JPS6084869A - Manufacture of solid-state image pickup device - Google Patents
Manufacture of solid-state image pickup deviceInfo
- Publication number
- JPS6084869A JPS6084869A JP58191669A JP19166983A JPS6084869A JP S6084869 A JPS6084869 A JP S6084869A JP 58191669 A JP58191669 A JP 58191669A JP 19166983 A JP19166983 A JP 19166983A JP S6084869 A JPS6084869 A JP S6084869A
- Authority
- JP
- Japan
- Prior art keywords
- film
- forming
- masking
- region
- solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 230000000873 masking effect Effects 0.000 claims abstract description 16
- 239000000758 substrate Substances 0.000 claims abstract description 15
- 239000004065 semiconductor Substances 0.000 claims description 9
- 239000012535 impurity Substances 0.000 claims description 8
- 230000003647 oxidation Effects 0.000 claims description 8
- 238000007254 oxidation reaction Methods 0.000 claims description 8
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 229920002120 photoresistant polymer Polymers 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 17
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 8
- 238000000206 photolithography Methods 0.000 abstract description 7
- 238000001020 plasma etching Methods 0.000 abstract description 6
- 238000009792 diffusion process Methods 0.000 abstract description 4
- 238000005468 ion implantation Methods 0.000 abstract description 4
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 4
- 239000011574 phosphorus Substances 0.000 abstract description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 3
- 238000004518 low pressure chemical vapour deposition Methods 0.000 abstract description 3
- 150000004767 nitrides Chemical class 0.000 abstract description 3
- 229910052796 boron Inorganic materials 0.000 abstract description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 abstract 1
- 238000003384 imaging method Methods 0.000 description 11
- 229910052581 Si3N4 Inorganic materials 0.000 description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 4
- -1 Boron ions Chemical class 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1804—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、固体撮像装置の製造方法に関するものである
。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a solid-state imaging device.
(従来例の構成とその問題点)
近年、半導体集積回路技術の発達に伴ない、MOS (
メタル・オキサイド・セミコンダクタ)構造を利用した
固体撮像装置の開発が進み、既に実用化の段階にはいっ
てきている。(Conventional structure and its problems) In recent years, with the development of semiconductor integrated circuit technology, MOS (
Development of solid-state imaging devices using metal oxide semiconductor (metal oxide semiconductor) structures is progressing and has already reached the stage of practical use.
第1図(a)〜(f)は、従来の固体撮像装置の製造方
法を示したもので、第1図(a)は単結晶半導体基板1
0表面上に酸化膜2及びマスキング川波f3を形成する
工程、第1図(b)はマスキング用被膜3の一部を取り
除いて開口し、基板lと同じ導電型で、基板1よシも濃
度の高いチャンネルストッパ領域4を形成する工程、第
1図(C)は上記マスキング用被膜3が取シ除かれた部
分を選択的に熱酸化し、いわゆるLOGO8酸化膜5を
形成する工程、第1図(d)はマスキング川波jli3
を取シ除いて多結晶シリコン膜6を形成する工程、第1
図(e)は多結晶シリコン膜6の一部を取り除く工程、
第1図(f)は多結晶シリコン膜6の取り除かれた部分
で、LOC,O8酸化膜5以外の領域に、基板1とは反
対の導電型を有する領域7を形成する工程を、それぞれ
示している。1(a) to 1(f) show a conventional method for manufacturing a solid-state imaging device, and FIG. 1(a) shows a single crystal semiconductor substrate 1.
In the process of forming an oxide film 2 and a masking wave f3 on the surface of the substrate 0, a part of the masking film 3 is removed and an opening is formed, as shown in FIG. FIG. 1C shows a step of selectively thermally oxidizing the portion where the masking film 3 has been removed to form a so-called LOGO8 oxide film 5. Figure (d) is masking Kawanami jli3
1st step of removing the polycrystalline silicon film 6 to form a polycrystalline silicon film 6
Figure (e) shows a step of removing a part of the polycrystalline silicon film 6;
FIG. 1(f) shows the process of forming a region 7 having a conductivity type opposite to that of the substrate 1 in a region other than the LOC and O8 oxide films 5 in the removed portion of the polycrystalline silicon film 6. ing.
第2図は、従来の製造方法によって製作された一次元固
体撮像装置の光電変換部分を示したもので、第2図(a
)はホトマスク設計時点での光電変換部平面図である。Figure 2 shows the photoelectric conversion part of a one-dimensional solid-state imaging device manufactured by a conventional manufacturing method.
) is a plan view of the photoelectric conversion section at the time of photomask design.
