JPS60153448A - Feedback controller with learning function - Google Patents

Feedback controller with learning function

Info

Publication number
JPS60153448A
JPS60153448A JP944584A JP944584A JPS60153448A JP S60153448 A JPS60153448 A JP S60153448A JP 944584 A JP944584 A JP 944584A JP 944584 A JP944584 A JP 944584A JP S60153448 A JPS60153448 A JP S60153448A
Authority
JP
Japan
Prior art keywords
learning
value
region
fuel ratio
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP944584A
Other languages
Japanese (ja)
Other versions
JPH0686839B2 (en
Inventor
Naomi Tomizawa
富澤 尚己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP59009445A priority Critical patent/JPH0686839B2/en
Priority to US06/768,480 priority patent/US4655188A/en
Priority to DE19853590028 priority patent/DE3590028T/en
Priority to DE3590028A priority patent/DE3590028C2/de
Priority to PCT/JP1985/000024 priority patent/WO1985003329A1/en
Priority to GB08522612A priority patent/GB2165063B/en
Publication of JPS60153448A publication Critical patent/JPS60153448A/en
Publication of JPH0686839B2 publication Critical patent/JPH0686839B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • F02D41/2445Methods of calibrating or learning characterised by the learning conditions characterised by a plurality of learning conditions or ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2416Interpolation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To improve control accuracy in time of transient operation, by judging a progress degree of learning at every operating region and, on the basis of the judgment, interpolatively calculating a learning value at the operating region being small in the learning progress degree from another learning value at an operating region being large in the learning progress degree in and around the operating region. CONSTITUTION:In the case where an operating region is carried in an arrow direction, when it exists in an unlearned region (a), both upper and lower learning regions A and B are searched for, then a learning compensation factor alpha0 at both these regions A and B is read out, calculating the learning compensation factor alpha0 at the unlearned region by means of proportional interpolation, whereby an injection quantity Ti is calculated. A driving pulse signal commensurate to this injection quantity is given to a fuel injection valve 22 at the specified timing via a current waveform control circuit 21, and such an estimated learning compensation factor as being high in reliability is used even for the unlearned region, thus injection quantity control takes place. With this constitution, a step difference in an air-fuel ratio between these learning and unlearning regions is brought to nothing at all, thus exhaust emission in a transient state is prevented from getting worse.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、内燃機関の電子制御燃料噴射制御装置等に適
用される学習機能を備えたフィードバック制御装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a feedback control device with a learning function applied to an electronically controlled fuel injection control device for an internal combustion engine.

(背景技術〉 電子制御燃料噴射式内燃機関において、噴射量Tiは次
式によって定まる。
(Background Art) In an electronically controlled fuel injection type internal combustion engine, the injection amount Ti is determined by the following equation.

Ti =TpXcolEFxα+Ts ここで、Tpは基本噴射量で Tp=KXQ/N である。Ti = TpXcolEFxα+Ts Here, Tp is the basic injection amount Tp=KXQ/N It is.

Kは定数、Qは吸入空気流量、Nは機関回転数である。K is a constant, Q is the intake air flow rate, and N is the engine speed.

C0EFは各種補正係数である。αは後述する空燃比の
フィードバック制御(λコントロール)のための空燃比
フィードバック補正係数である。Tsは電圧補正骨で、
バッテリ電圧の変動による電磁式燃料噴射弁の噴射量変
化を補正するためのものである。
C0EF is various correction coefficients. α is an air-fuel ratio feedback correction coefficient for air-fuel ratio feedback control (λ control) to be described later. Ts is the voltage correction bone;
This is to correct changes in the injection amount of the electromagnetic fuel injection valve due to fluctuations in battery voltage.

λコントロールについては、排気系に02センザを設け
て実際の空燃比を検出し、空燃比が理論空燃比より濃い
か薄いかをスライスレベルにより判定し、理論空燃比に
なるように燃料の噴射量を制御するわけであり、このた
め、前記空燃比フィー t’バンク補補正係数色いうも
のを定めて、このαを変化させることにより理論空燃比
に保っている。
Regarding λ control, an 02 sensor is installed in the exhaust system to detect the actual air-fuel ratio, determine whether the air-fuel ratio is richer or leaner than the stoichiometric air-fuel ratio based on the slice level, and adjust the amount of fuel injected to achieve the stoichiometric air-fuel ratio. Therefore, the air-fuel ratio is maintained at the stoichiometric air-fuel ratio by determining the above-mentioned air-fuel ratio fee t' bank supplementary correction coefficient and changing this α.

