JPS6093150A - Learnig control device for air-fuel ratio in electronically controlled fuel injection type internal- combustion engine - Google Patents

Learnig control device for air-fuel ratio in electronically controlled fuel injection type internal- combustion engine

Info

Publication number
JPS6093150A
JPS6093150A JP20112483A JP20112483A JPS6093150A JP S6093150 A JPS6093150 A JP S6093150A JP 20112483 A JP20112483 A JP 20112483A JP 20112483 A JP20112483 A JP 20112483A JP S6093150 A JPS6093150 A JP S6093150A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
learning
correction coefficient
injection amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20112483A
Other languages
Japanese (ja)
Other versions
JPH0529775B2 (en
Inventor
Naomi Tomizawa
富澤 尚己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP20112483A priority Critical patent/JPS6093150A/en
Publication of JPS6093150A publication Critical patent/JPS6093150A/en
Publication of JPH0529775B2 publication Critical patent/JPH0529775B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1483Proportional component

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To decrease the PI constant to aim at greately enhancing the controllability of the air-fuel ratio of an engine in a learning control device for the air-fuel ratio of the engine, by utilizing a learning compensating coefficient for the feed-back control of the air-fuel ratio to control the base air-fuel ratio so that the latter is made approach the stocichometic air-fuel ratio. CONSTITUTION:A learning control device for the air-fuel ratio of an engine comprises a basic fuel injection amount computing means for computing a basic fuel injection amount in accordance with a constant, the amount of intake-air and an engine rotational speed, an air-fuel ratio feed-back compensating coefficient setting means for comparing an actual air-fuel ratio detected in accordance with a signal from an O2 sensor with the stoichometric air-fuel ratio so that an air-fuel ratio feed back compensating coefficient is set by means of PI control, and a learning compensating coefficient searching means for searching learning compenesating coefficients stored in a map on an RAM, corresponding to the engine running condition. Further, there are provided a learning compensating coefficient renewal means, a fuel injection amount computing means, a drive pulse signal delivering means, a learning log discriminating means and a leaning inclination discriminating means, and thus the learning control device is constituted.

Description

【発明の詳細な説明】 く技術分野〉 本発明は電子制御燃料噴射式内燃機関における空燃比の
学習制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to an air-fuel ratio learning control device in an electronically controlled fuel injection internal combustion engine.

〈背景技術〉 電子制御燃料噴射式内燃機関において、噴射量Ti は
次式によって定められる。
<Background Art> In an electronically controlled fuel injection type internal combustion engine, the injection amount Ti is determined by the following equation.

T i = T p x C0EF xα十’rsここ
で、Tpは基本噴射量で、TP=K x Q/Nである
。Kは定数、Qは吸入空気流量、Nはエンジン回転数で
ある。C0BFは各種補正係数である。
T i = T p x C0EF x α'rs where Tp is the basic injection amount and TP=K x Q/N. K is a constant, Q is the intake air flow rate, and N is the engine speed. C0BF is various correction coefficients.

αは後述する空燃比のフィードバック制御(λコントロ
ール)のための空燃比フィードバック補正係数である。
α is an air-fuel ratio feedback correction coefficient for air-fuel ratio feedback control (λ control) to be described later.

Tsは電圧補正弁で、ノ(ツテリ電圧の変動による電磁
式噴射弁の噴射量変化を補正するためのものである。
Ts is a voltage correction valve, which is used to correct changes in injection amount of the electromagnetic injection valve due to fluctuations in voltage.

空燃比のフィードバック制御については、排気系に02
 センサを取付けて実際の空燃比を検出し、空燃比が理
論空燃比より濃いか薄いかをスライスレベルにより判定
し、理論空燃比によるように燃料の噴射量を制御するわ
けであり、このため、前記の空燃比フィードバック補正
係数αというものを定めて、このαを変化させることに
より理論空燃比に保っている。
For air-fuel ratio feedback control, 02
A sensor is installed to detect the actual air-fuel ratio, and the slice level determines whether the air-fuel ratio is richer or leaner than the stoichiometric air-fuel ratio, and the fuel injection amount is controlled according to the stoichiometric air-fuel ratio. The above-mentioned air-fuel ratio feedback correction coefficient α is determined and the stoichiometric air-fuel ratio is maintained by changing this α.

ここで、空燃比フィードバック補正係数αの値は比例積
分(PI)制御により変化させ、安定した制御としてい
る。
Here, the value of the air-fuel ratio feedback correction coefficient α is changed by proportional-integral (PI) control to achieve stable control.

すなわち、02センサの出力とスライスレベルとを比較
し、スライスレベルよりも高い場合、低い場合に、空燃
比を急に濃(したり、薄くしたりすることなく、空燃比
が濃い(薄い)場合には始めにP分だけ下げて(上げて
)、それから1分ずつ徐々に下げて(上げて)いき、空
燃比を薄((濃()するように制御する。
In other words, the output of the 02 sensor is compared with the slice level, and if the air-fuel ratio is higher or lower than the slice level, the air-fuel ratio is rich (lean) without suddenly enriching or reducing the air-fuel ratio. To do this, the air-fuel ratio is controlled to become lean ((rich) by first lowering (raising) it by P, then gradually lowering (raising) it one minute at a time.

