JPS6082613A - Preparation of electric welded tube for upset tubing - Google Patents

Preparation of electric welded tube for upset tubing

Info

Publication number
JPS6082613A
JPS6082613A JP19223383A JP19223383A JPS6082613A JP S6082613 A JPS6082613 A JP S6082613A JP 19223383 A JP19223383 A JP 19223383A JP 19223383 A JP19223383 A JP 19223383A JP S6082613 A JPS6082613 A JP S6082613A
Authority
JP
Japan
Prior art keywords
cooling
upset
steel pipe
pipe
sec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19223383A
Other languages
Japanese (ja)
Other versions
JPS6147885B2 (en
Inventor
Atsushi Shiga
志賀 厚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19223383A priority Critical patent/JPS6082613A/en
Publication of JPS6082613A publication Critical patent/JPS6082613A/en
Publication of JPS6147885B2 publication Critical patent/JPS6147885B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To prepare the titled steel pipe satisfying requirements for formability, weldability and standard for strength by regulating cooling condition immediately after upsetting and heat treating condition after upsetting of electric welded tube of relatively low carbon and low alloy steel with a specified compsn. CONSTITUTION:A hot-rolled coil consisting by wt% of 0.13-0.20 C, <=0.25 Si, 1.0-1.5 Mn, <=0.03 P, <=0.01 S, 0.01-0.05 Nb, 0.005-0.06 Al, and residual Fe is formed to a pipe by slitting, forming, and electric welding. The steel pipe is upset by heating at 1,100-1,250 deg.C and cooled where the cooling is executed at 1.5-5 deg.C/sec cooling rate between 800 deg.C and 500 deg.C during the cooling stage, or under the cooling condition for normalizing after upsetting is 15-30 deg.C/sec from 800 deg.C to 500 deg.C, or cooling is executed at 30-60 deg.C/sec from 800 deg.C to 300 deg.C and then tempered at 550-650 deg.C.

Description

【発明の詳細な説明】 本発明はアプセットチュービング用電縫鋼管製造方法に
関し、詳しくは、API規格に定められたアプセットチ
ュービング用J−55クラスに相当する(浅域的性質を
具え、しかも、比較的に低炭素、低合金組成で成形性や
溶接性を保つことができる電縫鋼管製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an ERW steel pipe for upset tubing, and more specifically, it corresponds to the J-55 class for upset tubing defined in the API standard (having shallow-area characteristics, and The present invention relates to a method for manufacturing ERW steel pipes that can maintain formability and weldability with a low carbon and low alloy composition.

最近の油井の掘削、採油用アプセットチュービング材は
深N油田や海底油田の開発に伴い高強度材が要求される
ようになり、API −J55チューヒングの規格によ
ると、その機械的性質は降伏強度38.7〜56.2k
g/mm2、引張強さ52.7kg / mm 2以上
、伸び24%以上に規定されている。
With the recent development of deep-N oil fields and offshore oil fields, high-strength materials are required for upset tubing materials for oil well drilling and oil extraction, and according to the API-J55 Tuwing standard, its mechanical properties are 38% yield strength. .7~56.2k
g/mm2, tensile strength of 52.7 kg/mm2 or more, and elongation of 24% or more.

従来、このグレードのアプセットデユーピングにはその
強度規格を満たすために、高炭素高合金組成のシームレ
ス管を原管とし、熱間でアプセット加工されたものが使
用されている。しかし、この鋼管はコストが高いという
難点がある。
Conventionally, in order to meet the strength standards for this grade of upset duping, a seamless tube with a high carbon and high alloy composition has been used as the raw tube and has been upset-processed under hot conditions. However, this steel pipe has the drawback of high cost.