ここで、空燃比フィードバック補正係数αの値は比例積
分(PI)制御により変化させ、安定した制御としてい
る。
Here, the value of the air-fuel ratio feedback correction coefficient α is changed by proportional-integral (PI) control to achieve stable control.

ずなわち、02センサ出力とスライスレベルとを比較し
、スライスレベルよりも高い場合、低い場合に空燃比を
急に濃くしたり、薄くしたりすることなく、空燃比が濃
い(薄い)場合には始めにP分だけ下げて(上げて)、
それから1分ずつ徐々に上げていき、空燃比を薄く (
濃く)するように制御する。
In other words, by comparing the 02 sensor output and the slice level, if the air-fuel ratio is higher or lower than the slice level, the air-fuel ratio will not be suddenly richer or leaner, and if the air-fuel ratio is richer (leaner). First lower (raise) by P,
Then, gradually increase the air-fuel ratio in 1-minute increments to make the air-fuel ratio leaner (
darken).

但し、λコントロールを行わない領域でばα−Iにクラ
ンプし、各種補正係数C0FFの設定により、所望の空
燃比を得る。
However, in a region where λ control is not performed, the air-fuel ratio is clamped to α-I, and a desired air-fuel ratio is obtained by setting various correction coefficients COFF.

ところで、λコントロール領域でα−1のときのベース
空燃比を理論空燃比(λ−1)に設定することができれ
ばフィートバンク制御は不要なのであるが実際には構成
部品(たとえばエアフローメーク、燃料噴射弁、プレッ
シャレギュレータ。
By the way, if the base air-fuel ratio at α-1 in the λ control region could be set to the stoichiometric air-fuel ratio (λ-1), foot bank control would not be necessary. valve, pressure regulator.

コントロールユニット)のバラツキや経時変化、燃料噴
射弁のパルス中−流量特性の非直線性、運転条件や環境
の変化等の要因で、ベース空燃比のλ−1からのズレを
生じるので、フィードバック制御を行っている。
Since the base air-fuel ratio deviates from λ-1 due to factors such as variations in the control unit (control unit), changes over time, non-linearity of the pulse-flow characteristics of the fuel injector, and changes in operating conditions and environment, feedback control is performed. It is carried out.

しかし、ベース空燃比がλ−1からずれていると、運転
領域が大きく変化したときに、ベース空燃比の段差をフ
ィードバック制御によりλ−1に設定するまでに時間が
かかる。そして、このために比例及び積分定数(P/T
)分を大きくするので、オーバーシュートやアンダーシ
ュートを生じ、制御性が悪くなる。つまり、ベース空燃
比がλ−1からずれていると、理論空燃比よりかなりズ
レをもった範囲で空燃比制御がなされるのである。
However, if the base air-fuel ratio deviates from λ-1, it takes time to set the step in the base air-fuel ratio to λ-1 by feedback control when the operating range changes significantly. And for this we need the constant of proportionality and integration (P/T
) is increased, resulting in overshoot or undershoot, resulting in poor controllability. In other words, if the base air-fuel ratio deviates from λ-1, the air-fuel ratio will be controlled within a range that deviates considerably from the stoichiometric air-fuel ratio.

その結果、三元触媒の転換効率の悪いところで運転がな
されることになり、触媒の貴金属量の増大によるコスト
アップの他、触媒の劣化に伴う転換効率の悪化により触
媒の交換を余儀なくされるという問題点があった。
As a result, the three-way catalyst has to be operated at a point where its conversion efficiency is poor, which not only increases costs due to an increase in the amount of precious metals in the catalyst, but also necessitates replacement of the catalyst due to deterioration in conversion efficiency due to deterioration of the catalyst. There was a problem.

そこで、学習によりベース空燃比をλ−1にすることに
より、過渡時にベース空燃比の段差から生じるλ=1か
らのズレをなくし、かつ、P/I分を小さくすることを
可能にして制御性の向上を図り、これらにより触媒の原
価低減を図るベース空燃比の学習制御装置が考えられた
Therefore, by setting the base air-fuel ratio to λ-1 through learning, it is possible to eliminate the deviation from λ = 1 caused by the step in the base air-fuel ratio during transients, and to reduce the P/I component, improving controllability. A learning control device for the base air-fuel ratio was devised to improve the performance of the catalyst and thereby reduce the cost of the catalyst.

