/JPH0686839B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • F02D41/2445Methods of calibrating or learning characterised by the learning conditions characterised by a plurality of learning conditions or ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2416Interpolation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】 〈技術分野〉 本発明は、内燃機関の電子制御燃料噴射制御装置等に適
用される学習機能を備えたフィードバック制御装置に関
する。
Description: TECHNICAL FIELD The present invention relates to a feedback control device having a learning function applied to an electronically controlled fuel injection control device for an internal combustion engine and the like.

〈背景技術〉 電子制御燃料噴射式内燃機関において、噴射量Tiは次式
によって定まる。
<Background Art> In an electronically controlled fuel injection internal combustion engine, the injection amount Ti is determined by the following equation.

Ti=Tp×COEF×α+Ts ここで、Tpは基本噴射量で Tp=K×Q/N である。Ti = Tp × COEF × α + Ts where Tp is the basic injection amount and Tp = K × Q / N.

Kは定数、Qは吸入空気流量、Nは機関回転数である。
COEFは各種補正係数である。αは後述する空燃比のフィ
ードバック制御(λコントロール)のための空燃比フィ
ードバック補正係数である。Tsは電圧補正分で、バッテ
リ電圧の変動による電磁式燃料噴射弁の噴射量変化を補
正するためのものである。
K is a constant, Q is the intake air flow rate, and N is the engine speed.
COEF is various correction factors. α is an air-fuel ratio feedback correction coefficient for air-fuel ratio feedback control (λ control) described later. Ts is a voltage correction amount, and is for correcting a change in the injection amount of the electromagnetic fuel injection valve due to a change in the battery voltage.

λコントロールについては、排気系にO2センサを設けて
実際の空燃比を検出し、空燃比が理論空燃比より濃いか
薄いかをスライスレベルにより判定し、理論空燃比にな
るように燃料の噴射量を制御するわけであり、このた
め、前記空燃比フィードバック補正係数αというものを
定めて、このαを変化させることにより理論空燃比に保
っている。
For λ control, an O 2 sensor is installed in the exhaust system to detect the actual air-fuel ratio, and the slice level is used to determine whether the air-fuel ratio is richer or thinner than the stoichiometric air-fuel ratio, and the fuel is injected to reach the stoichiometric air-fuel ratio. The amount is controlled, and therefore, the air-fuel ratio feedback correction coefficient α is defined and is changed to maintain the stoichiometric air-fuel ratio.

ここで、空燃比フィードバック補正係数αの値は比例積
分(PI)制御により変化させ、安定した制御としてい
る。
Here, the value of the air-fuel ratio feedback correction coefficient α is changed by proportional-plus-integral (PI) control for stable control.

すなわち、O2センサ出力とスライスレベルとを比較し、
スライスレベルよりも高い場合、低い場合に空燃比を急
に濃くしたり、薄くしたりすることなく、空燃比が濃い
(薄い)場合には始めにP分だけ下げて(上げて)、そ
れからI分ずつ徐々に上げていき、空燃比を薄く(濃
く)するように制御する。
That is, comparing the O 2 sensor output with the slice level,
When the air-fuel ratio is higher or lower than the slice level, the air-fuel ratio is not suddenly thickened or thinned, and when the air-fuel ratio is thick (thin), the air-fuel ratio is first lowered by P (raised), and then I The air-fuel ratio is controlled to be lighter (thicker) by gradually increasing it by the minute.

但し、λコントロールを行わない領域ではα=1にクラ
ンプし、各種補正係数COEFの設定により、所望の空燃比
を得る。
However, in a region where λ control is not performed, α = 1 is clamped and various correction factors COEF are set to obtain a desired air-fuel ratio.