7は基板1とは反対の導電型を有する光電荷蓄積部、4
は基板1と同じ導電製で、濃度が基板1よりも高い、各
画素を仕切るチャンネルストッパ領域である。固体撮像
装置の解像度特性を上げるためには、画素の配列方向に
おけるチャンネルストッパ4の長さを小さくする必要が
あるということが分っている。しかるに前述の従来の選
択酸化法、いわゆるLOCO8法と呼ばれる酸化法では
、第2図(b)に示したように、LOCO8酸化膜5の
成長期に、LOCO8酸化膜5が横方向に拡がるいわゆ
るバーズビークと呼ばれる現象があり、実際のチャンネ
ルストッパ領域4は、マスク設計時でのチャンネルスト
ッパ領域すなわち、第2図(a)の4よりも広くなって
いる。第2図CC)は従来のLOCO8法で製造された
一次元固体撮像装置の平面図を示すもので、マスク設計
時での平面図第2図(a)と比較すると、チャンネルス
トッパ4の画素配列方向の長さは、第2図(C)の方が
LOCO8酸化膜の膜厚程度分だけ広くなる傾向がある
。近年画素ピッチも小さくなってきており、設計時のチ
ャンネルストッパ長も、半導体素子製造における限界値
に近い値になっており、チャンネルストッパ長のLOG
O8膜厚分程度の拡が9は、解像度特性を向上する上で
大きな障害となっている。Reference numeral 7 denotes a photocharge storage section having a conductivity type opposite to that of the substrate 1;
is a channel stopper region partitioning each pixel, which is made of the same conductive material as the substrate 1 and has a higher concentration than the substrate 1. It has been found that in order to improve the resolution characteristics of a solid-state imaging device, it is necessary to reduce the length of the channel stopper 4 in the pixel arrangement direction. However, in the conventional selective oxidation method described above, the so-called LOCO8 method, as shown in FIG. There is a phenomenon called , and the actual channel stopper area 4 is wider than the channel stopper area 4 in FIG. 2(a), that is, the channel stopper area at the time of mask design. Figure 2 (CC) shows a plan view of a one-dimensional solid-state imaging device manufactured using the conventional LOCO8 method.Comparing with the plan view of Figure 2 (a) at the time of mask design, the pixel arrangement of the channel stopper 4 is The length in the direction tends to be wider in FIG. 2(C) by about the thickness of the LOCO8 oxide film. In recent years, the pixel pitch has become smaller, and the channel stopper length at the time of design has become close to the limit value in semiconductor device manufacturing.
The expansion 9 equivalent to the thickness of the O8 film is a major obstacle to improving resolution characteristics.
(発明の目的)
本発明は、上記従来例の欠点に鑑み、短いチャンネルス
トッパ長を得ることのできる固体撮像装置の製造方法を
提供するものである。(Object of the Invention) In view of the above-mentioned drawbacks of the conventional example, the present invention provides a method for manufacturing a solid-state imaging device that can obtain a short channel stopper length.
(発明の構成)
この目的を達成するために、本発明方法では、不純物導
入及び熱酸化に対してマスキング効果を示すマスキング
用被膜を選択的に形成して選択拡散を行なった後、再度
、その上からマスキング用被膜を形成して、その後熱酸
化を行なうようにする。その結果、短かいチャンネルス
トッパ長を得ることがで、きる。(Structure of the Invention) In order to achieve this object, the method of the present invention selectively forms a masking film that exhibits a masking effect against impurity introduction and thermal oxidation, performs selective diffusion, and then repeats the process again. A masking film is formed on top, followed by thermal oxidation. As a result, a short channel stopper length can be obtained.
(実施例の説明) 以下、実施例について、図面を参照しながら説明する。(Explanation of Examples) Examples will be described below with reference to the drawings.
第3図は、本発明の一実施例の固体撮像装置の製造方法
を示したもので、まず、P型7リコン基板1の表面に、
熱酸化にて5ooiの酸化膜2を形成し、しかる後に1
20OAのシリコンナイトライド膜3をLPCVD法に
て形成する(第3図(ω)。次に、シリコンナイトライ
ド膜3の一部をフォトリングラフィに引き続くプラズマ
エッチによシ除去し、シリコンナイトライド膜3の除去
された部分に、ボロンイオンを注入してP 領域4を形
成し、しかる後にホトレジストを除去する(第3図(b
))。FIG. 3 shows a method for manufacturing a solid-state imaging device according to an embodiment of the present invention. First, on the surface of a P-type 7 silicon substrate 1,
A 50oi oxide film 2 is formed by thermal oxidation, and then 1
A silicon nitride film 3 of 20 OA is formed by the LPCVD method (Fig. 3 (ω)). Next, a part of the silicon nitride film 3 is removed by photolithography followed by plasma etching. Boron ions are implanted into the removed portion of the film 3 to form a P region 4, and then the photoresist is removed (see Fig. 3(b)).
)).