すなわち、RAM上に機関回転数および負荷等の機関運
転条件に対応した学習補正係数α0のマツプを設け、噴
射量Ttを計算する際に次式の如く基本噴射量’rpを
α0で補正する。
That is, a map of learning correction coefficients α0 corresponding to engine operating conditions such as engine speed and load is provided in the RAM, and when calculating the injection amount Tt, the basic injection amount 'rp is corrected by α0 as shown in the following equation.

T i =’pp xCOEFXαxαo +Tsそし
て、α0の学習は次の手順で進める。
T i ='pp xCOEFXαxαo +Ts Then, the learning of α0 proceeds in the following steps.

i)定常状態においてそのときの機関運転条件とαの制
御中心値αCとを検出する。
i) In a steady state, detect the engine operating conditions and the control center value αC of α.

ii )前記機関運転条件に対応して現在までに学習さ
れているα0を検索する。
ii) Search for α0 that has been learned up to now corresponding to the engine operating conditions.

■)αCとα0よりα0+Δα/Mの値をめ、その結果
(学習値)を新たなαOとして記憶を更新する。
(2) Find the value α0+Δα/M from αC and α0, and update the memory with the result (learning value) as a new αO.

なお、Δαは基準値α1からの偏差量を示し、Δα−α
C−α1であり、基準値α1は一般には1.0となる。
Note that Δα indicates the amount of deviation from the reference value α1, and Δα−α
C-α1, and the reference value α1 is generally 1.0.

またMは定数である。Further, M is a constant.

ところで、このような従来の空燃比フィードバック制御
における学習方式では、偏差量Δαは定常状態でないと
検出の精度が得られないため、定常状態でのみΔαを検
出して学習を行っているが、これでは過渡運転状態時に
、一時的にしか運転しない運転領域では学習が行われな
い。
By the way, in such a conventional learning method for air-fuel ratio feedback control, the deviation amount Δα cannot be detected accurately unless it is in a steady state, so learning is performed by detecting Δα only in a steady state. In this case, during a transient operating state, learning is not performed in an operating range where the vehicle operates only temporarily.

このため、例えば第1図に示すようにハンチングを施し
た学習の進行度が大きな領域(以下学習領域という)と
、それ以外の学習の進行度が小さな領域(以下未学習領
域という)とを生じてしまう。そして、この状態で矢印
に示すように運転状態が変化したとすると、系に空燃比
のズレを生じた場合、学習領域と未学習領域とでばαと
空燃比λとの対応にズレを生しているため、学習領域と
未学習領域との間を移行する際に空燃比に段差を生じ、
過渡状態における排気エミッションの悪化を招き、実質
的に学習しようとする効果が挙らないという問題を生じ
ていた。
For this reason, as shown in Figure 1, for example, there are hunting areas where the learning progress is large (hereinafter referred to as learning areas) and other areas where learning progress is small (hereinafter referred to as unlearning areas). I end up. If the operating condition changes as shown by the arrow in this state, if a deviation occurs in the air-fuel ratio in the system, a deviation will occur in the correspondence between α and the air-fuel ratio λ between the learning region and the unlearning region. As a result, there is a difference in air-fuel ratio when transitioning between the learned area and the unlearned area,
This causes a problem in that exhaust emissions deteriorate in a transient state, and the learning effect is virtually ineffective.

〈発明の目的〉 本発明はこのような従来の問題点に鑑みなされたもので
、学習領域における学習値により未学習領域での学習値
を推定することにより、推定された学習値を使用して過
渡運転状態での制御精度を向上することができるように
した学習機能付フィードハック制御装置を提供すること
を目的とする。
<Purpose of the Invention> The present invention was made in view of such conventional problems, and it is possible to estimate the learned value in the unlearned area using the learned value in the learning area, and then use the estimated learning value to An object of the present invention is to provide a feed hack control device with a learning function that can improve control accuracy in transient operating conditions.