但し、λコントロールを行わない領域ではα=1にクラ
ンプし、各種補正係数C0EFの設定により所望の空燃
比を得る。ところで、λコントロール領域でα−1のと
きのベース空燃比を理論空燃比(λ=1)に設定するこ
とができればフィードバック制御は不要なのであるが、
実際には構成部品(例えばエアフローメータ、燃料噴射
弁、プレッシャレギュレータ、コントロールユニット〕
のバラツキや経時変化、燃料噴射弁のパルスi]−流量
特性の非血線性、運転条件や変化等の要因でベース空燃
比のλ=1からのズレな生じるので。
However, in a region where λ control is not performed, α is clamped to 1, and a desired air-fuel ratio is obtained by setting various correction coefficients COEF. By the way, if the base air-fuel ratio at α-1 in the λ control region could be set to the stoichiometric air-fuel ratio (λ=1), feedback control would not be necessary.
Actually components (e.g. air flow meter, fuel injection valve, pressure regulator, control unit)
This is because deviations from the base air-fuel ratio λ = 1 may occur due to factors such as variations and changes over time, non-linearity of the fuel injection valve pulse i]-flow characteristics, and changes in operating conditions.

フィードバック制御を行っている。Feedback control is performed.

しかし、ベース空燃比がλ−1からすねていると、運転
領域が大きく変化したときに、ベース空燃比の段差をフ
ィードバック制御によりλ=1に整定するまでに時間が
かかる。そして、このためKPI定数を太き(するので
、オーバーシュートやアンダーシュートを生じ、制御性
が悪くなる。
However, if the base air-fuel ratio deviates from λ-1, it takes time to settle the step in the base air-fuel ratio to λ=1 by feedback control when the operating range changes significantly. For this reason, the KPI constants are made thicker, resulting in overshoot or undershoot and poor controllability.

つまり、ベース空燃比がλ=1からずれていると、理論
空燃比よりかなりズレをもった範囲で空燃比制御がなさ
れるのである。
In other words, if the base air-fuel ratio deviates from λ=1, the air-fuel ratio will be controlled within a range that deviates considerably from the stoichiometric air-fuel ratio.

その結果、三元触媒の転換効率の悪いところで運転がな
されることになり、触媒の貴金属量の増大によるコスト
アップの他、触媒の劣化に伴う転換効率の更なる悪化に
よる触媒の交換を余儀なくされるという問題点があった
As a result, the three-way catalyst has to be operated at a point where its conversion efficiency is poor, and not only does the cost increase due to an increase in the amount of precious metal in the catalyst, but the conversion efficiency further deteriorates as the catalyst deteriorates, forcing the catalyst to be replaced. There was a problem that

そこで、学習によりベース空燃比をλ=1にすることに
より、過渡時にベース空燃比の段差から生じるλ−1か
らのずれをなくし、かつ、PI定数を小さくすることを
可能にして制御性の向上を図り、これらにより触媒の原
価低源等を図るベース空燃比の学習制御装置が考えられ
た。
Therefore, by setting the base air-fuel ratio to λ = 1 through learning, it is possible to eliminate deviations from λ-1 caused by steps in the base air-fuel ratio during transients, and to reduce the PI constant, improving controllability. A learning control device for the base air-fuel ratio was devised to reduce the cost of the catalyst.

すなわち、RAM上にエンジン回転数及び負荷等のエン
ジン運転条件に対応した学習補正係数α■。
That is, a learning correction coefficient α■ corresponding to engine operating conditions such as engine speed and load is stored in the RAM.

のマツプを設け、噴射量Tiを計算する際に次式の如く
基本噴射量TPをα■7で補正する。
When calculating the injection amount Ti, the basic injection amount TP is corrected by α7 as shown in the following equation.

T i = Tp X COE F Xα×αL −1
−’I’ 3° そして、αLの学習は次の千1■で進
める。
T i = Tp X COE F Xα×αL −1
−'I' 3° Then, the learning of αL proceeds in the next 1,122 steps.

1)定常状態においてそのときのエンジン運転条件とα
とを検出する。
1) Engine operating conditions and α in steady state
and detect.

++ )前記エンジン運転条件に対応して現在までに学
習され記憶されているαLを検索する。
++) Search for αL that has been learned and stored up to now in accordance with the engine operating conditions.

111)αとαLとから所定の更新割合により新たなα
Lを設定して記憶させる。
111) Create a new α from α and αL at a predetermined update rate.
Set and store L.

さらに、本出願人は特願昭58−132894号におい
て上記の学習制御装置を利用して、λコントロールを行
わない領域でも燃料噴射弁の摩耗やつまり等による流量
変化5周囲源度や気圧叫の変化、ガソリンの種類(成分
)の変化に対し、空燃比を良好に補正できるようにした
ものを提案した。
Furthermore, in Japanese Patent Application No. 58-132894, the present applicant utilized the above-mentioned learning control device, and even in the region where λ control is not performed, the flow rate change due to wear and clogging of the fuel injector, ambient source temperature, pressure noise, etc. We proposed a system that can effectively correct the air-fuel ratio in response to changes in the type (composition) of gasoline.

すなわち、上記の学習制御装置において、RAM上のエ
ンジン運転条件をパラメータとする学習補正係数のマツ
プにおいて学習結果が全て同一の方向(リッチ側又はリ
ーン側)にずれている場合に、そのずれの最小値を修正
する方向に基本噴射量演算用の定数(いわゆるに定数)
を修正し、こねによってλコントロールを行わない領域
でも燃料噴射弁のつまりゃ空気密度の変化に対応できる
ようにしたものである。
In other words, in the learning control device described above, if all the learning results deviate in the same direction (rich side or lean side) in the map of learning correction coefficients whose parameter is the engine operating condition in RAM, the minimum deviation Constant for basic injection amount calculation in the direction of modifying the value (so-called constant)
has been modified so that it can respond to changes in the air density of the fuel injector even in areas where λ control is not performed by kneading.