この点から、シームレスw4@の代替として電縫鋼管を
用いることが考えられるが、J55クラスのチュ〜ヒ゛
ング材はアプセット加工後に熱処理なしで使用される場
合と焼きならし処理される場合があり、この両者を同一
組成の素材で製造することは困ガであり、このために、
2種類の組成の素材が必要であるという煩雑さがある。
From this point of view, it is possible to use ERW steel pipes as an alternative to seamless W4@, but J55 class chewing materials may be used without heat treatment after upsetting or may be normalized. It is difficult to manufacture both from materials with the same composition, and for this reason,
There is a complication in that two types of materials with different compositions are required.

換言すると、焼きならし処理を行なわないで使用するこ
とを前提にした鋼管を熱処理でると、降伏強度が低くな
り、 API−J55の規格値を満1こすことができず
、逆に焼きならし処理することを前提とした材料を熱処
理なしで使用すると降伏強度が規格上限を上まわる危険
がある。
In other words, if a steel pipe that is intended to be used without normalizing is heat treated, the yield strength will be low and it will not be able to meet the standard value of API-J55, and conversely, if the pipe is not normalized If a material that is intended to be processed is used without heat treatment, there is a risk that the yield strength will exceed the upper limit of the specification.

更に、アプセット加工後に熱処理を施す場合、素材組成
は高炭素・高合金となるため冷間加工性、溶接性ともに
悪いという電縫鋼管製造上の大きな欠点があった。
Furthermore, when heat treatment is performed after upsetting, the material composition becomes high carbon and high alloy, which has a major drawback in manufacturing ERW steel pipes, such as poor cold workability and poor weldability.

本発明者はこれらを改善するために、素材組成は比較的
低炭素・低合金として成形性・溶接性を保つことが重要
であり、鋼管強度の確保はアプセット加工@後の冷却条
イ1を規制するがあるいはアブヒツト加工後の熱処理、
つまり、焼ならしまたは焼入れ焼戻しの条件を規制Jる
ことに着目して研究したところ、このような製造方法を
とれば唯一つの種類の組成で、製造性が良くて低コスト
のJ55クラスアプレッ]・・チュービング用電縫鋼管
が得られることがわかった。
In order to improve these, the present inventor believes that it is important to maintain formability and weldability with a material composition that is relatively low carbon and low alloy, and that maintaining the strength of the steel pipe requires cooling strips 1 after upsetting. Regulates heat treatment after machining or abhit processing,
In other words, we conducted research focusing on regulating the conditions for normalizing or quenching and tempering, and found that if this manufacturing method were used, it would be possible to produce J55 class apples with only one type of composition, good manufacturability, and low cost. ...It was found that ERW steel pipes for tubing can be obtained.

本発明は上記ならびに実験を重ねた結果成豆したちので
あって、具体的には、C:0.13〜0.20%、Si
S0.25%、Mn : 1.0〜1.5%、P≦0.
03%、S≦0.01%、Nb : 0.01〜0.0
5%、Al二〇、 005〜0.06%、残部鉄および
不純物からなる熱延コイルをスリッティング、成形およ
び電縫溶接して所定サイズに造管してから、アプセット
加工を行ない、その直後の冷却条件や、アプセット加工
後の熱処理条件を規制して、API−J55デユーどン
グの規格の電縫鋼管を製造する方法を提案する。
The present invention is based on the results of the above and repeated experiments, and specifically, C: 0.13 to 0.20%, Si
S0.25%, Mn: 1.0-1.5%, P≦0.
03%, S≦0.01%, Nb: 0.01-0.0
A hot-rolled coil consisting of 5% Al20, 005~0.06%, the balance iron and impurities is slitted, formed, and ERW welded to form a pipe into a specified size, then upset processing is performed, and immediately thereafter We propose a method for manufacturing electric resistance welded steel pipes that meet the API-J55 dungeon standard by regulating the cooling conditions and the heat treatment conditions after upset processing.

以下、本発明について詳しく説明する。The present invention will be explained in detail below.