次いで再度1200人のソリコンナイトライド膜3を前
記と同じ方法にて形成する工程な経(第3図(C))、
その後フォトリソグラフィに引き続くプラズマエッチに
より、シリコンナイトライド膜3の一部を除去する(第
3図(d))。Next, a process of forming 1,200 solicon nitride films 3 again in the same manner as above (FIG. 3(C)),
Thereafter, a portion of the silicon nitride film 3 is removed by plasma etching following photolithography (FIG. 3(d)).
さらに、シリコンナイトライド膜3の取シ除かれた部分
に、熱酸化にて選択的に膜厚5oooAの酸化膜5を形
成する(第3図(e))。次に、シリコンナイトライド
膜3をプラズマエッチ法にて除去し、しかる後に熱酸化
にて酸化膜2の膜厚が合計1oooXになるようにした
後、膜厚4000Xの多結晶シリコン膜6をLP CV
D法にて形成する(第3 @ (f) )。次に、多結
晶シリコン膜6の一部をフォトリソグラフィに引続くプ
ラズマエッチにて除去する(第3図@)。さらに、リン
イオン注入に対するマスク形成のためにフォトリングラ
フィを用いてレジスト膜8によるマスクを形成し、しか
る後にリンイオンを注入して領域7を形成する(第3図
(h) )。Further, an oxide film 5 having a thickness of 500A is selectively formed on the removed portion of the silicon nitride film 3 by thermal oxidation (FIG. 3(e)). Next, the silicon nitride film 3 is removed by plasma etching, and then thermal oxidation is performed so that the total thickness of the oxide film 2 becomes 100X, and then a polycrystalline silicon film 6 with a thickness of 4000X is formed by LP. CV
Formed by method D (3rd @ (f)). Next, a part of the polycrystalline silicon film 6 is removed by photolithography followed by plasma etching (FIG. 3@). Further, in order to form a mask for phosphorus ion implantation, a resist film 8 is formed using photolithography, and then phosphorus ions are implanted to form a region 7 (FIG. 3(h)).
最後に、レジスト膜8を除去する(第3図(i))。Finally, the resist film 8 is removed (FIG. 3(i)).
以上のように、本発明の固体撮像装置の製造方法は、チ
ャンネルストッパを形成するだめの不純物拡散を行なっ
た後、シリコンナイトライドM3の上に、再び全面にシ
リコンナイトライド膜を形成し、不純物拡散部を覆うよ
うにする。さらに必要な部分のみシリコンナイトライド
膜を除去するが、光電変換部分はそのままで熱酸化を行
なう。As described above, in the method for manufacturing a solid-state imaging device of the present invention, after performing impurity diffusion to form a channel stopper, a silicon nitride film is again formed on the entire surface of the silicon nitride M3, and the impurity is Cover the diffusion area. Further, the silicon nitride film is removed only from the necessary portions, but thermal oxidation is performed while leaving the photoelectric conversion portions as they are.
従って、この部分のチャンネルストッパ長の拡が9はス
い。Therefore, the length of the channel stopper in this portion is increased by 9 times.
(発明の効果)
以上のように、本発明の製造方法によれば、チャンネル
ストッパの長さは設計時の寸法を、かなり忠実に維持し
、短いチャンネルストッパ長を得ることができ、その実
用的効果は大なるものがある。(Effects of the Invention) As described above, according to the manufacturing method of the present invention, it is possible to maintain the length of the channel stopper fairly faithfully to the design dimension, and to obtain a short channel stopper length, making it possible to achieve practical The effects are huge.
第1図は、従来の固体撮像装置の一連の製造工程を示す
図、第2図は、従来の製造方法で製作された固体撮像装
置の光電変換部分を示す図、第3図は、本発明の一実施
例の一連の製造工程を示す図である。
1・・・・・・・・・半導体基板、 2・・・・・・・
・・酸化膜、3・・・・・・・・・シリコンナイトライ
ド膜、4・・・・・・・・・基板と同じ導電型で不純物
濃度が基板よシ高い領域、 5・・・・・・・・・LO
CO8酸化膜、6・・・・・・・・・多結晶シリコン膜
、 7 ・・・・・・・・・基板とは反対の導電型を有
する領域。
特許出願人 松下電子工業株式会社
第1図
第2図
第3図
第3図FIG. 1 is a diagram showing a series of manufacturing steps of a conventional solid-state imaging device, FIG. 2 is a diagram showing a photoelectric conversion part of a solid-state imaging device manufactured by a conventional manufacturing method, and FIG. It is a figure showing a series of manufacturing steps of one example. 1... Semiconductor substrate, 2...