しかしながら、実際には、前記学習補正係数のマツプに
おいては学習精度を良くするために学習補正係数が記憶
される運転領域を細かく区分しているため、例えば極低
速回転、極低負荷領域等では過渡運転時に一時的に通過
するだけで定常状態に在ることは稀であるため長期間学
習されないままであることが多い。
However, in reality, in the learning correction coefficient map, the operating range in which the learning correction coefficient is stored is divided into fine sections in order to improve learning accuracy. Since it is rare for a station to remain in a steady state even if it only passes through it temporarily during driving, it often remains unlearned for a long period of time.

従って全ての学習補正係数が初期値からずれるまでに長
期間を要し、しかも全てが同一方向にずれる機会は少な
いため必ずしも良好に定数Kを補正できるものではなか
った。
Therefore, it takes a long time for all the learning correction coefficients to deviate from their initial values, and there is little chance that all of them deviate in the same direction, so it is not always possible to correct the constant K well.

〈発明の目的〉 本発明は、上記の実情に鑑みなされたもので。<Purpose of the invention> The present invention was made in view of the above circumstances.

学習制御装置の学習結果をより有効に利用できるように
して、λコントロールを行わない領域における各種要因
に基づく空燃比の変化に対してより良好に補正が行われ
、空燃比制御性能を一層高めるようにすることを目的と
する。
The learning results of the learning control device can be used more effectively, and changes in the air-fuel ratio based on various factors in the region where λ control is not performed can be better compensated for, further improving air-fuel ratio control performance. The purpose is to

〈発明の構成〉 このため1本発明は第1図に示すように定数と吸入空気
流量とエンジン回転数とから基本噴射量を演算する基本
噴射量演算手段と、排気系に設けた02センサからの信
号に基づいて検出される実際の空燃比とを比較して比例
積分制御により空燃比フィードバック補正係数を設定す
る空燃比フィードバック補正係数設定手段と、エンジン
回転数及び負荷等のエンジン運転条件からこれに対応さ
せてRAM上のマツプに記憶させた学習補正係数を検索
する学習補正係数検索手段と、空燃比フィードバック補
正係数を設定する空燃比フィードバック補正係数設定手
段と、エンジン回転数及び負荷等のエンジン運転条件か
らこれに対応させてRAM上のマツプに記憶させた学習
補正係数を検索する学習補正係数検索手段と、空燃比フ
ィードバック補正係数と学習補正係数とから新たな学習
補正係数を設定し且つその学習補正係数でRAM内の同
一エンジン運転条件のデータを更新する学習噴射量演算
手段と、この演算された噴射量に相応する駆動パルス信
号を燃料噴射弁に出力する駆動パルス信号出力手段と、
RAM上のマツプにおける全ての学習補正係数のうち所
定割合以上が学習により所定回数(1回を含む)以上更
新されたか否かを判定する学習経歴判定手段と、前記所
定割合以上が更新された場合これらの学習補正係数のう
ち所定割合以上が初期値に対して同一方向にずれている
か否かを判定する学習傾向判定手段と、前記所定割合以
上の同一方向にすれている場合にそのずれ量に応じて前
記定数を補正する定数補正手段とを設けた構成とする。
<Structure of the Invention> Therefore, 1. the present invention includes a basic injection amount calculation means for calculating the basic injection amount from a constant, an intake air flow rate, and an engine rotational speed, as shown in FIG. an air-fuel ratio feedback correction coefficient setting means for setting an air-fuel ratio feedback correction coefficient by proportional-integral control by comparing the actual air-fuel ratio detected based on the signal of the air-fuel ratio; A learning correction coefficient search means for searching a learning correction coefficient stored in a map on the RAM corresponding to the above, an air-fuel ratio feedback correction coefficient setting means for setting an air-fuel ratio feedback correction coefficient, and an engine control unit for determining the engine speed, engine load, etc. A learning correction coefficient search means for searching a learning correction coefficient stored in a map on a RAM corresponding to the operating conditions; and a learning correction coefficient searching means for setting a new learning correction coefficient from the air-fuel ratio feedback correction coefficient and the learning correction coefficient; learning injection amount calculation means for updating data of the same engine operating condition in the RAM with a learning correction coefficient; drive pulse signal output means for outputting a drive pulse signal corresponding to the calculated injection amount to the fuel injection valve;
learning history determining means for determining whether or not a predetermined percentage or more of all learning correction coefficients in a map on the RAM has been updated a predetermined number of times (including once) or more through learning, and when the predetermined percentage or more has been updated; learning tendency determining means for determining whether a predetermined percentage or more of these learning correction coefficients deviate in the same direction from the initial value; The configuration includes constant correction means for correcting the constant accordingly.

く実 施 例〉 以下に実施例を説明する。Example of implementation Examples will be described below.

第2図にハードウェア構成を示す1、 Q1 1はCPU、2 ハP −ROM、3は学習制御用のC
MO8−RA、M、4はアドレスデコータである。尚、
RAM、3に対しては、キースイッチOFI?’後も記
憶内容を保持させるためバックアップ電源回路を使用す
る。
Figure 2 shows the hardware configuration. 1, Q1 1 is CPU, 2 is P-ROM, 3 is C for learning control.
MO8-RA, M, 4 is an address decoder. still,
For RAM, 3, key switch OFI? A backup power supply circuit is used to retain the memory contents even after '.

燃料噴射量の制御のためのCPU1へのアナログ入力信
号としては、熱線式エアフローメータ5からの吸入空気
流量信号、スロットルセンサ6がらのスロットル開度信
号、水温センサ7からの水湿信号、02センサ8からの
排気中酸素濃度信号、バッテリ9からのバッテリ電圧が
あり、こねらはアナログ入力インタフェース10及びA
/D変換器11を介して入力されるようになっている。
Analog input signals to the CPU 1 for controlling the fuel injection amount include an intake air flow rate signal from the hot wire air flow meter 5, a throttle opening signal from the throttle sensor 6, a water humidity signal from the water temperature sensor 7, and the 02 sensor. There is an exhaust oxygen concentration signal from 8, a battery voltage from battery 9, and a battery voltage from analog input interface 10 and A.
The signal is input via a /D converter 11.