ところで、λコントロール領域でα=1のときのベース
空燃比を理論空燃比(λ=1)に設定することができれ
ばフィードバック制御は不要なのであるが実際には構成
部品(たとえばエアフローメータ,燃料噴射弁,プレッ
シャレギュレータ,コントロールユニット)のバラツキ
や経時変化、燃料噴射弁のパルス巾−流量特性の非直線
性、運転条件や環境の変化等の要因で、ベース空燃比の
λ=1からのズレを生じるので、フィードバック制御を
行っている。
By the way, if the base air-fuel ratio when α = 1 in the λ control region can be set to the stoichiometric air-fuel ratio (λ = 1), feedback control is not necessary, but in practice components (such as an air flow meter and a fuel injection valve) are required. , Pressure regulator, control unit), variations over time, non-linearity of fuel injection valve pulse width-flow rate characteristics, changes in operating conditions and environment, and other factors cause the base air-fuel ratio to deviate from λ = 1. Therefore, feedback control is performed.

しかし、ベース空燃比がλ=1からずれていると、運転
領域が大きく変化したときに、ベース空燃比の段差をフ
ィードバック制御によりλ=1に設定するまでに時間が
かかる。そして、このために比例及び積分定数(P/I)
分を大きくするので、オーバーシュートやアンダーシュ
ートを生じ、制御性が悪くなる。つまり、ベース空燃比
がλ=1からずれていると、理論空燃比よりかなりズレ
をもった範囲で空燃比制御がなされるのである。
However, if the base air-fuel ratio deviates from λ = 1, it takes time to set the step difference in the base air-fuel ratio to λ = 1 by feedback control when the operating region changes greatly. And for this purpose proportional and integral constants (P / I)
Since the amount is increased, overshoot or undershoot occurs and controllability deteriorates. That is, when the base air-fuel ratio deviates from λ = 1, the air-fuel ratio control is performed within a range that is considerably different from the theoretical air-fuel ratio.

その結果、三元触媒の転換効率の悪いところで運転がな
されることになり、触媒の貴金属量の増大によるコスト
アップの他、触媒の劣化に伴う転換効率の悪化により触
媒の交換を余儀なくされるという問題点があった。
As a result, the operation will be performed in a place where the conversion efficiency of the three-way catalyst is poor, and the cost will increase due to an increase in the amount of precious metal in the catalyst, and the catalyst will have to be replaced due to the deterioration of the conversion efficiency due to deterioration of the catalyst. There was a problem.

そこで、学習によりベース空燃比をλ=1にすることに
より、過渡時にベース空燃比の段差から生じるλ=1か
らのズレをなくし、かつ、P/I分を小さくすることを可
能にして制御性の向上を図り、これらにより触媒の原価
低減を図るベース空燃比の学習制御装置が考えられた。
Therefore, by setting the base air-fuel ratio to λ = 1 by learning, it is possible to eliminate the deviation from λ = 1 caused by a step in the base air-fuel ratio at the time of transition, and to reduce the P / I component, making controllability easier. A learning control device for the base air-fuel ratio was devised to improve the fuel consumption and reduce the cost of the catalyst.

すなわち、RAM上に機関回転数および負荷等の機関運転
条件に対応した学習補正係数αoのマップを設け、噴射
量Tiを計算する際に次式の如く基本噴射量Tpをαoで補
正する。
That is, a map of the learning correction coefficient αo corresponding to the engine operating conditions such as the engine speed and the load is provided on the RAM, and the basic injection amount Tp is corrected by αo as shown in the following equation when the injection amount Ti is calculated.

Ti=Tp×COEF×α×αo+Ts そして、αoの学習は次の手順で進める。Ti = Tp × COEF × α × αo + Ts Then, the learning of αo proceeds in the following procedure.

i)定常状態においてそのときの機関運転条件とαの制
御中心値αcとを検出する。
i) In the steady state, the engine operating condition at that time and the control center value αc of α are detected.

ii)前記機関運転条件に対応して現在までに学習されて
いるαoを検索する。
ii) Search for αo that has been learned so far in correspondence with the engine operating conditions.

iii)αcとαoよりαo+Δα/Mの値を求め、その結
果(学習値)を新たなαoとして記憶を更新する。
iii) The value of αo + Δα / M is obtained from αc and αo, and the result (learning value) is updated as a new αo and the memory is updated.