〈発明の構成〉 このため、本発明は第2図に示すように、変動する条件
下で運転される制御対象の制御値を目標値に追随させる
ように、異なる運転領域毎に運転条件に応じて設定され
る固定制御量にフィードバック補正量を加減して制御量
を設定する制御量設定手段と、フィードバック補正量の
制御中心値との偏差量を縮小すべく固定制御量を修正更
新する学習を行い、かつ、該学習値を記憶する学習手段
と、を備えた学習機能付フィードハック制御装置におい
て、前記学習手段による運転領域毎の学習の進行度を判
定する学習進行度判定手段を設けると共に、前記判定手
段からの判定に基づき学習進行変車の運転領域の学習値
を、当該運転領域周辺にあって学習進行慶大の運転領域
における学習値から補間演算により設定する補助学習手
段を設けた構成とする。
<Structure of the Invention> For this reason, as shown in FIG. 2, the present invention provides a control system that adjusts the control value of a controlled object operated under changing conditions according to the operating conditions in each different operating region so that the control value of the controlled object follows the target value. A control amount setting means for setting a control amount by adding or subtracting a feedback correction amount to a fixed control amount set by and a learning means for storing the learned value, further comprising a learning progress determining means for determining the degree of learning progress for each driving region by the learning means, and further comprising: A configuration including an auxiliary learning means for setting a learning value for a driving area of the learning progress variable vehicle based on the judgment from the judging means from a learning value in a learning progressing Keio University driving area around the said driving area by interpolation calculation. shall be.

〈実施例〉 以下に実施例を説明する。<Example> Examples will be described below.

該3図にバー1ウエア構成を示す。Figure 3 shows the bar 1 wear configuration.

1はCPU、2はP−ROM、3は学習制御用のCMO
3−RAM、4はアドレスデコーダである。尚、RAM
3に対しては、キースイッチOFF後も記憶内容を保持
させるためバックアップ電源回路を使用する。
1 is CPU, 2 is P-ROM, 3 is CMO for learning control
3-RAM, and 4 an address decoder. Furthermore, RAM
For No. 3, a backup power supply circuit is used to retain the memory contents even after the key switch is turned off.

燃料噴射量の制御のためのCPUIへのアナログ入力信
号としては、熱線式エアフローメータ5からの吸入空気
流量信号、スロットルセンサ6からのスロットル開度信
号、水温センサ7からの水温信号、02センサ8からの
排気中酸素濃度信号、バッテリ9からのバッテリ電圧が
あり、これらはアナログ入力インタフェース10及びA
/D変換器11を介して入力されるようになっている。
Analog input signals to the CPUI for controlling the fuel injection amount include an intake air flow rate signal from the hot wire airflow meter 5, a throttle opening signal from the throttle sensor 6, a water temperature signal from the water temperature sensor 7, and the 02 sensor 8. There is an exhaust oxygen concentration signal from A and a battery voltage from battery 9, which are connected to analog input interface 10 and A
The signal is input via a /D converter 11.

12はA/D変換タイミングコントローラである。12 is an A/D conversion timing controller.

デジタル入力信号としては、アイドルスイッチ13、ス
タートスイッチ14及びニュートラルスイッチ15から
のON・OFF信号があり、これらはデジタル入力イン
タフェース16を介して入力されるようになっている。
Digital input signals include ON/OFF signals from the idle switch 13, start switch 14, and neutral switch 15, and these are inputted via the digital input interface 16.

その他、クランク角センサ17からの例えば180゜毎
のリファレンス信号と1°毎のポジション信号とがワン
ショットマルチ回路18を介して入力されるようになっ
ている。また、車速センサ19からの車速信号が波形整
形回路20を介して入力されるようになっている。
In addition, a reference signal every 180 degrees and a position signal every 1 degree, for example, from the crank angle sensor 17 are inputted via a one-shot multi-circuit 18. Further, a vehicle speed signal from a vehicle speed sensor 19 is inputted via a waveform shaping circuit 20.

CPUIからの出力信号(燃料噴射弁への駆動パルス信
号)は、電流波形制御回路21を介して燃料噴射弁22
に送られるようになっている。
The output signal from the CPUI (drive pulse signal to the fuel injection valve) is sent to the fuel injection valve 22 via the current waveform control circuit 21.
It is now sent to

ここにおいて、CPUIは第4図に示すフローチャート
(燃料噴射量計算ルーチン)に基づくプログラム(RO
M2に記憶されている)に従って入出力操作並びに演算
処理等を行い、燃料噴射量を制御する。
Here, the CPU is running a program (RO
(stored in M2), performs input/output operations, arithmetic processing, etc., and controls the fuel injection amount.

次に第4図のフローチャー1−について説明する。Next, flowchart 1- in FIG. 4 will be explained.