12はA/D変換タイミングコントローラである。12 is an A/D conversion timing controller.

デジタル入力信号としては、アイドルスイッチ13、ス
タートスイッチ14及びニュートラルスイッチ15から
の0N−01i”Fイハ号があり、これらはデジタル入
力インタフェース16を介して入力されるようになって
いる。
As digital input signals, there are signals 0N-01i''F from the idle switch 13, the start switch 14, and the neutral switch 15, and these are inputted via the digital input interface 16.

その他、クランク角センサ17がらの例えばI RQ(
10) 毎のリファレンス信号と1°毎のポジション信号とがワ
ンショットマルチ回路18を介して入力されるようにな
っている。また、車速センサ19からの車速信号が波形
整形回路20を介して入力されるようになっている。
In addition, for example, IRQ (
10) Reference signals for each angle and position signals for each 1° are inputted via the one-shot multi-circuit 18. Further, a vehicle speed signal from a vehicle speed sensor 19 is inputted via a waveform shaping circuit 20.

CPU1からの出力信号(燃料噴射弁への駆動パルス信
号)は、電流波形制御回路21を介して燃料噴射弁22
に送られるようになっている。
The output signal (driving pulse signal to the fuel injection valve) from the CPU 1 is sent to the fuel injection valve 22 via the current waveform control circuit 21.
It is now sent to

ここにおいて、CPU1は第3図に示すフローチャート
(燃料噴射量制御ルーチン)に基ツ(プログラム(RO
M2に記憶されている)に従って入出力操作並びに演算
処理等を行い、燃料噴射量を制御する。
Here, the CPU 1 executes a program (RO
(stored in M2), performs input/output operations, arithmetic processing, etc., and controls the fuel injection amount.

次に第3図のフローチャートについて説明する。Next, the flowchart shown in FIG. 3 will be explained.

Slでエアフローメータ5からの信号によって得られる
吸入空気流量Qとクランク角センサ17からの信号によ
って得られるエンジン回転数Nとから基本噴射量TP 
(=KxQ/N)を演算する。
The basic injection amount TP is determined from the intake air flow rate Q obtained from the signal from the air flow meter 5 at Sl and the engine rotation speed N obtained from the signal from the crank angle sensor 17.
(=KxQ/N) is calculated.

S2で各種補正係数C0EFを設定する。In S2, various correction coefficients C0EF are set.

S3で02センサ8の出力電圧とスライスレベ(11) ルミ圧とを比較して比例積分制御により空燃比フィード
バック補正係数αを設定する。イ゛1し、λコントロー
ルを行わない領域ではα=1にクランプする。
In S3, the output voltage of the 02 sensor 8 and the slice level (11) lumi pressure are compared, and the air-fuel ratio feedback correction coefficient α is set by proportional-integral control. 1, and in the region where λ control is not performed, it is clamped to α=1.

S4でバッテリ9からのバッチIJ を圧に基づいて電
圧補正分子s を設定する。
In S4, a voltage correction numerator s is set based on the pressure of the batch IJ from the battery 9.

S5では、エンジン運転状態を示すパラメータとして例
えばエンジン回転数N及び基本噴射l(負荷) Tpに
よる運転領域を複数のエリアに区画し、各エリア毎に後
述する学習補正係数αLを記憶させたマツプ(RAM3
に記憶)から現在の(N + Tp )が存在するエリ
アを検索し、該エリアを示すデータをアドレスデコーダ
40所定番地Aにセットする。
In S5, the operating region based on parameters indicating the engine operating state, such as engine speed N and basic injection l (load) Tp, is divided into a plurality of areas, and a map ( RAM3
The area in which the current (N + Tp) exists is searched from (stored in ) and data indicating the area is set in a predetermined location A of the address decoder 40.

S6では前記番地Aにセットされた現在の(N。In S6, the current (N.

Tp)が存在するエリアのデータを同じくアドレスデコ
ーダ40番地L Aにセットされた前回検索された(N
、TP)が存在するエリアのデータと比較し、同一であ
るか否かを判定する。そして、Y ESであるとき、即
ち、運転状態が略同−であると判(12) 定された場合はS7へ進む。
The data in the area where Tp) exists is also searched previously set in address decoder address 40 LA (N
, TP) to determine whether they are the same. If YES, that is, if it is determined that the operating conditions are substantially the same (12), the process advances to S7.

S7では、02センサ8の出力電圧(第4図参照)が8
6の判定がYESとなってからn回反転したか否かを判
定し、YESの場合はS8へ進む。
In S7, the output voltage of 02 sensor 8 (see Figure 4) is 8.
After the determination in step 6 becomes YES, it is determined whether or not it has been reversed n times, and in the case of YES, the process advances to S8.

即ち、86.87は運転状態が定常状態であるか否かを
判別するため設けられており、86.S7の判定が共に
YESである場合は定常状態であると判定される。かか
る定常状態判定方法は簡易にして、かつ、嵩精度に行え
るが、この他例えば車速一定、ギヤ位置が非ニュートラ
ル、スロットル開度一定で所定時間を経過したか否かに
よって判定する方法等を採用してもよい。そして、S6
又はS7のいずれかの判定がNOである場合は非定常状
態と判定され、この場合は後述する88〜810までの
学習を行うことなくS11へ進む。
That is, 86.87 is provided to determine whether or not the operating state is in a steady state. If both determinations in S7 are YES, it is determined that the state is in a steady state. Such a steady state determination method is simple and can be performed with high bulk accuracy, but other methods may also be adopted, such as determining whether a predetermined time has elapsed with the vehicle speed constant, the gear position not neutral, and the throttle opening constant. You may. And S6
Alternatively, if any of the determinations in S7 is NO, it is determined that the state is unsteady, and in this case, the process proceeds to S11 without performing the learning from 88 to 810, which will be described later.