なお、Δαは基準値αからの偏差量を示し、Δα=α
c−αであり、基準値αは一般には1.0となる。ま
たMは定数である。
In addition, Δα indicates a deviation amount from the reference value α 1 , and Δα = α
c-α 1 , and the reference value α 1 is generally 1.0. M is a constant.

ところで、このような従来の空燃比フィードバック制御
における学習方式では、偏差量Δαは定常状態でないと
検出の精度が得られないため、定常状態でのみΔαを検
出して学習を行っているが、これでは過渡運転状態時
に、一時的にしか運転しない運転領域では学習が行われ
ない。
By the way, in such a learning method in the conventional air-fuel ratio feedback control, since the deviation amount Δα cannot be detected accurately unless it is in the steady state, the learning is performed by detecting Δα only in the steady state. Then, in the transient operation state, learning is not performed in the operation area in which the operation is performed only temporarily.

このため、例えば第1図に示すようにハッチングを施し
た学習の進行度が大きな領域(以下学習領域という)
と、それ以外の学習の進行度が小さな領域(以下未学習
領域という)とを生じてしまう。そして、この状態で矢
印に示すように運転状態が変化したとすると、系に空燃
比のズレを生じた場合、学習領域と未学習領域とではα
と空燃比λとの対応にズレを生じているため、学習領域
と未学習領域との間を移行する際に空燃比に段差を生
じ、過渡状態における排気エミッションの悪化を招き、
実質的に学習しようとする効果が挙らないという問題を
生じていた。
Therefore, for example, as shown in FIG. 1, a hatched area in which the degree of progress of learning is large (hereinafter referred to as a learning area)
And other regions (hereinafter referred to as unlearned regions) in which the degree of progress of learning is small. Then, if the operating state changes in this state as indicated by the arrow, when an air-fuel ratio shift occurs in the system, the difference between the learning region and the unlearned region is α
Since there is a gap in the correspondence between the air-fuel ratio λ and the air-fuel ratio λ, there is a step in the air-fuel ratio when transitioning between the learned region and the unlearned region, leading to deterioration of exhaust emission in the transient state,
There was a problem that the effect of trying to learn was not practical.

〈発明の目的〉 本発明はこのような従来の問題点に鑑みなされたもの
で、学習領域における学習値により未学習領域での学習
値を推定することにより、推定された学習値を使用して
過渡運転状態での制御精度を向上することができるよう
にした学習機能付フィードバック制御装置を提供するこ
とを目的とする。
<Object of the Invention> The present invention has been made in view of such conventional problems, and by using the estimated learning value by estimating the learning value in the unlearned area from the learning value in the learning area. An object of the present invention is to provide a feedback control device with a learning function capable of improving control accuracy in a transient operation state.

〈発明の構成〉 このため、本発明は第2図に示すように、変動する条件
下で運転される制御対象の制御値を目標値に追随させる
ように、異なる運転領域毎に運転条件に応じて設定され
る固定制御量にフィードバック補正量を加減して制御量
を設定する制御量設定手段と、フィードバック補正量の
制御中心値との偏差量を縮小すべく固定制御量を修正更
新する学習を行い、かつ、該学習値を記憶する学習手段
と、を備えた学習機能付フィードバック制御装置におい
て、前記学習手段による運転領域毎の学習の進行度を判
定する学習進行度判定手段を設けると共に、前記判定手
段からの判定に基づき学習進行度小の運転領域の学習値
を、当該運転領域周辺にあって学習進行度大の運転領域
における複数の学習値から補間演算により設定する補助
学習手段を設けた構成とする。
<Structure of the Invention> Therefore, according to the present invention, as shown in FIG. 2, according to the operating condition for each different operating region, the control value of the controlled object operated under the changing condition follows the target value. Control amount setting means for setting the control amount by adding or subtracting the feedback correction amount to the fixed control amount set by the above, and learning for correcting and updating the fixed control amount to reduce the deviation amount from the control center value of the feedback correction amount. In the feedback control device with a learning function, the learning control means includes a learning means for performing the learning, and storing the learning value. An auxiliary learning system that sets a learning value in a driving region with a small learning progress based on the determination from the determination means by interpolation calculation from a plurality of learning values in a driving region around the driving region and with a large learning progress. It will be configured with learning means.