...Oxide film, 3...Silicon nitride film, 4......A region that has the same conductivity type as the substrate and has a higher impurity concentration than the substrate, 5... ...LO
CO8 oxide film, 6... Polycrystalline silicon film, 7... Region having a conductivity type opposite to that of the substrate. Patent applicant Matsushita Electronics Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 3
Claims (1)
不純物導入及び熱酸化に対してマスキング効果を示すマ
スキング用被膜を形成する工程と、前記マスキング用被
膜の一部を開口してその部分に第1の不純物を導入し、
前記半導体基板と同じ導電型で不純物濃度の高い領域を
形成する工程と、前記マスキング用被膜と同種被膜を再
度形成し前記開口部を覆うとともに、その開口部が覆わ
れた部分のうち所要の箇所の前記マスキング用被膜を再
度選択的に除去する工程と、その選択的に除去された部
分のみを熱酸化する工程と、前記マスキング用被膜を全
て除去した後、多結晶膜を形成しその一部を除去する工
程と、フォトレジストパターンを形成してその開口部に
第2の不純物を導入し、前記半導体基板とは反対の導電
型の領域を形成する工程とを含むことを特徴とする固体
撮像装置の製造方法。An oxide film is formed on the surface of the semiconductor substrate, and on top of that,
forming a masking film that exhibits a masking effect against impurity introduction and thermal oxidation, opening a part of the masking film and introducing a first impurity into that part;
a step of forming a region having the same conductivity type as the semiconductor substrate and having a high impurity concentration, and forming a film of the same type as the masking film again to cover the opening, and at the same time covering the opening at a required location. a step of selectively removing the masking film again; a step of thermally oxidizing only the selectively removed portion; and a step of forming a polycrystalline film after removing all of the masking film and forming a part of the masking film. and a step of forming a photoresist pattern and introducing a second impurity into the opening thereof to form a region of a conductivity type opposite to that of the semiconductor substrate. Method of manufacturing the device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58191669A JPS6084869A (en) | 1983-10-15 | 1983-10-15 | Manufacture of solid-state image pickup device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58191669A JPS6084869A (en) | 1983-10-15 | 1983-10-15 | Manufacture of solid-state image pickup device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6084869A true JPS6084869A (en) | 1985-05-14 |
Family
ID=16278483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58191669A Pending JPS6084869A (en) | 1983-10-15 | 1983-10-15 | Manufacture of solid-state image pickup device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6084869A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54102982A (en) * | 1978-01-31 | 1979-08-13 | Mitsubishi Electric Corp | Charge transfer type semiconductor device |
JPS5667932A (en) * | 1979-11-07 | 1981-06-08 | Chiyou Lsi Gijutsu Kenkyu Kumiai | Preparation method of semiconductor system |
-
1983
- 1983-10-15 JP JP58191669A patent/JPS6084869A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54102982A (en) * | 1978-01-31 | 1979-08-13 | Mitsubishi Electric Corp | Charge transfer type semiconductor device |
JPS5667932A (en) * | 1979-11-07 | 1981-06-08 | Chiyou Lsi Gijutsu Kenkyu Kumiai | Preparation method of semiconductor system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6084869A (en) | Manufacture of solid-state image pickup device | |
JPS6242382B2 (en) | ||
JP3239911B2 (en) | Method for manufacturing solid-state imaging device | |
JPH0656858B2 (en) | Method for manufacturing charge-coupled device | |
JPH09148449A (en) | Manufacture of semiconductor device | |
JPH07321015A (en) | Manufacture of semiconductor device | |
JPS60240131A (en) | Manufacture of semiconductor device | |
JPS5866358A (en) | Semiconductor device and manufacture thereof | |
JP2602142B2 (en) | Method for manufacturing semiconductor device | |
JPS63278256A (en) | Semiconductor device and its manufacture | |
JPH113870A (en) | Manufacture of semiconductor device | |
JPH02304935A (en) | Manufacture of semiconductor integrated circuit | |
JPS5927530A (en) | Fabrication of semiconductor device | |
JP3298066B2 (en) | Method for manufacturing compound semiconductor device | |
JPH07245402A (en) | Manufacture of semiconductor device | |
JPH08236608A (en) | Fabrication of semiconductor device | |
JPS5986254A (en) | Semiconductor device and manufacture thereof | |
JPH06338620A (en) | Non-volatile semiconductor memory and manufacture thereof | |
JPS59964A (en) | Manufacture of semiconductor device | |
JPH0653519A (en) | Semiconductor non-volatile memory and fabrication thereof | |
JPH05175441A (en) | Semiconductor device and manufacture thereof | |
JPH09181177A (en) | Manufacture of semiconductor device | |
JPH09232245A (en) | Manufacture of semiconductor device | |
JPH01283854A (en) | Manufacture of semiconductor device | |
JPS62242335A (en) | Formation of element isolating region of semiconductor integrated circuit |