S8では空燃比フィードバック補正係数αの定常運転時
における現在及び過去の複数回の値の平均値aを演算す
る。これはフローが行われる毎に平均値をめてもよいが
、例えば空燃比フィードバック係数αの値の増減が反転
してから反転する(13) までの間の平均値をめるか、反転時の空燃比フィードバ
ック補正係数αの値だけの平均値をめるようにしてもよ
く、このようにすれば定常状態におけるαの制御中心を
より適確にめることができる。
In S8, the average value a of the current and past values of the air-fuel ratio feedback correction coefficient α during steady operation is calculated. You can calculate the average value each time the flow is performed, but for example, you can calculate the average value from when the increase/decrease in the air-fuel ratio feedback coefficient α is reversed to when the flow is reversed (13), or when the flow is reversed. The average value of only the value of the air-fuel ratio feedback correction coefficient α may be calculated, and in this way, the control center of α in the steady state can be set more accurately.

S9では、エンジン回転数N及び基本噴射t’I’pか
らR,AM3の前記(N、T、、)が存在するエリアに
記憶されている( N 、 ’l”p )に対応する学
習補正係数αLを検索する。尚、前記マツプに記憶され
るαLの値は学習が開始されていない時点では全 ゛て
αL=1となっている。
In S9, the learning correction corresponding to (N, 'l''p) stored in the area where the above (N, T, ,) of R, AM3 exists from the engine speed N and basic injection t'I'p. The coefficient αL is searched.The values of αL stored in the map are all αL=1 at the time when learning has not started.

S10ではS9において検索された学習補正係数αLと
88において演算された空燃比フィードバック補正係数
αの平均値dとから次式にしたがって演算を行い、その
値を新たな学習補正係数αLとして設定し、αLマツプ
の当該エリア内の値を更新する。
In S10, calculation is performed according to the following formula from the learning correction coefficient αL retrieved in S9 and the average value d of the air-fuel ratio feedback correction coefficient α calculated in 88, and the value is set as a new learning correction coefficient αL, Update the value in the corresponding area of the αL map.

αL←αL十Δα/M 尚、Δαはaと基準値との偏差量を示しΔα=d−αλ
−1であり、基準値αλ=1は一般には(14) 10となる。またMは定数である。
αL←αL+Δα/M In addition, Δα represents the deviation amount between a and the reference value Δα=d−αλ
-1, and the reference value αλ=1 is generally (14) 10. Further, M is a constant.

学習補正係数αLの学習時偏差量△αを加える割合を決
定するMの値は一定としてもよいが、エンジン回転数に
比例した値とすればαのPI制御係数を噴射周期の増大
に応じて減少させることができるので、より高精度な噴
射量制御が行える。
The value of M, which determines the rate at which the learning deviation amount Δα of the learning correction coefficient αL is added, may be constant, but if it is set to a value proportional to the engine speed, the PI control coefficient of α can be adjusted according to the increase in the injection cycle. Since the injection amount can be decreased, more accurate injection amount control can be performed.

又、空燃比フィードバック係数αを平均せず直接αと基
準値との偏差量をめ、該偏差量を所定割合加算すること
によって学習補正係数を更新するようにしたものであっ
てもよい。
Alternatively, the learning correction coefficient may be updated by directly calculating the deviation amount between α and the reference value without averaging the air-fuel ratio feedback coefficient α, and adding the deviation amount by a predetermined percentage.

811では、アドレスデコーダ4の示す番地LAにセッ
トされている前回の(N、TP)のエリアのデータを番
地Aにセットされている現在の(N、Tp)のエリアの
データを転送することによって更新する。
At 811, the data of the previous area (N, TP) set at address LA indicated by the address decoder 4 is transferred by transferring the data of the current area (N, Tp) set at address A. Update.

812でRA、 M 3からαLマツプを検索し、81
3でαLマツプに記憶さ名た全ての学習補正係数αLの
うち、学習により所定割合以上が学習による更新の経歴
があるか否かを判定する。8130判定がYESの場合
には814に進み、813の判定(15) がNoの場合は820に進む。
Search for αL map from RA and M3 at 812, and search for αL map at 81
In step 3, it is determined whether or not a predetermined percentage or more of all the learning correction coefficients αL stored in the αL map have a history of updating by learning. If the determination at 8130 is YES, the process proceeds to 814, and if the determination (15) at 813 is No, the process proceeds to 820.

Si4では、学習による更新が行われた学習補正係数α
Lのうち、所定割合以−にの学習補正係数αLが初期値
から+(増大)側にずれているが否かを判定する。81
4の判定がYESの場合には816へ進みに定数を所定
割合以上0111に補正し、次いで前記に定数を増大さ
せた割合分だけ全ての学習補正係数αLを減少側に逆補
正する。即ち、K×αL=一定となるように補正する。
In Si4, the learning correction coefficient α updated by learning
It is determined whether the learning correction coefficient αL of L deviates from the initial value to the + (increase) side by a predetermined percentage or more. 81
If the determination in step 4 is YES, the process proceeds to step 816, where the constant is corrected to 0111 by a predetermined percentage or more, and then all learning correction coefficients αL are reversely corrected to the decreasing side by the percentage by which the constant is increased. That is, correction is made so that K×αL=constant.