〈実施例〉 以下に実施例を説明する。<Examples> Examples will be described below.

該3図にハードウェア構成を示す。The hardware configuration is shown in FIG.

1はCPU、2はP−ROM、3は学習制御用のCMOS−RAM、
4はアドレスデコーダである。尚、RAM3に対しては、キ
ースイッチOFF後も記憶内容を保持させるためバックア
ップ電源回路を使用する。
1 is a CPU, 2 is a P-ROM, 3 is a CMOS-RAM for learning control,
Reference numeral 4 is an address decoder. For the RAM3, a backup power supply circuit is used to retain the stored contents even after the key switch is turned off.

燃料噴射量の制御のためのCPU1へのアナログ入力信号と
しては、熱線式エアフローメータ5からの吸入空気流量
信号、スロットルセンサ6からのスロショル開度信号、
水温センサ7からの水温信号、O2センサ8からの排気中
酸素濃度信号、バッテリ9からのバッテリ電圧があり、
これらはアナログ入力インタフェース10及びA/D変換器1
1を介して入力されるようになっている。12はA/D変換タ
イミングコントローラである。
As an analog input signal to the CPU 1 for controlling the fuel injection amount, an intake air flow rate signal from the hot wire air flow meter 5, a throttle opening signal from the throttle sensor 6,
There are a water temperature signal from the water temperature sensor 7, an exhaust oxygen concentration signal from the O 2 sensor 8, and a battery voltage from the battery 9,
These are analog input interface 10 and A / D converter 1
It is supposed to be input via 1. Reference numeral 12 is an A / D conversion timing controller.

デジタル入力信号としては、アイドルスイッチ13、スタ
ートスイッチ14及びニュートラルスイッチ15からのON・
OFF信号があり、これらはデジタル入力インタフェース1
6を介して入力されるようになっている。
Digital input signals include ON / OFF from the idle switch 13, start switch 14 and neutral switch 15.
There are OFF signals, these are digital input interfaces 1
It is designed to be entered via 6.

その他、クランク角センサ17からの例えば180゜毎のリ
ファレンス信号と1゜毎のポジション信号とがワンショ
ットマルチ回路18を介して入力されるようになってい
る。また、車速センサ19からの車速信号が波形整形回路
20を介して入力されるようになっている。
In addition, the reference signal for every 180 ° and the position signal for every 1 ° from the crank angle sensor 17 are input through the one-shot multi-circuit 18. In addition, the vehicle speed signal from the vehicle speed sensor 19 is a waveform shaping circuit.
It is supposed to be input via 20.

CPU1からの出力信号(燃料噴射弁への駆動パルス信号)
は、電流波形制御回路21を介して燃料噴射弁22に送られ
るようになっている。
Output signal from CPU1 (drive pulse signal to fuel injection valve)
Are sent to the fuel injection valve 22 via the current waveform control circuit 21.

ここにおいて、CPU1は第4図に示すフローチャート(燃
料噴射量計算ルーチン)に基づくプログラム(ROM2に記
憶されている)に従って入出力操作並びに演算処理等を
行い、燃料噴射量を制御する。
Here, the CPU 1 controls the fuel injection amount by performing input / output operations and arithmetic processing according to a program (stored in the ROM 2) based on the flowchart (fuel injection amount calculation routine) shown in FIG.

次に第4図のフローチャートについて説明する。Next, the flowchart of FIG. 4 will be described.

