KR102181731B1 - High strength steel wire with improved drawability and the method for manufacturing the same - Google Patents

High strength steel wire with improved drawability and the method for manufacturing the same Download PDF

Info

Publication number
KR102181731B1
KR102181731B1 KR1020180164551A KR20180164551A KR102181731B1 KR 102181731 B1 KR102181731 B1 KR 102181731B1 KR 1020180164551 A KR1020180164551 A KR 1020180164551A KR 20180164551 A KR20180164551 A KR 20180164551A KR 102181731 B1 KR102181731 B1 KR 102181731B1
Authority
KR
South Korea
Prior art keywords
steel wire
wire
strength
manufacturing
present
Prior art date
Application number
KR1020180164551A
Other languages
Korean (ko)
Other versions
KR20200075644A (en
Inventor
이충열
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020180164551A priority Critical patent/KR102181731B1/en
Publication of KR20200075644A publication Critical patent/KR20200075644A/en
Application granted granted Critical
Publication of KR102181731B1 publication Critical patent/KR102181731B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/02Drawing metal wire or like flexible metallic material by drawing machines or apparatus in which the drawing action is effected by drums
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

신선가공성이 향상된 고강도 강선이 개시된다. 개시된 강선은 중량%로, C: 0.95 내지 1%, Mn: 0.3 내지 0.8%, Si: 0.1 내지 0.3%, Cr: 0.4 내지 0.8%, 나머지는 Fe 및 불가피한 불순물을 포함하고, 단면감소율(Reduction Ratio)이 40% 이상이며, 인강강도가 1,800Mpa 이상인 것을 특징으로 한다.A high-strength steel wire with improved drawability is disclosed. The disclosed steel wire is a weight percent, C: 0.95 to 1%, Mn: 0.3 to 0.8%, Si: 0.1 to 0.3%, Cr: 0.4 to 0.8%, the rest contains Fe and inevitable impurities, and the reduction ratio (reduction ratio) ) Is 40% or more, and the tensile strength is 1,800Mpa or more.

Description

신선가공성이 향상된 고강도 강선 및 그 제조방법{HIGH STRENGTH STEEL WIRE WITH IMPROVED DRAWABILITY AND THE METHOD FOR MANUFACTURING THE SAME}High strength steel wire with improved drawability and its manufacturing method {HIGH STRENGTH STEEL WIRE WITH IMPROVED DRAWABILITY AND THE METHOD FOR MANUFACTURING THE SAME}

본 발명은 우수한 신선가공성을 갖는 고강도 강선 및 그 제조방법에 관한 것이다.The present invention relates to a high-strength steel wire having excellent drawability and a manufacturing method thereof.

일반적으로, 고강도 강선을 얻기 위해 여러 가지 방법이 사용될 수 있다.In general, several methods can be used to obtain a high-strength steel wire.

우선 소재 자체의 강도를 증가시키는 방법이 사용될 수 있다. 즉 고강도 강선을 얻기 위한 방법의 하나로서, 강의 강도를 높이는 강화원소를 다량 첨가하여 소재 자체의 강도를 증가시키는 방법이 사용될 수 있다. 이러한 강화 원소의 대표적인 예로는 탄소를 들 수 있다. 탄소 함량이 증가할 경우 선재 내부에는 경질상인 시멘타이트의 분율이 증가하고 펄라이트 조직의 라멜라 간격이 조밀해져 소재의 강도가 향상되게 된다. 탄소 이외에도 다양한 합금원소를 첨가하는 기술이 제안되어 왔다.First of all, a method of increasing the strength of the material itself can be used. That is, as one of the methods for obtaining a high-strength steel wire, a method of increasing the strength of the material itself by adding a large amount of a reinforcing element that increases the strength of the steel may be used. A representative example of such a strengthening element is carbon. When the carbon content increases, the fraction of hard cementite inside the wire rod increases, and the lamellar spacing of the pearlite structure becomes dense, so that the strength of the material is improved. In addition to carbon, technologies for adding various alloying elements have been proposed.

다른 방법으로 가공경화율을 증가시키는 방법이 사용될 수 있다. 강선 등은 압연된 선재를 신선 및 열처리하여 제조한다. 상기 선재의 신선가공시 가공경화율을 증가시킴으로써 강도가 대폭 향상될 수 있다. 즉, 신선가공시 가공경화율을 증가시키면 라멜라 간격이 미세화되고 가공경화계수가 증가하며, 전위의 집적도가 증가하게 되어 강선의 강도는 증가하게 된다.Alternatively, a method of increasing the work hardening rate can be used. Steel wires and the like are manufactured by drawing and heat treatment of a rolled wire rod. Strength can be significantly improved by increasing the work hardening rate when drawing the wire rod. That is, when the work hardening rate is increased during wire drawing, the lamellar spacing becomes finer, the work hardening coefficient increases, and the degree of integration of dislocations increases, thereby increasing the strength of the steel wire.