Slでエアフローメータ5からの信号によって得られる
吸入空気流量Qとクランク角センサ17からの信号によ
って得られる機関回転数Nとから基本噴射量Tp (=
KxQ/N)を演算する。
Basic injection amount Tp (=
KxQ/N) is calculated.

S2で各種補正係数C0EFを設定する。In S2, various correction coefficients C0EF are set.

S3で学習補正係数αOの更新回数をカウントする更新
回数カウンター(後述する315でカランl−アップさ
れる。)のカラン1−値Cを所定値と比較し、所定値以
上の場合は、S4でλコントロールのP/I分を所定量
減少させた後、S5へ進む。
In S3, the update count C of the update count counter (increased in step 315, which will be described later) that counts the number of updates of the learning correction coefficient αO is compared with a predetermined value. After reducing the P/I portion of the λ control by a predetermined amount, the process proceeds to S5.

所定値未満の場合は、P/r分を変更することなく、そ
のままS5へ進む。
If it is less than the predetermined value, the process directly proceeds to S5 without changing P/r.

S5で02センサ8からの出力とスライスレベルとを比
較して前記P/I分に基づく比例積分制御により空燃比
フィードハック補正係数αを設定する。
In S5, the output from the 02 sensor 8 is compared with the slice level, and the air-fuel ratio feedhack correction coefficient α is set by proportional-integral control based on the P/I component.

S6でバッテリ9からのバッテリ電圧に基づいて電圧補
正分子sを設定する。
In S6, a voltage correction numerator s is set based on the battery voltage from the battery 9.

S7で現在の機関回転数N及び基本噴射量(負荷)Tp
から対応する運転領域における学習補正係数α0を後述
するマツプより検索する。機関回転数N及び基本噴射量
Tpに対する学習補正係数α0のマツプは、書換え可能
なRAM3に記憶されており、学習が開始されていない
時点では全てαo=lとなっている。また、このマツプ
はN=8格子、Tp=4格子程度である。
In S7, the current engine speed N and basic injection amount (load) Tp
The learning correction coefficient α0 in the corresponding driving range is searched from a map described later. A map of the learning correction coefficient α0 with respect to the engine speed N and the basic injection amount Tp is stored in the rewritable RAM 3, and all the maps are αo=l when learning has not started. Further, this map has approximately N=8 lattices and Tp=4 lattices.

88〜Sllは定常状態を検出するために設けられてお
り、S8で車速センサ19からの信号に基づいて車速の
変化を判定し、S9でニュートラルスイッチ15からの
信号に基づいてギア位置を判定し、SIOでスロ7 ト
ルセンサ6からの信号に基づいてスロットル開度の変化
を判定し、Sllで所定時間経過したか否かを判定して
所定時間内であれば、S8へ戻る。こうして、所定時間
内に車速の変化が所定値以下で、かつ、ギアが入ってお
り、がっ、スロットル開度の変化が所定値以下の場合は
、定常状態であると判定し、312〜314での学習補
正係数α0の修正を行うようにする。また、所定時間内
の任意の時点で車速の変化が所定値を越えた場合、ニュ
ートラルになった場合、又はスロソI・ル開度の変化が
所定値を越えた場合は、過渡状態であると判定し、31
2〜S14での学習補正係数α0の修正を行わないよう
にする。
88 to Sll are provided to detect a steady state, and in S8 a change in vehicle speed is determined based on the signal from the vehicle speed sensor 19, and in S9 the gear position is determined based on the signal from the neutral switch 15. , SIO determines the change in throttle opening based on the signal from the throttle sensor 6, and SII determines whether or not a predetermined time has elapsed. If it is within the predetermined time, the process returns to S8. In this way, if the change in vehicle speed is less than a predetermined value within a predetermined time, the gear is engaged, and the change in throttle opening is less than a predetermined value, it is determined that the steady state is present, and 312 to 314 The learning correction coefficient α0 is corrected. Additionally, if the change in vehicle speed exceeds a predetermined value at any point within a predetermined time, if the vehicle becomes neutral, or if the change in throttle opening exceeds a predetermined value, it is considered to be a transient state. Judgment, 31
The learning correction coefficient α0 is not modified in steps 2 to S14.

定常状態と判定された場合の312における学習補正係
数α0の修正は前述した従来のものと同様に α0←αO+Δα/M なる数式に基づいてなされる。
When the steady state is determined, the correction of the learning correction coefficient α0 in step 312 is performed based on the formula α0←αO+Δα/M, similar to the conventional one described above.