S1でエアフローメータ5からの信号によって得られる吸
入空気流量Qとクランク角センサ17からの信号によって
得られる機関回転数Nとから基本噴射量Tp(=K×Q/
N)を演算する。
At S1, the intake air flow rate Q obtained by the signal from the air flow meter 5 and the engine speed N obtained by the signal from the crank angle sensor 17 are used to determine the basic injection amount Tp (= K × Q /
N) is calculated.

S2で各種補正係数COEFを設定する。Set various correction factors COEF in S2.

S3で学習補正係数αoの更新回数をカウントする更新回
数カウンター(後述するS15でカウントアップされ
る。)のカウント値Cを所定値と比較し、所定値以上の
場合は、S4でλコントロールのP/I分を所定量減少させ
た後、S5へ進む。所定値未満の場合は、P/I分を変更す
ることなく、そのままS5へ進む。
In S3, the count value C of the update counter (which counts up in S15 described later) that counts the number of times the learning correction coefficient αo is updated is compared with a predetermined value. After decreasing / I by a predetermined amount, the process proceeds to S5. If it is less than the predetermined value, the process directly proceeds to S5 without changing the P / I amount.

S5でO2センサ8からの出力とスライスレベルとを比較し
て前記P/I分に基づく比例積分制御により空燃比フィー
ドバック補正係数αを設定する。
In S5, the output from the O 2 sensor 8 is compared with the slice level, and the air-fuel ratio feedback correction coefficient α is set by the proportional-plus-integral control based on the P / I component.

S6でバッテリ9からのバッテリ電圧に基づいて電圧補正
分Tsを設定する。
In S6, the voltage correction amount Ts is set based on the battery voltage from the battery 9.

S7で現在の機関回転数N及び基本噴射量(負荷)Tpから
対応する運転領域における学習補正係数αoを後述する
マップより検索する。機関回転数N及び基本噴射量Tpに
対する学習補系係数αoのマップは、書換え可能なRAM3
に記憶されており、学習が開始されていない時点では全
てαo=1となっている。また、このマップはN=8格
子、Tp=4格子程度である。
In S7, the learning correction coefficient αo in the corresponding operating region is retrieved from the map described later based on the current engine speed N and the basic injection amount (load) Tp. The map of the learning auxiliary system coefficient αo for the engine speed N and the basic injection amount Tp is rewritable RAM3.
Are stored in the memory, and αo = 1 at all when learning is not started. Further, this map has N = 8 lattices and Tp = 4 lattices.

S8〜S11は定常状態を検出するために設けられており、S
8で車速センサ19からの信号に基づいて車速の変化を判
定し、S9でニュートラルスイッチ15からの信号に基づい
てギア位置を判定し、S10でスロットルセンサ6からの
信号に基づいてスロットル開度の変化を判定し、S11で
所定時間経過したか否かを判定して所定時間内であれ
ば、S8へ戻る。こうして、所定時間内に車速の変化が所
定値以下で、かつ、ギアが入っており、かつ、スロット
ル開度の変化が所定値以下の場合は、定常状態であると
判定し、S12〜S14での学習補正係数αoの修正を行うよ
うにする。また、所定時間内の任意の時点で車速の変化
が所定値を越えた場合、ニュートラルになった場合、又
はスロットル開度の変化が所定値を越えた場合は、過渡
状態であると判定し、S12〜S14での学習補正係数αoの
修正を行わないようにする。
S8 to S11 are provided to detect the steady state, and S8
In 8 the change in vehicle speed is judged based on the signal from the vehicle speed sensor 19, in S9 the gear position is judged based on the signal from the neutral switch 15, and in S10 the throttle opening degree is judged based on the signal from the throttle sensor 6. The change is determined, and it is determined in S11 whether or not the predetermined time has elapsed. If it is within the predetermined time, the process returns to S8. Thus, if the change in vehicle speed is less than or equal to the predetermined value within the predetermined time, and the gear is engaged, and the change in the throttle opening is less than or equal to the predetermined value, it is determined that the steady state is reached, and in S12 to S14. The learning correction coefficient αo is corrected. Also, if the change in vehicle speed exceeds a predetermined value at any time within a predetermined time, if it becomes neutral, or if the change in throttle opening exceeds a predetermined value, it is determined to be in a transient state, The learning correction coefficient αo is not corrected in S12 to S14.