まず、鋼管素材の組成は比較的低炭素、低合金とし、電
縫鋼管製造上で重要なファクターを成す成形性ならびに
溶接性や、API−J55規格に示される特性を確保す
る。
First, the composition of the steel pipe material is relatively low carbon and low alloy to ensure formability and weldability, which are important factors in the manufacture of ERW steel pipes, as well as properties shown in the API-J55 standard.

そこで、鋼管素材の組成から説明すると、次の通りであ
る。
Therefore, the composition of the steel pipe material will be explained as follows.

C:0.13〜0.20%およびMll:1.0〜1.
5%CおよびMnの下限をそれぞれ0.13%および1
.0%としたのは、これ以下では熱処理なしの成形のま
まの状態での母管の強度をAPI規格に満足させること
ができないからである。また、Cおよびunの上限をそ
れぞれ0.20%および1.5%としたのは、これを超
えて添加すると、一つにはアプセット加工後に焼入・焼
戻し処理した場合、母管部の降伏強度がA P I M
格値の上限を超えるからであり、さらに溶接性が悪くな
りペネレータ欠陥の発生率が急増するからである。
C: 0.13-0.20% and Mll: 1.0-1.
The lower limits of 5%C and Mn were set to 0.13% and 1, respectively.
.. The reason why it is set at 0% is because if it is less than this, the strength of the main tube in the as-molded state without heat treatment cannot satisfy the API standard. Additionally, the upper limits of C and un are set at 0.20% and 1.5%, respectively, because if added in excess of these limits, the main tube part will break down if quenched and tempered after upset processing. Strength is A P I M
This is because the upper limit of the standard value is exceeded, and furthermore, weldability deteriorates and the incidence of penetrator defects rapidly increases.

SiS2.25% Slは製鋼を行なう上で必然的に鋼中に含有される元素
で0.25%を超えて添加されると溶接性が悪くなり、
ペネレータ欠陥の発生率が増IIIするので0.25%
を上限とした。
SiS2.25% Sl is an element that is inevitably contained in steel when making steel, and if it is added in excess of 0.25%, weldability will deteriorate.
The incidence of penetrator defects increases by 0.25%.
was set as the upper limit.

P≦0.03%、S≦0.0+% P、Sは不純物であり溶接性を阻害する元素であり、そ
れぞれの上限値0.03%、0.01%を超えると電縫
溶接部近傍にわれを生じる場合がある。
P≦0.03%, S≦0.0+% P and S are impurities and elements that inhibit weldability. May cause swelling.

Nl) : 001〜0.05% Nbは熱処理なしの成形のままの状態での母管の強度を
確保するために必要な元素であり、APIの強度に関す
る規格を満たすために0.01%以上の添加が必要であ
り、0.05%を超えると降伏強度が規格値を上まわる
ことがあるので、これを上限とした。
Nl): 001~0.05% Nb is an element necessary to ensure the strength of the main pipe in the as-formed state without heat treatment, and must be 0.01% or more to meet the API strength standards. If it exceeds 0.05%, the yield strength may exceed the standard value, so this was set as the upper limit.

All : 0.005〜0.06% Alは鋼の脱酸のために必要な元素であり、鋼中酸素量
を低減させないと電縫溶接部にペネレータ欠陥を生じる
ので0.005%以上含有させることが必要であり、ま
た、0.06%を超えると粗大なへ1203系介在物が
生成して電縫溶接部近傍でねれ発生の危険が生じる。
All: 0.005 to 0.06% Al is a necessary element for deoxidizing steel, and if the amount of oxygen in the steel is not reduced, penetrator defects will occur in the electric resistance welding part, so it should be contained at 0.005% or more. Moreover, if it exceeds 0.06%, coarse 1203-based inclusions will be formed, creating a risk of twisting in the vicinity of the electric resistance welding part.