一方、S14の判定がNOの場合は817に進み、学習
による更新が行われた学習補正係数αLのうち、所定割
合以上の学習補正係数αLが初期値から−(減少)側に
ずれているか否かを判定する。8170判定がYESの
場合には818へ道側 みに定数を所定割合減少に補正し、次いで前記I(定数
を減少させた割合分だけ全ての学習補正係数αLを増大
側に逆補正する(KXαL−一定)。
On the other hand, if the determination in S14 is NO, the process proceeds to 817, and it is determined whether or not a predetermined percentage or more of the learning correction coefficients αL, which have been updated by learning, are deviated from the initial value to the − (decrease) side. Determine whether If the determination in 8170 is YES, the process goes to 818 where the constant is corrected to decrease by a predetermined percentage on the road side only, and then all the learning correction coefficients αL are reversely corrected to increase by the percentage by which the constant is decreased (KXαL). - constant).

又、813又は817の判定がNOの場合、即ち、学習
更新された学習補正係数αLのうち士。
If the determination in 813 or 817 is NO, that is, the learning correction coefficient αL that has been updated.

−いずれか一方の方向にずれている割合が所定側(16
) 合未満である場合は820に進む。
- The percentage of deviation in one direction is on the predetermined side (16
), the process proceeds to 820.

820では噴射量Tiを次式に従って演算する。At 820, the injection amount Ti is calculated according to the following equation.

’I’ i = Tp X C0EF Xα×αL+T
Sここで、定常状態の場合は学習補正係数αLとして8
10で更新されたものが用いられ、過渡状態の場合は8
10による更新がなされない状態のものが用いられる。
'I' i = Tp X C0EF Xα×αL+T
S Here, in the case of steady state, the learning correction coefficient αL is 8
10 is used, and in the case of a transient state, 8 is used.
10 is used.

以上で噴射量Tiが計算され、この噴射量Tiに相応す
る駆動パルス信号が電流波形制御回路21を介して燃料
噴射弁22に所定のタイミングで与えられる。
The injection amount Ti is calculated as described above, and a drive pulse signal corresponding to the injection amount Ti is given to the fuel injection valve 22 at a predetermined timing via the current waveform control circuit 21.

一方、λコントロールを行わない領域では前述したよう
に空燃比フィードバック補正係数αが1にクランプされ
ると共に、85〜819のステップが省略され、実質的
にはαr、=] となる。
On the other hand, in the region where λ control is not performed, the air-fuel ratio feedback correction coefficient α is clamped to 1 as described above, and steps 85 to 819 are omitted, so that αr,=] is substantially obtained.

よって噴射量は次式で与えられる。Therefore, the injection amount is given by the following equation.

T i = T’p xcOEF +Ts但し、TP 
=KXQ/N そして、基本噴射量TP演算用のに定数は、所定割合以
上の学習補正係数αLが学習による更新(17) の経歴がある時、即ち、学習袖定保数αLの値が学習に
より信頼性が高い時であって学習更新さtまたαLのう
ち所定割合以上が士、−いずわが一方向にずれていた場
合に補正されるから、該補正が行われた次のルーチンか
ら補正されたに定数が用いられ、燃料噴射弁22の流量
変化や周囲温度。
T i = T'p xcOEF +Ts However, TP
=KXQ/N The constant for calculating the basic injection amount TP is updated when the learning correction coefficient αL of a predetermined rate or more has been updated by learning (17), that is, the value of the learning constant αL is When the reliability is high and more than a predetermined percentage of the learning update t or αL is shifted in one direction, the correction is made, so from the next routine after the correction is made. A constant is used to compensate for changes in the flow rate of the fuel injector 22 and ambient temperature.

気圧等の変化によるベース空燃比のずれをλコントロー
ルを行わない領域においても効果的に修正することがで
きる。特にシングルポイントインジェクション(8PI
)方式の場合、燃料噴射弁22が1本で、つまり等に対
する影響度が大きいのでツユイルセーフ的な効果も期待
できる。
Deviations in the base air-fuel ratio due to changes in atmospheric pressure, etc. can be effectively corrected even in a region where λ control is not performed. Especially single point injection (8PI
In the case of the ) system, there is only one fuel injection valve 22, which has a large influence on clogging, etc., so a fuel-safe effect can also be expected.

ここで、本発明の場合は、前記したように学習による更
新の経歴と学習傾向とを判定して実質的に十分に定数を
補正すべき状態であると判断した場合に補正を行うよう
にしているため、前記した特願昭58−132894号
に示すように全ての学習補正係数αLが同一方向にずわ
ている場合にのみに定数の補正な行うものに比べて、有
効に補正を行う機会が増え実用性に優れる。
Here, in the case of the present invention, as described above, the history of update through learning and the learning tendency are determined, and the correction is performed when it is determined that the constant should be substantially sufficiently corrected. Therefore, as shown in the above-mentioned Japanese Patent Application No. 58-132894, there is an opportunity to perform correction more effectively than when constant correction is performed only when all learning correction coefficients αL are shifted in the same direction. increases and is highly practical.

(18) 尚、本実施例では学習経歴の判定は1回でも学習による
更新が行われた学習補正係数αLが所定割合以上あるか
否かを判定するようにしたが、複数回jン、上学習によ
る更新が行われた学習補正係数αLが所定割合以上ある
か否かを判定するようにしてもよく、学習補正係数αL
の信頼性がより高い条件でに定数の補正が行われる。
(18) In this embodiment, the learning history is determined by determining whether the learning correction coefficient αL that has been updated by learning at least once is greater than or equal to a predetermined percentage. It may be determined whether the learning correction coefficient αL that has been updated by learning is equal to or greater than a predetermined ratio, and the learning correction coefficient αL
The constants are corrected under conditions with higher reliability.