定常状態と判定された場合のS12における学習補正係数
αoの修正は前述した従来のものと同様に αo←αo+Δα/M なる数式に基づいてなされる。
The correction of the learning correction coefficient αo in S12 when it is determined to be in the steady state is performed based on the mathematical expression αo ← αo + Δα / M as in the conventional case described above.

S13で新たな学習補正係数αoをRAM3のマップの対応す
る運転領域へ書込む。すなわち、RAM3内のデータを更新
する。
In S13, the new learning correction coefficient αo is written in the corresponding operation area of the map of RAM3. That is, the data in RAM3 is updated.

S14では現在の運転領域における学習補正係数αoの更
新回数をカウントする更新回数カウンターのカウント値
Cをカウントアップする。
In S14, the count value C of the update number counter that counts the number of times the learning correction coefficient αo is updated in the current operation region is incremented.

S15では前記現在の運転領域における更新回数カウンタ
ーのカウント値Cを所定値C1と比較し、C≧C1である学
習進行度が大である場合は直ちにS18へ進んで後述する
ように噴射量Tiが演算される。
In S15, the count value C of the update number counter in the current operation area is compared with a predetermined value C 1, and if C ≧ C 1 and the learning progress is large, the process immediately proceeds to S18 and the injection amount is described later. Ti is calculated.

S15の判定でC<C1であり学習進行度が小であると判定
された場合はS16で当該未学習領域の周囲の運転領域の
中、C≧C1となっている学習領域を検索する。
Among the operating region around the unlearned region C <a C 1 learning progress in the judgment of S15 is in S16 if it is determined to be smaller, searches the learning area marked C ≧ C 1 .

例えば第1図において、矢印の方向に運転領域が変化す
る場合、未学習領域aにある時は、マップ上で上下の学
習領域A,Bが検索される(未学習領域bにある場合は学
習領域A,B,Dが検索される)。
For example, in FIG. 1, when the driving region changes in the direction of the arrow, when it is in the unlearned region a, upper and lower learning regions A and B are searched on the map (if it is in the unlearned region b, the learning region is learned. Areas A, B, D are searched).

次いでS17では、前記のようにして検索された学習領域
例えばA,Bにおける学習補正係数αoを読み出し、これ
らαoから未学習領域aにおける学習補正係数αoを比
例補間によって算出する。
Next, at S17, the learning correction coefficient αo in the learning area, for example, A and B, retrieved as described above is read out, and the learning correction coefficient αo in the unlearned area a is calculated from these αo by proportional interpolation.

次いでS18では、噴射量Tiを次式によって演算する。Next, in S18, the injection amount Ti is calculated by the following equation.

Ti=Tp×COEF×α×αo+Ts 以上で噴射量Tiが計算され、この噴射量Tiに相応する駆
動パルス信号が電流波形制御回路21を介して燃料噴射弁
22に所定のタイミングで与えられる。
Ti = Tp × COEF × α × αo + Ts The injection amount Ti is calculated by the above, and a drive pulse signal corresponding to this injection amount Ti is transmitted via the current waveform control circuit 21 to the fuel injection valve.
It is given to 22 at a predetermined timing.

そして、学習領域については、従来同様実際に当該領域
で運転中に学習された学習補正係数αoによって高精度
な噴射量制御が行え、又、未学習領域では周囲の学習領
域の学習補正係数に基づいて補間演算により求められた
信頼性の高い推定学習補正係数を使用して噴射量制御が
行なわれるため、学習領域と未学習領域との間で空燃比
の段差がなくなり、過渡状態における排気ミッションの
悪化を防止できると共に、過渡特性を滑らかなものとす
ることができる。
As for the learning area, the injection amount control can be performed with high accuracy by the learning correction coefficient αo actually learned in the same area as in the conventional case, and in the unlearned area, based on the learning correction coefficient of the surrounding learning areas. Since the injection amount control is performed using the highly reliable estimated learning correction coefficient obtained by the interpolation calculation, the difference in air-fuel ratio between the learned region and the unlearned region is eliminated, and the exhaust mission The deterioration can be prevented and the transient characteristics can be made smooth.