S13で新たな学習補正係数α0をRAM3のマツプの
対応する運転領域へ書込む。すなわち、RAMa内のデ
ータを更新する。
In S13, a new learning correction coefficient α0 is written into the corresponding operating region of the map in RAM3. That is, the data in RAMa is updated.

S14では現在の運転領域における学習補正係数α0の
更新回数をカウントする更新回数カウンターのカウント
値Cをカウントアツプする。
In S14, a count value C of an update number counter that counts the number of updates of the learning correction coefficient α0 in the current driving range is incremented.

S15では前記現在の運転領域における更新回数カウン
ターのカウント値Cを所定値C+と比較し、C2O4で
ある学習進行度が大である場合は直ちに818へ進んで
後述するように噴射量Tiが演算される。
In S15, the count value C of the update counter in the current operating region is compared with a predetermined value C+, and if the learning progress level, which is C2O4, is large, the process immediately proceeds to 818, where the injection amount Ti is calculated as described later. Ru.

S15の判定でC<C+であり学習進行度が小であると
判定された場合は316で当該未学習領域の周囲の運転
領域の中、C≧C+となっている学習領域を検索する。
If it is determined in step S15 that C<C+ and the learning progress is small, then in step 316 a search is made for a learning area where C≧C+ among the driving areas surrounding the unlearned area.

例えば第1図において、矢印の方向に運転領域が変化す
る場合、未学習領域aにある時は、マツプ上で上下の学
習領域A、Bが検索される(未学習領域すにある場合は
学習領域A、B、Dが検索される)。
For example, in Fig. 1, when the driving area changes in the direction of the arrow, if it is in unlearned area a, the upper and lower learning areas A and B are searched on the map (if it is in unlearned area, learning areas A and B are searched). (areas A, B, D are searched).

次いでS17では、前記のようにして検索された学習領
域例えばA、Bにおける学習補正係数αOを読み出し、
これらα0から未学習領域aにおける学習補正係数α0
を比例補間によって算出する。
Next, in S17, the learning correction coefficient αO in the learning areas searched as described above, for example, A and B, is read out.
Learning correction coefficient α0 in unlearned area a from these α0
is calculated by proportional interpolation.

次いで318では、噴射量Ttを次式によって演算する
Next, in 318, the injection amount Tt is calculated using the following equation.

T i = T p X COE F x ex x 
cx o + Ts以上で噴射量Tiが計算され、この
噴射量Tiに相応する駆動パルス信号が電流波形制御回
路21を介して燃料噴射弁22に所定のタイミングで与
えられる。
T i = T p X COE F x ex x
An injection amount Ti is calculated at or above cx o + Ts, and a drive pulse signal corresponding to this injection amount Ti is given to the fuel injection valve 22 via the current waveform control circuit 21 at a predetermined timing.

そして、学習領域については、従来同様実際に当該領域
で運転中に学習された学習補正係数α0によって高精度
な噴射量制御が行え、又、未学習領域では周囲の学習領
域の学習補正係数に基づいて補間演算によりめられた信
頼性の高い推定学習補正係数を使用して噴射量制御が行
なわれるため、学習領域と未学習領域との間で空燃比の
段差がなくなり、過渡状態における排気エミッションの
悪化を防止できると共に、過渡特性を滑らかなものとす
ることができる。
As for the learning area, highly accurate injection amount control can be performed using the learning correction coefficient α0 that is actually learned during operation in the relevant area, as in the past, and in the unlearning area, it is based on the learning correction coefficients of the surrounding learning areas. Since injection amount control is performed using a highly reliable estimated learning correction coefficient determined by interpolation calculation, there is no difference in air-fuel ratio between the learning region and the unlearning region, and the exhaust emissions are reduced in transient conditions. Deterioration can be prevented and transient characteristics can be made smooth.

尚、推定学習補正係数をRAMのマツプに記憶し、当該
学習領域がC≧C+となって学習領域に変化した際にマ
ツプに記憶されている推定学習補正係数と最新のαの値
に基づいて学習補正係数α0として更新するようにして
もよい。
The estimated learning correction coefficient is stored in a map of RAM, and when the learning area becomes C≧C+ and changes to a learning area, the estimated learning correction coefficient stored in the map and the latest value of α are used. It may be updated as the learning correction coefficient α0.