又、本実施例では、K定数を補正した段階で学習補正係
数αLのテークを増減補正するようにしたのでλコント
ロールに全く影響を与えなくて済むが、このような学習
補正係数αLの強制的な補正を行わない場合でも、学習
により学習補正係数αLの値は自動的に修正さねていく
In addition, in this embodiment, the take of the learning correction coefficient αL is increased or decreased at the stage of correcting the K constant, so there is no need to affect the λ control at all. Even if no proper correction is performed, the value of the learning correction coefficient αL will not be automatically corrected due to learning.

〈発明の効果〉 以上説明したように本発明によれば、λコントロールに
学習補正係数αLを用いてベース空燃比を学習によりλ
−1に近づけるように制御するようにして過渡的にベー
ス空燃比の段差から生ずるλ=1からのズレななくし、
かつ、PI定数を小さくすることができるので制御性を
大巾に向上で(19) き、従って触媒を転換効率の良いところで使用できるこ
とにより貴金属量の低減によるコストダウンの他触媒の
変換が不要となる。
<Effects of the Invention> As explained above, according to the present invention, the learning correction coefficient αL is used for the λ control, and the base air-fuel ratio is adjusted to λ by learning.
Eliminate the deviation from λ = 1 caused by transient differences in the base air-fuel ratio by controlling it so that it approaches -1,
In addition, since the PI constant can be reduced, controllability can be greatly improved (19), and as a result, the catalyst can be used in a location with high conversion efficiency, which not only reduces costs by reducing the amount of precious metals but also eliminates the need for catalyst conversion. Become.

また、学習補正係数6丁、の学習経歴と学習傾向の とを判定して基本噴射簀1定数を補正するようにしたた
め、十分な信頼性をもって、かつ、極めて効果的にに定
数の補正が行われ、もって、λコントロールを行わない
領域でのベース空燃比をもλ−1に近づけることができ
、燃料噴射弁の摩耗やつまり、更には空気密度等の変化
に効果的に対処することができる。これ罠より具体的に
は高度センサ等が不要となり、制御システムの原価低減
が可能となる等の優れた効果が得られる。
In addition, since the basic injection basin 1 constant is corrected by determining the learning history and learning tendency of the 6 learning correction coefficients, the constant can be corrected with sufficient reliability and extremely effectively. Therefore, it is possible to bring the base air-fuel ratio close to λ-1 even in the region where λ control is not performed, and it is possible to effectively deal with wear and clogging of the fuel injector, as well as changes in air density, etc. . More specifically, this feature eliminates the need for an altitude sensor, etc., and provides excellent effects such as reducing the cost of the control system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロック図、第2図は本発
明の一実施例を示すハードウェア構成図、第3図は同上
実施例のフローチャート、第4図は同上実施例に使用さ
れる02センサの出力特性を示す線図である。 1・・・CPU 3・・・学習制御用CMO8−11,
AM(20) 5・・・エアフローメータ 8・・・02センサ17・
・・クランク角センサ 22・・・燃料噴射弁特許出願
人 日本電子機器株式会社 代理人 弁理士 笹 島 富二雄 (21)
FIG. 1 is a block diagram showing the configuration of the present invention, FIG. 2 is a hardware configuration diagram showing an embodiment of the present invention, FIG. FIG. 2 is a diagram showing the output characteristics of the 02 sensor. 1...CPU 3...CMO8-11 for learning control,
AM (20) 5...Air flow meter 8...02 sensor 17.
...Crank angle sensor 22...Fuel injection valve patent applicant Japan Electronics Co., Ltd. Representative Patent attorney Fujio Sasashima (21)

Claims (1)

【特許請求の範囲】[Claims] 定数と吸入空気流量とエンジン回転数とから基本噴射量
を演算する基本噴射量演算手段と、排気系に設けた02
センサからの信号に基づいて検出さねる実際の空燃比と
理論空燃比とを比較して積分制御による空燃比フィード
バック補正係数を設定する空燃比フィードバック補正係
数設定手段と、エンジン回転数及び9荷等のエンジン運
転条件からこれに対応させてRAM上のマツプに記憶さ
せた学習補正係数を検索する学習補正係数検索手段と、
空燃比フィードバック補正係数と学習補正係数とから新
たな学習補正係数を設定し且つその学習補正係数でRA
M内の同一エンジン運転条件のデータを更新する学習補
正係数更新手段と、基本噴射量に空燃比フィードバック
補正係数と学習補正係数とを乗算して噴射量を演算する
噴射音演算手段と、この演算された噴射量に相応する駆
動パルス信号を燃料噴射弁に出力する駆動パルス信号出
力手段と、RAM上のマツプにおける全ての学習補正係
数のうち所定割合以上が学習により所定回数以上更新さ
れたか否かを判定する学習経歴判定手段と、前記所定割
合以上が更新された場合これらの学習補正係数のうち所
定割合以上が初期値に対して同一方向にずれているか否
かを判定する学習傾向判定手段と、前記所定割合以上が
同一方向にずれている場合にそのずれ量に応じて前記定
数を補正する定数補正手段とを備えることを特徴とする
電子制御燃料噴射式内燃機関における空燃比の学習制御
装置。
A basic injection amount calculation means for calculating the basic injection amount from a constant, an intake air flow rate, and an engine rotational speed, and an 02 provided in the exhaust system.
an air-fuel ratio feedback correction coefficient setting means for setting an air-fuel ratio feedback correction coefficient by integral control by comparing the actual air-fuel ratio detected based on the signal from the sensor and the stoichiometric air-fuel ratio; learning correction coefficient retrieval means for searching a learning correction coefficient stored in a map on a RAM corresponding to the engine operating condition;
A new learning correction coefficient is set from the air-fuel ratio feedback correction coefficient and the learning correction coefficient, and the RA is adjusted using the learning correction coefficient.
learning correction coefficient updating means for updating data for the same engine operating conditions in M; injection sound calculation means for calculating the injection amount by multiplying the basic injection amount by the air-fuel ratio feedback correction coefficient and the learning correction coefficient; drive pulse signal output means for outputting a drive pulse signal corresponding to the injection amount to the fuel injection valve, and whether or not a predetermined percentage or more of all learning correction coefficients in a map on the RAM has been updated by learning a predetermined number of times or more. learning history determining means for determining the learning history determination means; and learning tendency determining means for determining whether or not a predetermined percentage or more of these learning correction coefficients deviate in the same direction with respect to the initial value when the predetermined percentage or more has been updated. , constant correction means for correcting the constant according to the amount of deviation when the predetermined ratio or more deviates in the same direction. .
JP20112483A 1983-10-28 1983-10-28 Learnig control device for air-fuel ratio in electronically controlled fuel injection type internal- combustion engine Granted JPS6093150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20112483A JPS6093150A (en) 1983-10-28 1983-10-28 Learnig control device for air-fuel ratio in electronically controlled fuel injection type internal- combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20112483A JPS6093150A (en) 1983-10-28 1983-10-28 Learnig control device for air-fuel ratio in electronically controlled fuel injection type internal- combustion engine