尚、推定学習補正係数をRAMのマップに記憶し、当該学
習領域がC≧C1となって学習領域に変化した際にマップ
に記憶されている推定学習補正係数と最新のαの値に基
づいて学習補正係数αoとして更新するようにしてもよ
い。
It should be noted that the estimated learning correction coefficient is stored in the map of the RAM, and based on the estimated learning correction coefficient and the latest value of α stored in the map when the learning area changes to C ≧ C 1 and changes to the learning area. Alternatively, the learning correction coefficient αo may be updated.

〈発明の効果〉 以上説明したように、本発明によれば、学習進行度小の
領域で学習進行度大の領域の学習値から補間により推定
学習値を求め、該推定学習値に基づいてフィードバック
制御を行う構成としたため、制御対象の過渡運転状態で
も安定した制御特性が得られ、例えば内燃機関の空燃比
フィードバック制御装置に応用した場合、空燃比の段差
をなくして排気ミッションを改善できる等大きな特長が
得られる。
<Effects of the Invention> As described above, according to the present invention, an estimated learning value is obtained by interpolation from a learning value in a region with a small learning progress and a region with a large learning progress, and feedback is performed based on the estimated learning value. Since it is configured to perform control, stable control characteristics can be obtained even in the transient operating state of the controlled object.For example, when applied to an air-fuel ratio feedback control device of an internal combustion engine, it is possible to improve the exhaust mission by eliminating the step of the air-fuel ratio. Features can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は学習領域と未学習領域とを判別するグラフ、第
2図は本発明の構成を示すブロック図、第3図は本発明
の一実施例を示すハードウェア構成図、第4図は同上実
施例の制御過程を示すフローチャートである。 1……CPU、3……学習制御用CMOS−RAM、5……エアフ
ローメータ、8……O2センサ、17……クランク角セン
サ、22……燃料噴射弁
FIG. 1 is a graph for discriminating between a learning area and an unlearned area, FIG. 2 is a block diagram showing a configuration of the present invention, FIG. 3 is a hardware configuration diagram showing an embodiment of the present invention, and FIG. It is a flowchart which shows the control process of an Example same as the above. 1 ...... CPU, 3 ...... learning control for CMOS-RAM, 5 ...... air flow meter, 8 ...... O 2 sensor, 17 ...... crank angle sensor, 22 ...... fuel injection valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】変動する条件下で運転される制御対象の制
御値を目標値に追随させるように、異なる運転領域毎に
運転条件に応じて設定される固定制御量にフィードバッ
ク補正量を加減して制御量を設定する制御量設定手段
と、フィードバック補正量の制御中心値と基準値との偏
差量を縮小すべく固定制御量を修正更新する学習を行
い、かつ、該学習値を記憶する学習手段と、を備えた学
習機能付フィードバック制御装置において、前記学習手
段による運転領域毎の学習の進行度を判定する学習進行
度判定手段を設けると共に、前記判定手段からの判定に
基づき学習進行度小の運転領域の学習値を当該運転領域
周辺にあって学習進行度大の運転領域における複数の学
習値から補間演算により設定する補助学習手段を設けた
ことを特徴とする学習機能付フィードバック制御装置。
1. A feedback control amount is added to or subtracted from a fixed control amount that is set according to operating conditions for different operating regions so that the control value of a controlled object operated under changing conditions follows the target value. Control amount setting means for setting a control amount by means of learning, learning for correcting and updating the fixed control amount to reduce the deviation amount between the control center value of the feedback correction amount and the reference value, and learning for storing the learned value In the feedback control device with a learning function, the learning progress determining means for determining the degree of progress of learning by the learning means is provided, and the learning progress is small based on the determination from the determining means. Learning by providing auxiliary learning means for setting the learning value of the driving region of the above-mentioned learning value by interpolation calculation from a plurality of learning values in the driving region around the driving region and having a high degree of learning progress Noh with feedback control device.
JP59009445A 1984-01-24 1984-01-24 Feedback controller with learning function Expired - Lifetime JPH0686839B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59009445A JPH0686839B2 (en) 1984-01-24 1984-01-24 Feedback controller with learning function
DE3590028A DE3590028C2 (en) 1984-01-24 1985-01-23
DE19853590028 DE3590028T (en) 1984-01-24 1985-01-23 Learning fuel injection control device
GB08522612A GB2165063B (en) 1984-01-24 1985-01-23 Air/fuel mixture ratio learning controller in electronic control fuel injection internal combustion engine
PCT/JP1985/000024 WO1985003329A1 (en) 1984-01-24 1985-01-23 Air/fuel mixture ratio learning controller in electronic control fuel injection internal combustion engine
US06/768,480 US4655188A (en) 1984-01-24 1985-01-23 Apparatus for learning control of air-fuel ratio of air-fuel mixture in electronically controlled fuel injection type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59009445A JPH0686839B2 (en) 1984-01-24 1984-01-24 Feedback controller with learning function