또 다른 방법으로 강선의 신선변형율을 증가시킴으로써 강도가 향상될 수 있다. 이 때, 소재의 신선변형율은 소재의 연성에 밀접한 관계가 있는 것으로서 소재 자체가 신선가공시 단선이 일어나지 않고 용이하게 가공될수록 강도향상에 유리하다.As another method, strength can be improved by increasing the wire strain rate of the steel wire. At this time, the wire strain rate of the material is closely related to the ductility of the material, and the strength is improved as the material itself is easily processed without disconnection during wire drawing.

전술한 방법들은 모두 독립적으로 작용하는 것이 아니라 상호 연관되어 강선의 강도를 변화시키는 것이므로, 이들을 독립적으로 제어하여 강선의 강도를 향상시키는 것은 한계가 있다. Since all of the above-described methods do not work independently but are interrelated to change the strength of the steel wire, there is a limit to improving the strength of the steel wire by controlling them independently.

고강도강 제조시 합금원소를 첨가함에 따라 선재 압연 후, 후속되는 강선 제조공정에서 단선이 발생하고, 강선의 도전율이 감소하는 문제가 발생한다. 따라서, 강선의 강도에 미치는 합금원소의 영향 정도를 파악하여 강도를 높이면서도 신선가공성을 확보할 수 있는 강의 개발이 요구된다.Due to the addition of an alloying element during the manufacture of high-strength steel, a disconnection occurs in the subsequent steel wire manufacturing process after the wire rod rolling, and the conductivity of the steel wire decreases. Therefore, there is a need to develop a steel that can increase the strength while securing the drawability by grasping the degree of influence of the alloying element on the strength of the steel wire.

본 발명의 실시예들은 강도를 확보하면서도 신선가공성이 향상된 고강도 강선 및 그 제조방법을 제공하고자 한다.Embodiments of the present invention are intended to provide a high-strength steel wire with improved drawability while securing strength and a method of manufacturing the same.

본 발명의 일 실시예에 따른 신선가공성이 향상된 고강도 강선은 중량%로, C: 0.95 내지 1%, Mn: 0.3 내지 0.8%, Si: 0.1 내지 0.3%, Cr: 0.4 내지 0.8%, 나머지는 Fe 및 불가피한 불순물을 포함하고, 단면감소율(Reduction Ratio)이 40% 이상이며, 인강강도가 1,800Mpa 이상이다.The high-strength steel wire with improved drawability according to an embodiment of the present invention is weight %, C: 0.95 to 1%, Mn: 0.3 to 0.8%, Si: 0.1 to 0.3%, Cr: 0.4 to 0.8%, and the rest is Fe And inevitable impurities, a reduction ratio of 40% or more, and a tensile strength of 1,800 MPa or more.

또한, 상기 강선의 도전율이 8%IACS 이상일 수 있다.In addition, the electrical conductivity of the steel wire may be 8% IACS or more.

또한, 상기 강선의 인강강도가 1,800 내지 2,300Mpa일 수 있다.In addition, the tensile strength of the steel wire may be 1,800 to 2,300Mpa.

본 발명의 일 실시예에 따른 신선가공성이 향상된 고강도 강선의 제조방법은 중량%로, C: 0.95 내지 1%, Mn: 0.3 내지 0.8%, Si: 0.1 내지 0.3%, Cr: 0.4 내지 0.8%, 나머지는 Fe 및 불가피한 불순물을 포함하는 선재를 변형율(e) 1.65 내지 1.80의 범위로 신선 가공하여 강선을 얻는 단계; 및 상기 강선을 280~350℃에서 열처리하는 단계;를 포함한다. The method of manufacturing a high-strength steel wire with improved drawability according to an embodiment of the present invention is in wt%, C: 0.95 to 1%, Mn: 0.3 to 0.8%, Si: 0.1 to 0.3%, Cr: 0.4 to 0.8%, The rest of the wire rod containing Fe and inevitable impurities are wired to a strain (e) in the range of 1.65 to 1.80 to obtain a steel wire; And heat-treating the steel wire at 280 to 350°C.