次に、上記組成の鋼管素材において、通常の工程にした
がって熱間圧延を行なった後、この熱延コイルをスリッ
ティング、成形および電縫溶接してアプセット・チュー
どング用母管を製造する。
Next, the steel pipe material having the above composition is hot-rolled according to a normal process, and then the hot-rolled coil is slit, formed, and electric resistance welded to produce a mother pipe for upset tuning.

続いて、口の母管の両端を1100〜1250℃に加熱
してアプセット加工し、その後、次の熱処理条件で熱処
理を行なう。
Subsequently, both ends of the main tube of the mouth are heated to 1100 to 1250° C. for upset processing, and then heat treatment is performed under the following heat treatment conditions.

アプセット加工は通常、パイプ端部を1100〜125
0℃に加熱した後に加工が行なわれ、その終了時点でア
プセット部温度は約i ooo℃に冷却されており、こ
の温度がら空冷等で冷加され、口の冷却の間、800〜
500℃間は冷却速度1.5〜b/秒の条件で冷却され
る。
Upset processing usually cuts the pipe end to 1100~125mm.
Processing is performed after heating to 0°C, and at the end of the processing, the upset part temperature has been cooled to approximately i ooo°C, and this temperature is cooled by air cooling etc., and during cooling of the mouth, the temperature of the upset part is reduced to 800°C
Cooling is performed at a cooling rate of 1.5 to b/sec between 500°C and 500°C.

すなわち、上記組成の鋼管に対してアプセット加工直後
の冷却を大気中放冷で行なうと、アプセット部の降伏強
度はAPI規格を下まわる。
That is, if a steel pipe having the above composition is cooled in the atmosphere immediately after upsetting, the yield strength of the upsetting portion will be lower than the API standard.

降伏強度の規格値を満たすためには、800〜500℃
間を1.5°C/秒以上で冷却すること、が必要であっ
てその場合には降伏強度は38.7klJ/m1以上に
なり、さらに、同温度区間の冷ムロ速度を5°C/秒゛
以下にすれば降伏強度は56 、2 kg / mm 
2以下となる。なお、上記組成範囲の銅は800〜50
0 ’C間を1.5〜b がらフェライト、バーライ1〜、ベイナイトへの変態が
500℃までに終了するので、とくに、500℃以下の
冷却条件については限定する必要がない。
In order to meet the standard value of yield strength, the temperature must be 800 to 500℃.
It is necessary to cool the temperature at a rate of 1.5°C/sec or more, in which case the yield strength will be 38.7klJ/m1 or more, and the cooling rate in the same temperature range must be 5°C/sec or more. The yield strength is 56,2 kg/mm if it is less than 2 seconds.
2 or less. In addition, copper in the above composition range is 800 to 50
Since the transformation to ferrite, barley 1 to bainite is completed by 500°C from 1.5 to 0'C, there is no need to particularly limit the cooling conditions below 500°C.

また、アプセット加工後、焼ならし処理を行なう場合に
800〜500℃間における冷却速度を15〜b すなわち、冷却速度15℃/秒未満の場合は降伏強度が
規格値の下限を下まわるため、また、30℃/秒を超え
ると降伏強度が規格値の上限を上まわるためである。こ
の場合もベイナイト変態が500℃までに完了するので
、500℃以下の冷却条件はとくに限定する必要がない
In addition, when performing normalizing treatment after upsetting, the cooling rate between 800 and 500°C should be set at 15 to 15°C.In other words, if the cooling rate is less than 15°C/sec, the yield strength will be below the lower limit of the standard value. Moreover, if the temperature exceeds 30° C./sec, the yield strength exceeds the upper limit of the standard value. In this case as well, since the bainite transformation is completed by 500°C, there is no need to particularly limit the cooling conditions below 500°C.

また、アプセット加工後に炉入れ・焼戻し処理を行なう
場合は、800〜3oo℃間を30〜60’C/秒の速
度で冷却し、その後、550〜650℃で焼戻す。
Further, when performing furnace heating and tempering treatment after upsetting, cooling is performed between 800 and 30°C at a rate of 30 to 60'C/sec, and then tempered at 550 to 650°C.