〈発明の効果〉 以上説明したように、本発明によれば、学習進行変車の
領域で学習進行慶大の領域の学習値から補間により推定
学習値をめ、該推定学習値に基づいてフィートハック制
御を行う構成としたため、制御対象の過渡運転状態でも
安定した制御特性が得られ、例えば内燃機関の空燃比フ
ィードバンク制御装置に応用した場合、空燃比の段差を
なくして排気エミッションを改善できる等大きな特長が
得られる。
<Effects of the Invention> As explained above, according to the present invention, an estimated learning value is determined by interpolation from the learning value of the learning progress area in the learning progress variable area, and the feet are calculated based on the estimated learning value. Because it is configured to perform hack control, stable control characteristics can be obtained even in transient operating conditions of the controlled object. For example, when applied to an air-fuel ratio feedbank control device for an internal combustion engine, it can eliminate steps in the air-fuel ratio and improve exhaust emissions. You can get great features such as

【図面の簡単な説明】[Brief explanation of drawings]

第1図は学習領域と未学習領域とを判別するグラフ、第
2図は本発明の構成を示すブロック図、fA3図は本発
明の一実施例を示すハードウェア構成図、第4図は同」
二実雄側の制御過程を示すフローヂャートである。 1・・・CPtJ 3・・・学習制御用CMO3−RA
M 5・・・エアフローメータ 8・・・02センザ1
7・・・クランク角センザ 22・・・燃料噴射弁特許
出願人 日本電子機器株式会社 代理人 弁理士 笹 島 冨二雄 (I5) 第1図 第2図
Fig. 1 is a graph for distinguishing between a learned area and an unlearned area, Fig. 2 is a block diagram showing the configuration of the present invention, Fig. fA3 is a hardware configuration diagram showing an embodiment of the present invention, and Fig. 4 is the same. ”
This is a flowchart showing the control process on the two side. 1...CPtJ 3...CMO3-RA for learning control
M5...Air flow meter 8...02 sensor 1
7...Crank angle sensor 22...Fuel injection valve Patent applicant Japan Electronics Co., Ltd. Agent Patent attorney Fujio Sasashima (I5) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 変動する条件下で運転される制御対象の制御値を目標値
に追随させるように、異なる運転領域毎に運転条件に応
じて設定される固定制御量にフィードバック補正量を加
減して制御量を設定する制御量設定手段と、フィードバ
ンク補正量の制御中心値と基準値との偏差量を縮小すべ
く固定制御量を修正更新する学習を行い、かつ、該学習
値を記憶する学習手段と、を備えた学習機能付フィード
バック制御装置において、前記学習手段による運転領域
毎の学習の進行度を判定する学習進行度判定手段を設け
ると共に、前記判定手段からの判定に基づき学習進行変
車の運転領域の学習値を当該運転領域周辺にあって学習
進行慶大の運転領域における学習値から補間演算により
設定する補助学習手段を設けたことを特徴とする学習機
能付フィードバック制御装置。
The control amount is set by adding or subtracting the feedback correction amount to the fixed control amount that is set according to the operating conditions for each different operating region so that the control value of the controlled object that is operated under fluctuating conditions follows the target value. and a learning means for performing learning to correct and update the fixed control amount in order to reduce the deviation amount between the control center value of the feedbank correction amount and the reference value, and storing the learned value. In the feedback control device with a learning function, there is provided a learning progress determining means for determining the degree of learning progress for each driving region by the learning means, and a learning progress determining means for determining the learning progress for each driving region of the learning progress variable vehicle based on the determination from the determining means. A feedback control device with a learning function, characterized in that it is provided with auxiliary learning means for setting a learning value by interpolation calculation from a learning value in a driving area around the driving area where the learning progresses at Keio University.
JP59009445A 1984-01-24 1984-01-24 Feedback controller with learning function Expired - Lifetime JPH0686839B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59009445A JPH0686839B2 (en) 1984-01-24 1984-01-24 Feedback controller with learning function
US06/768,480 US4655188A (en) 1984-01-24 1985-01-23 Apparatus for learning control of air-fuel ratio of air-fuel mixture in electronically controlled fuel injection type internal combustion engine
DE19853590028 DE3590028T (en) 1984-01-24 1985-01-23 Learning fuel injection control device
DE3590028A DE3590028C2 (en) 1984-01-24 1985-01-23
PCT/JP1985/000024 WO1985003329A1 (en) 1984-01-24 1985-01-23 Air/fuel mixture ratio learning controller in electronic control fuel injection internal combustion engine
GB08522612A GB2165063B (en) 1984-01-24 1985-01-23 Air/fuel mixture ratio learning controller in electronic control fuel injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59009445A JPH0686839B2 (en) 1984-01-24 1984-01-24 Feedback controller with learning function