또한, 신선 가공 전, LP열처리하는 단계;를 더 포함할 수 있다. In addition, prior to the wire drawing, the step of LP heat treatment; may further include.

또한, LP 열처리 온도는 500~630℃일 수 있다. In addition, the LP  heat treatment temperature may be 500 ~ 630 ℃.

본 발명에 따르면, 고강도화의 걸림돌로 작용하고 있는 디라미네이션의 발생을 억제시키고 비틀림특성 또한 우수할 뿐만 아니라, 신선한계를 증대시킬 수 있어 고강도를 갖는 강선을 제공할 수 있다.According to the present invention, it is possible to provide a steel wire having high strength by suppressing the occurrence of delamination, which acts as an obstacle for increasing strength, and having excellent torsional characteristics as well as increasing freshness.

이하에서는 본 발명의 실시 예를 첨부 도면을 참조하여 상세히 설명한다. 이하의 실시 예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달하기 위해 제시하는 것이다. 본 발명은 여기서 제시한 실시 예만으로 한정되지 않고 다른 형태로 구체화될 수도 있다. 도면은 본 발명을 명확히 하기 위해 설명과 관계 없는 부분의 도시를 생략하고, 이해를 돕기 위해 구성요소의 크기를 다소 과장하여 표현할 수 있다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The following examples are presented in order to sufficiently convey the spirit of the present invention to those of ordinary skill in the art to which the present invention pertains. The present invention is not limited to the exemplary embodiments presented here, but may be embodied in other forms. In the drawings, in order to clarify the present invention, portions not related to the description may be omitted, and sizes of components may be slightly exaggerated to aid understanding.

명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part "includes" a certain component, it means that other components may be further included rather than excluding other components unless otherwise stated.

단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.Singular expressions include plural expressions, unless the context clearly has exceptions.

본 발명의 일 측면에 따른 신선가공성이 향상된 고강도 강선은 중량%로, C: 0.95 내지 1%, Mn: 0.3 내지 0.8%, Si: 0.1 내지 0.3%, Cr: 0.4 내지 0.8%, 나머지는 Fe 및 불가피한 불순물을 포함하고, 단면감소율(Reduction Ratio)이 35% 이상이며, 인강강도가 1,800Mpa 이상이다.The high-strength steel wire with improved drawability according to an aspect of the present invention is in wt%, C: 0.95 to 1%, Mn: 0.3 to 0.8%, Si: 0.1 to 0.3%, Cr: 0.4 to 0.8%, and the remainder is Fe and It contains inevitable impurities, has a reduction ratio of 35% or more, and a tensile strength of 1,800Mpa or more.

이하, 본 발명의 실시예에서의 함금성분 함량의 수치 한정 이유에 대하여 설명한다. 이하에서는 특별한 언급이 없는 한 단위는 중량%이다.Hereinafter, the reason for limiting the numerical value of the content of the alloying component in the examples of the present invention will be described. Hereinafter, unless otherwise specified, the unit is% by weight.

C의 함량은 0.95 내지 1%이다.The content of C is 0.95 to 1%.

탄소(C)는 강선의 강도를 향상시키기 위해 첨가되는 원소로, 0.95%이상 첨가하는 것이 바람직하다. 다만, 그 함량이 과도할 경우, 강도 향상은 얻어지지만 연성이 저하되는 문제가 있어, 그 상한을 1%로 한정할 수 있다. Carbon (C) is an element added to improve the strength of the steel wire, and it is preferable to add 0.95% or more. However, when the content is excessive, strength improvement is obtained, but there is a problem that ductility is lowered, and the upper limit thereof may be limited to 1%.

Mn의 함량은 0.3 내지 0.8%이다.The content of Mn is 0.3 to 0.8%.

망간(Mn)은 소입성을 증가시키는데 효과적인 원소로 0.3%이상 첨가할 수 있다. 다만, 그 함량이 과도할 경우, 중심편석을 일으켜 저온조직을 유발하는 문제가 있어, 그 상한을 0.8%로 한정할 수 있다. Manganese (Mn) is an element that is effective in increasing the hardenability and can be added by 0.3% or more. However, if the content is excessive, there is a problem of causing central segregation and causing low-temperature tissue, and the upper limit can be limited to 0.8%.

Si의 함량은 0.1 내지 0.3%이다.The content of Si is 0.1 to 0.3%.