Publications (2)

Publication Number Publication Date
JPS6093150A true JPS6093150A (en) 1985-05-24
JPH0529775B2 JPH0529775B2 (en) 1993-05-06

Family

ID=16435807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20112483A Granted JPS6093150A (en) 1983-10-28 1983-10-28 Learnig control device for air-fuel ratio in electronically controlled fuel injection type internal- combustion engine

Country Status (1)

Country Link
JP (1) JPS6093150A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294761A (en) * 1985-10-18 1987-05-01 Matsushita Electric Ind Co Ltd Temperature control unit of gas hot water supplier
JPS62265441A (en) * 1986-05-12 1987-11-18 Honda Motor Co Ltd Air-fuel ratio control method for internal combustion engine
JPS6321337A (en) * 1986-07-14 1988-01-28 Honda Motor Co Ltd Air fuel ratio controlling method for internal combustion engine
DE3928585A1 (en) * 1988-08-31 1990-03-08 Fuji Heavy Ind Ltd CONTROL SYSTEM FOR THE AIR-FUEL RATIO FOR A CAR ENGINE
DE4001494A1 (en) * 1989-01-19 1990-08-02 Fuji Heavy Ind Ltd FUEL-AIR RATIO MONITORING SYSTEM FOR A MOTOR VEHICLE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013335959B2 (en) * 2012-10-24 2016-03-10 Mitsubishi Electric Corporation Electric vacuum cleaner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654936A (en) * 1979-10-10 1981-05-15 Nippon Denso Co Ltd Control method for air-fuel ratio

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654936A (en) * 1979-10-10 1981-05-15 Nippon Denso Co Ltd Control method for air-fuel ratio

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294761A (en) * 1985-10-18 1987-05-01 Matsushita Electric Ind Co Ltd Temperature control unit of gas hot water supplier
JPS62265441A (en) * 1986-05-12 1987-11-18 Honda Motor Co Ltd Air-fuel ratio control method for internal combustion engine
JPS6321337A (en) * 1986-07-14 1988-01-28 Honda Motor Co Ltd Air fuel ratio controlling method for internal combustion engine
DE3928585A1 (en) * 1988-08-31 1990-03-08 Fuji Heavy Ind Ltd CONTROL SYSTEM FOR THE AIR-FUEL RATIO FOR A CAR ENGINE
US4961412A (en) * 1988-08-31 1990-10-09 Fuji Jukogyo Kabushiki Kaisha Air-fuel ratio control system for an automotive engine
DE4001494A1 (en) * 1989-01-19 1990-08-02 Fuji Heavy Ind Ltd FUEL-AIR RATIO MONITORING SYSTEM FOR A MOTOR VEHICLE
DE4001494C2 (en) * 1989-01-19 1994-08-11 Fuji Heavy Ind Ltd Air-fuel ratio monitoring system for an automotive engine
DE4001494C3 (en) * 1989-01-19 1999-09-09 Fuji Heavy Ind Ltd Air-fuel ratio monitoring system for an automotive engine

Also Published As

Publication number Publication date
JPH0529775B2 (en) 1993-05-06

Similar Documents

Publication Publication Date Title
JPS58192947A (en) Controlling method of internal-combustion engine
JPS6090944A (en) Air-fuel ratio learning control apparatus for electronically controlled fuel injection type internal-combustion engine
JPH08158918A (en) Air fuel ratio learning control device for internal combustion engine
JPH0226052B2 (en)
JPS6093150A (en) Learnig control device for air-fuel ratio in electronically controlled fuel injection type internal- combustion engine
JPS60101243A (en) Learning control device of internal-combustion engine
JPH051373B2 (en)
JPS6356414B2 (en)
JPH0686839B2 (en) Feedback controller with learning function
JPH0226696B2 (en)
JPS61190142A (en) Learning control device of internal-combustion engine
JPS6313016B2 (en)
JPS60153504A (en) Feedback control device having learning function
JPS6045749A (en) Air-fuel ratio learning controller of electronic fuel injection type internal-combustion engine
JPH0530978B2 (en)
JPH0243900B2 (en) NAINENKIKANNOGAKUSHUSEIGYOSOCHI
JPS6356413B2 (en)
JPH0455235Y2 (en)
JPH0226695B2 (en)
JPH03229942A (en) Air-fuel ratio learning control device for electronically controlled fuel injection type internal combustion engine
JPH0740673Y2 (en) Air-fuel ratio learning controller for internal combustion engine
JPH0228700B2 (en)
JPH0445659B2 (en)
JPH0423099B2 (en)
JPH0416625B2 (en)