Publications (2)

Publication Number Publication Date
JPS60153448A true JPS60153448A (en) 1985-08-12
JPH0686839B2 JPH0686839B2 (en) 1994-11-02

Family

ID=11720488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59009445A Expired - Lifetime JPH0686839B2 (en) 1984-01-24 1984-01-24 Feedback controller with learning function

Country Status (1)

Country Link
JP (1) JPH0686839B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224956A (en) * 1984-04-24 1985-11-09 Mazda Motor Corp Engine controller
JPS62121846A (en) * 1985-11-22 1987-06-03 Fuji Heavy Ind Ltd Electronic control system for car engine
JPS6336041A (en) * 1986-07-30 1988-02-16 Toyota Motor Corp Air-fuel ratio controlling method for internal combustion engine
JPS63223348A (en) * 1987-03-11 1988-09-16 Hitachi Ltd Air-fuel ratio study control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151267A (en) * 1980-04-25 1981-11-24 Nippon Denso Co Ltd Control method for internal combustion engine
JPS5853184A (en) * 1981-09-24 1983-03-29 東芝ライテック株式会社 Implement built-in automatic dimmer
JPS58204942A (en) * 1982-05-24 1983-11-29 Nippon Denso Co Ltd Control method of air fuel ratio

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151267A (en) * 1980-04-25 1981-11-24 Nippon Denso Co Ltd Control method for internal combustion engine
JPS5853184A (en) * 1981-09-24 1983-03-29 東芝ライテック株式会社 Implement built-in automatic dimmer
JPS58204942A (en) * 1982-05-24 1983-11-29 Nippon Denso Co Ltd Control method of air fuel ratio

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224956A (en) * 1984-04-24 1985-11-09 Mazda Motor Corp Engine controller
JPH0543869B2 (en) * 1984-04-24 1993-07-02 Mazda Motor
JPS62121846A (en) * 1985-11-22 1987-06-03 Fuji Heavy Ind Ltd Electronic control system for car engine
JP2524698B2 (en) * 1985-11-22 1996-08-14 富士重工業株式会社 Learning control method for automobile engine
JPS6336041A (en) * 1986-07-30 1988-02-16 Toyota Motor Corp Air-fuel ratio controlling method for internal combustion engine
JPS63223348A (en) * 1987-03-11 1988-09-16 Hitachi Ltd Air-fuel ratio study control device

Also Published As

Publication number Publication date
JPH0686839B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
JPS6346254B2 (en)
JPH0226052B2 (en)
JPS60153448A (en) Feedback controller with learning function
JPS6093150A (en) Learnig control device for air-fuel ratio in electronically controlled fuel injection type internal- combustion engine
JPS6053647A (en) Learning control system at starting of electronic control fuel injection system internal-combustion engine
JPS6313013B2 (en)
JPS6054005A (en) On-vehicle electronic feedback controller
JPS6356414B2 (en)
JPH0437260B2 (en)
JPS60153446A (en) Learning controller for air-fuel ratio in electronically- controlled fuel injection type internal-combustion engine
JPS60153504A (en) Feedback control device having learning function
JPS61190142A (en) Learning control device of internal-combustion engine
JPS6045749A (en) Air-fuel ratio learning controller of electronic fuel injection type internal-combustion engine
JPH0243900B2 (en) NAINENKIKANNOGAKUSHUSEIGYOSOCHI
JPH03229942A (en) Air-fuel ratio learning control device for electronically controlled fuel injection type internal combustion engine
JPH0228700B2 (en)
JPH0226695B2 (en)
JPH0455235Y2 (en)
JPH0530978B2 (en)
JPS6313016B2 (en)
JPS6356413B2 (en)
JPH0416625B2 (en)
JPS6365155A (en) Fuel leak self-diagnostic device for electronic control fuel injection type internal combustion engine
JPS62218636A (en) Air-fuel ratio learning control device for internal combustion engine
JPS6270641A (en) Learning control device for internal combustion engine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term