すなわち、焼入れ時の800〜300’C間の冷却速度
が30°C/秒未満であると、焼戻し後のアプセット部
の降伏強度が規格値を下まわり、60℃/秒を超えると
、焼戻し後の母管部の降伏強度が規格値を上まわるため
である。
In other words, if the cooling rate between 800 and 300'C during quenching is less than 30°C/sec, the yield strength of the upset part after tempering will be below the standard value, and if it exceeds 60°C/sec, the yield strength after tempering will be lower than the standard value. This is because the yield strength of the main pipe exceeds the standard value.

焼戻し温度を550℃未満にすると焼入れ時の冷却速度
を大きくした場合の降伏強度が規格値を上まわり、一方
、650℃を超えると焼入れ時の冷却速度を小さくした
場合の降伏強度が規格値を下まわるので550〜650
°Cの範囲に限定した。
If the tempering temperature is less than 550°C, the yield strength when the cooling rate during quenching is increased will exceed the standard value, while if it exceeds 650°C, the yield strength when the cooling rate during quenching is decreased will exceed the standard value. 550-650 as it goes below.
°C range.

次に、実施例について説明J゛る。Next, examples will be explained.

第1表に示す本発明および従来例の組成の鋼管素材を熱
間圧延、スリッティング、成形ならびに電縫溶接して造
管し、第2表に示J強度の母管を得、この際に溶接部の
欠陥を超音波探傷によってめたところ、第3表の通りで
あった。
The steel pipe materials having the compositions of the present invention and the conventional examples shown in Table 1 are hot-rolled, slitted, formed, and electrically welded to obtain a main pipe with J strength shown in Table 2. Defects in the welded parts were detected by ultrasonic flaw detection and were as shown in Table 3.

第1表 第2表 第3表 第2表ならびに第3表から明らかな如く、本発明法によ
る場合は、成形性・溶接性も良くて造管のままでもA 
P I J 55規格を満足している。これに対し、従
来例に係る鋼管Eは焼ならし処理をするように構成され
たものであるが、組成的に溶接欠陥が発生し易く、造管
のままでは降伏強度が規格値を上まわっている。従来例
に係る鋼管り、Eがアプセット加工後、焼ならし処理(
900℃5分保持後空冷)されたときの強度を第4表に
示すように、造管のままで使用することを前提とした鋼
管りは降伏強度の下限を下まわっている。
As is clear from Table 1, Table 2, Table 3, Tables 2 and 3, the method of the present invention has good formability and weldability, and even when the pipe is made as is, it has an A.
Meets P I J 55 standards. On the other hand, conventional steel pipe E is constructed to be subjected to normalizing treatment, but due to its composition, welding defects are likely to occur, and the yield strength of the pipe as it is produced exceeds the standard value. ing. The steel pipe E according to the conventional example is subjected to normalizing treatment (
As shown in Table 4, the strength of steel pipes when they are held at 900°C for 5 minutes and then cooled in air is below the lower limit of yield strength for steel pipes that are intended to be used as they are.

第4表 一方、本発明法によって鋼管A、 B、 Cに対しアプ
セツ1へ加工後にそれぞれの熱処理を第5表に示す如く
施すと、第5表に示す如き強度が得これらのとごろから
、本発明法によって製造Jると、その電縫管はいずれの
場合も強度規格は満たされている。
Table 4 On the other hand, when steel pipes A, B, and C are processed into fixtures 1 by the method of the present invention and then subjected to respective heat treatments as shown in Table 5, the strengths shown in Table 5 are obtained.From these points, When manufactured by the method of the present invention, the electrical resistance welded tube satisfies the strength standards in all cases.