실리콘(Si)은 페라이트상의 고용원소로, 강도 확보를 위해 0.1% 이상 첨가할 수 있다. 다만, 그 함량이 과도할 경우, 페라이트상을 취하시켜 신선가공에 문제가 있을 뿐만 아니라, 페라이트에 고용시 응력장을 형성함으로써 자유전자의 이동을 강하게 억제하여 강선의 도전율을 감소시킨다. 따라서, 그 상한을 0.3%로 한정할 수 있다. Silicon (Si) is a solid solution element in a ferrite phase, and may be added 0.1% or more to secure strength. However, when the content is excessive, the ferrite phase is taken out and there is a problem in the wire drawing process, and by forming a stress field during solid solution in ferrite, the movement of free electrons is strongly suppressed, thereby reducing the conductivity of the steel wire. Therefore, the upper limit can be limited to 0.3%.

Cr의 함량은 0.4 내지 0.8%이다.The content of Cr is 0.4 to 0.8%.

크롬(Cr)은 펄라이트의 층상 조직을 미세화함으로써 강도와 연성을 향상시키는 성분으로서, 0.4% 이상 첨가하는 것이 바람직하다. 다만, 그 함량이 과도할 경우, 항온변태속도를 감소시켜 생산성에 영향을 미치는 바, 그 상한을 0.8%로 한정할 수 있다. Chromium (Cr) is a component that improves strength and ductility by miniaturizing the layered structure of pearlite, and is preferably added in an amount of 0.4% or more. However, if the content is excessive, the constant temperature transformation rate is reduced to affect productivity, and the upper limit may be limited to 0.8%.

본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 철강제조 과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.The remaining component of the present invention is iron (Fe). However, since unintended impurities from raw materials or the surrounding environment may inevitably be mixed in a typical steel manufacturing process, this cannot be excluded. Since these impurities are known to anyone of ordinary skill in the manufacturing process, all the contents are not specifically mentioned in the present specification.

이하, 본 발명의 제조방법에 대하여 설명한다.Hereinafter, the manufacturing method of the present invention will be described.

본 발명의 다른 일 측면에 따른 신선가공성이 향상된 고강도 강선의 제조방법은, 중량%로, C: 0.95 내지 1%, Mn: 0.3 내지 0.8%, Si: 0.1 내지 0.3%, Cr: 0.4 내지 0.8%, 나머지는 Fe 및 불가피한 불순물을 포함하는 선재를 변형율 1.65 내지 1.80%의 범위로 신선 가공하여 강선을 얻는 단계; 및 상기 강선을 280~350℃에서 열처리하는 단계;를 포함한다. A method of manufacturing a high-strength steel wire with improved drawability according to another aspect of the present invention, in weight%, C: 0.95 to 1%, Mn: 0.3 to 0.8%, Si: 0.1 to 0.3%, Cr: 0.4 to 0.8% , Obtaining a steel wire by drawing the wire rod containing Fe and inevitable impurities in the range of 1.65 to 1.80% of the rest; And heat-treating the steel wire at 280 to 350°C.

본 발명의 강선은 상술한 합금조성을 만족하는 선재를 제조한 후, 상기 선재를 신선하는 공정을 거침으로써 제조할 수 있다.The steel wire of the present invention can be manufactured by manufacturing a wire rod satisfying the above-described alloy composition, and then passing through a process of drawing the wire rod.

우선, 전술한 조성을 갖는 빌렛(Billet)을 850 ~ 1,100℃에서 열간압연한 후, 냉각하여 선재를 제조한다. 제조된 선재가 신선가공에 적합하도록, 신선가공 전에 상기 선재를 LP(Lead Partenting)열처리하는 것이 바람직하다. 상기 LP열처리는 고온으로 열처리된 선재를 납욕에 담금질함으로써 신선가공에 적합한 조직으로 변태시키는 공정을 의미한다.First, a billet having the above composition is hot-rolled at 850 to 1,100°C, and then cooled to manufacture a wire rod. In order for the manufactured wire rod to be suitable for wire drawing, it is preferable to heat-treat the wire rod before wire drawing. The LP heat treatment refers to a process of transforming a wire rod heat-treated at a high temperature into a structure suitable for wire drawing by quenching in a lead bath.

개시된 실시예에 따르면, 선재를 500~630℃에서 LP 열처리하여 미세한 펄라이트를 형성하는 것이 바람직하다.According to the disclosed embodiment, it is preferable to form fine pearlite by heat treating the wire rod at 500 ~ 630 °C.