Publications (2)

Publication Number Publication Date
JPS60153448A JPS60153448A (en) 1985-08-12
JPH0686839B2 true JPH0686839B2 (en) 1994-11-02

Family

ID=11720488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59009445A Expired - Lifetime JPH0686839B2 (en) 1984-01-24 1984-01-24 Feedback controller with learning function

Country Status (1)

Country Link
JP (1) JPH0686839B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224956A (en) * 1984-04-24 1985-11-09 Mazda Motor Corp Engine controller
JP2524698B2 (en) * 1985-11-22 1996-08-14 富士重工業株式会社 Learning control method for automobile engine
JP2518219B2 (en) * 1986-07-30 1996-07-24 トヨタ自動車株式会社 Air-fuel ratio control method for internal combustion engine
JPH0751907B2 (en) * 1987-03-11 1995-06-05 株式会社日立製作所 Air-fuel ratio learning controller

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151267A (en) * 1980-04-25 1981-11-24 Nippon Denso Co Ltd Control method for internal combustion engine
JPS58204942A (en) * 1982-05-24 1983-11-29 Nippon Denso Co Ltd Control method of air fuel ratio
JPS5853184A (en) * 1981-09-24 1983-03-29 東芝ライテック株式会社 Implement built-in automatic dimmer

Also Published As

Publication number Publication date
JPS60153448A (en) 1985-08-12

Similar Documents

Publication Publication Date Title
JP2742431B2 (en) Engine air-fuel ratio control device
JPS6346254B2 (en)
JPH0226052B2 (en)
JPH0686839B2 (en) Feedback controller with learning function
JPS60101243A (en) Learning control device of internal-combustion engine
JPS6356414B2 (en)
JPH0529775B2 (en)
JPH051373B2 (en)
JPS6313013B2 (en)
JPH0455235Y2 (en)
JPH0697408B2 (en) Electronic feedback control system for vehicle
JPH0226696B2 (en)
JPS61190142A (en) Learning control device of internal-combustion engine
JPH0243900B2 (en) NAINENKIKANNOGAKUSHUSEIGYOSOCHI
JPH07113841B2 (en) Feedback control device with learning function
JPH0530978B2 (en)
JPH0226695B2 (en)
JPS6045749A (en) Air-fuel ratio learning controller of electronic fuel injection type internal-combustion engine
JPH0228700B2 (en)
JPS6313016B2 (en)
JPH0445659B2 (en)
JPS6356413B2 (en)
JPH03229942A (en) Air-fuel ratio learning control device for electronically controlled fuel injection type internal combustion engine
JPH0740673Y2 (en) Air-fuel ratio learning controller for internal combustion engine
JPH0423099B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term