以上詳しく説明した通り、本発明法によって低炭素、低
合金の素材から造管し、熱処理すると、従来困難とされ
ていた強度と成形性・溶接性という相反する特性を備え
た電縫鋼管を母管とするJ55クラスのアブセラ1〜デ
ユーピングを 7製造することができる。
As explained in detail above, by manufacturing pipes from low-carbon, low-alloy materials using the method of the present invention and heat-treating them, it is possible to create ERW steel pipes with contradictory properties such as strength, formability, and weldability, which were previously considered difficult. It is possible to manufacture 1 to 7 dupings of J55 class Absela pipes.

1、テ許出願人 川崎製鉄株式会社 代 理 人 弁理士 松 下 義 勝 弁護士 副 島 文 雄1. Applicant: Kawasaki Steel Corporation Representative Patent Attorney Yoshikatsu Matsushita Lawyer Fumi Soejima

Claims (1)

【特許請求の範囲】 1)重量%でC: 0.13〜0.20%、S1≦0.
25%、Mn:1.0〜1.5%、P≦0.03%、S
≦0.01%、Nb + 0.01〜0.05%、AI
l:0.005〜0.06%、残部鉄および不純物から
なる熱延コイルをスリッティング、成形および電縫溶接
して所定サイズに造管した1斡、1100〜1250℃
に加熱してアプセット加工を行ない、その冷却過程中8
00〜500℃間を1.5〜5°C/秒の速度で冷却す
ることを特徴とするアブヒツトチュービング用電縫鋼管
の製造方法。 2)重fN%r、C: 0.1.3〜0.20%、Si
S2.25%、Mn : 1.0〜1.5%、P≦0.
03%、S≦0.01%、Nb:0.01〜0.05%
、Ajl!:0.005〜0.06%、残部鉄および不
純物からなる熱延コイルをスリッティング、成形および
電縫溶接して所定サイズに造管した後、1100〜12
50°Cに加熱してアブセラ1〜加工を行ない、そのア
プセット加工後の焼ならし処理時の冷却条件としC80
0〜500’0間を15〜30”C/秒で冷却すること
を特徴とりるアブヒラ1へチュービング用電縫鋼管の製
造方法。 3)重量%でC:0.13〜0.20%、S1≦0.2
5%、Mll:1.0〜1.5%、P≦0.03%、S
≦0.01%、Nll : 0.01〜0.05%、A
[:0.005〜0゜06%、残部鉄および不純物から
なる熱延コイルをスリッティング、成形および電縫溶接
して所定サイズに造管した後、1100〜1250℃に
加熱してアプセット加工を行ない、そのアプセット加I
llの焼入れ時の冷却条件として800〜300°C間
を30〜b度で冷却した後、550〜650℃で焼戻1
0とを特徴とするアプセットチュービング用電縫鋼管の
製造方法。
[Claims] 1) C in weight%: 0.13 to 0.20%, S1≦0.
25%, Mn: 1.0-1.5%, P≦0.03%, S
≦0.01%, Nb + 0.01-0.05%, AI
l: 0.005 to 0.06%, the balance being iron and impurities, a hot rolled coil is slit, formed, and electrically welded to a specified size. One square meter, 1100 to 1250°C.
During the cooling process, the
1. A method for manufacturing an electric resistance welded steel pipe for abhit tubing, characterized by cooling the pipe at a rate of 1.5 to 5°C/second between 00°C and 500°C. 2) Weight fN%r, C: 0.1.3-0.20%, Si
S2.25%, Mn: 1.0-1.5%, P≦0.
03%, S≦0.01%, Nb: 0.01-0.05%
,Ajl! :0.005~0.06%, balance iron and impurities after forming a hot rolled coil into a specified size by slitting, forming and electric resistance welding.
Heat to 50°C and perform processing from Abcera 1 to C80 as cooling conditions during normalizing treatment after upset processing.
A method for manufacturing an ERW steel pipe for Abhira 1 tubing characterized by cooling between 0 and 500'0 at a rate of 15 to 30"C/sec. 3) C: 0.13 to 0.20% by weight, S1≦0.2
5%, Mll: 1.0-1.5%, P≦0.03%, S
≦0.01%, Nll: 0.01-0.05%, A
[:0.005~0゜06%, balance iron and impurities] A hot-rolled coil is slitted, formed, and electric resistance welded to form a pipe into a specified size, then heated to 1100~1250℃ and subjected to upset processing. Do it and add that upset
The cooling conditions during quenching of 1.1 are 800 to 300°C at 30 to 30°C, and then tempered at 550 to 650°C.
0. A method for manufacturing an ERW steel pipe for upset tubing, characterized by:
JP19223383A 1983-10-13 1983-10-13 Preparation of electric welded tube for upset tubing Granted JPS6082613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19223383A JPS6082613A (en) 1983-10-13 1983-10-13 Preparation of electric welded tube for upset tubing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19223383A JPS6082613A (en) 1983-10-13 1983-10-13 Preparation of electric welded tube for upset tubing

Publications (2)

Publication Number Publication Date
JPS6082613A true JPS6082613A (en) 1985-05-10
JPS6147885B2 JPS6147885B2 (en) 1986-10-21

Family

ID=16287867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19223383A Granted JPS6082613A (en) 1983-10-13 1983-10-13 Preparation of electric welded tube for upset tubing

Country Status (1)

Country Link
JP (1) JPS6082613A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198194U (en) * 1985-06-03 1986-12-11
JPS61198193U (en) * 1985-06-03 1986-12-11
CN106591703A (en) * 2016-12-14 2017-04-26 舞阳钢铁有限责任公司 Steel plate for pressure vessel with yield strength being 345 MPa stage and production method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198194U (en) * 1985-06-03 1986-12-11
JPS61198193U (en) * 1985-06-03 1986-12-11
JPH0313118Y2 (en) * 1985-06-03 1991-03-26
JPH0313119Y2 (en) * 1985-06-03 1991-03-26
CN106591703A (en) * 2016-12-14 2017-04-26 舞阳钢铁有限责任公司 Steel plate for pressure vessel with yield strength being 345 MPa stage and production method

Also Published As

Publication number Publication date
JPS6147885B2 (en) 1986-10-21

Similar Documents

Publication Publication Date Title
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
JPS62209B2 (en)
JP2004346355A (en) Method for producing electroseamed steel pipe for high-strength line pipe excellent in hydrogen-crack resistance
JPS6082613A (en) Preparation of electric welded tube for upset tubing
JPH0250916A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JP2007277654A (en) Cold forged components, manufacturing method for obtaining the same, and steel material
JPS59110733A (en) Gas welding portion ductility improvement for unstabilized ferrite type stainless steel coil
JP2527512B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JPH05255749A (en) Production of seamless steel tube having high strength and high toughness and excellent in ssc resistance
JPH07286213A (en) Production of thick hot coil good in dwtt property
JPH06184635A (en) Production of high strength seamless steel pipe excellent in fracture propagating resistance
JPS6149365B2 (en)
JPH07102321A (en) Production of non-heattreated type resistance welded oil well pipe having tensile strength of 800mpa and above
KR102181731B1 (en) High strength steel wire with improved drawability and the method for manufacturing the same
JP2564425B2 (en) Manufacturing method of high toughness 40kg class steel pipe with excellent SSC resistance
JPS6293343A (en) Non-heattreated steel wire
JP2004300461A (en) Method for producing high tension steel tube for building structure having low yield ratio
JPS59153841A (en) Production of high-tension electric welded steel pipe having uniform strength
JPH0250915A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JPH04154913A (en) Production of high tensile strength bent pipe excellent in corrosion resistance
JPS61126922A (en) Copper-coated steel wire
JPH0364415A (en) Production of high-toughness seamless low alloy steel tube
JPS59150019A (en) Production of seamless steel pipe having high toughness
JPS59182915A (en) Production of high tensile steel
JPS6328964B2 (en)