상기 LP 열처리시 그 온도가 500℃ 미만이면 저온조직이 발생하여 신선 가공성을 악화시킬 우려가 있으며, 반면 그 온도가 630℃를 초과하게 되면 펄라이트 층상간격이 조대해져 강도를 확보할 수 없게 되는 문제가 있다.During the LP  heat treatment, if the temperature is less than 500°C, there is a concern that a low-temperature structure will occur and deteriorate the wire drawing. On the other hand, if the temperature exceeds 630°C, the pearlite layer spacing becomes coarse and thus strength cannot be secured. have.

이후, LP열처리를 거친 선재의 강도를 증가시키기 위해 신선가공하여 강선을 제조한다.Thereafter, in order to increase the strength of the wire rod subjected to LP heat treatment, the steel wire is manufactured by wire drawing.

선재의 신선가공 시, 선재의 변형율(ε)이 1.65 내지 1.80%의 범위를 만족하도록 신선가공을 제어할 수 있다. 선재의 변형율이 1.65% 미만인 경우, 충분한 강도를 확보할 수 없으며, 1.65%를 초과하는 경우에는 지나친 가공경화로 인하여 강선의 단선이 일어나는 문제가 있다.When drawing the wire rod, the wire drawing can be controlled so that the strain (ε) of the wire rod satisfies the range of 1.65 to 1.80%. If the strain rate of the wire rod is less than 1.65%, sufficient strength cannot be secured, and if it exceeds 1.65%, there is a problem that the wire breakage occurs due to excessive work hardening.

변형율(e)은 2ln(di/df)로 표현된다. 여기서, di는 신선가공전 강선의 초기 직경을 의미하며, df는 신선가공후의 강선의 직경을 의미한다. The strain (e) is expressed as 2ln(di/df). Here, di means the initial diameter of the steel wire before wire drawing, and df means the diameter of the steel wire after wire drawing.

신선가공 후에는 280~350℃의 온도 범위에서 강선에 대한 열처리를 수행한다. 열처리 온도가 280℃ 미만일 경우, 강선에 에이징(aging)이 발생하여 전위의 이동이 어려워짐으로써 신선가공성을 확보할 수 없다. 반면 열처리 온도가 350℃를 초과할 경우, 강선의 펄라이트 조직내에 포함된 판상의 시멘타이트가 구상으로 변화되어 인장강도를 확보할 수 없다. After wire drawing, heat treatment is performed on the steel wire in a temperature range of 280 to 350°C. When the heat treatment temperature is less than 280° C., aging occurs in the steel wire, making it difficult to move dislocations, and thus wire-drawing processability cannot be secured. On the other hand, when the heat treatment temperature exceeds 350°C, the sheet-like cementite contained in the pearlite structure of the steel wire changes into a spherical shape, and thus tensile strength cannot be secured.

전술한 바와 같이, 개시된 실시예는 신선가공 후에 열처리를 행하여, 디라미네이션 발생을 억제하고, 비틀림특성을 향상시킬 수 있다. 보다 상세하게, 개시된 실시예는 신선가공 후에 열처리를 행함으로써, 강선의 단면감소율을 40% 이상으로 증가시킬 수 있고, 연선 가공시 강선의 디라미네이션의 발생을 방지할 수 있으며, 1800MPa 이상의 인장강도 및 8%IACS 이상의 도전율을 확보할 수 있다.As described above, in the disclosed embodiment, heat treatment is performed after wire drawing, thereby suppressing the occurrence of delamination and improving torsion characteristics. In more detail, the disclosed embodiment may increase the cross-sectional reduction rate of the steel wire to 40% or more by performing heat treatment after wire drawing, prevent the occurrence of delamination of the steel wire during stranded wire processing, and have a tensile strength of 1800 MPa or more and Conductivity of 8% IACS or more can be secured.

따라서, 개시된 실시예에 따른 강선은 상기 특성들이 요구되는 송전선용 ACSR(Aluminum Conductor Steel Reinforced)) 강선에 적용될 수 있다.Therefore, the steel wire according to the disclosed embodiment can be applied to an ACSR (Aluminum Conductor Steel Reinforced) (ACSR) steel wire for a transmission line in which the above characteristics are required.

이하, 실시예를 통하여 본 발명을 보다 상세하게 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다. Hereinafter, the present invention will be described in more detail through examples. However, it should be noted that the following examples are for illustrative purposes only and are not intended to limit the scope of the present invention. This is because the scope of the present invention is determined by matters described in the claims and matters reasonably inferred therefrom.

하기 표 1의 성분범위를 가진 잉고트(Ingot)를 900℃에서 열간압연하여 선재를 제조하였다. A wire rod was manufactured by hot rolling an ingot having a component range of Table 1 at 900°C.

구분division 성분(중량 %)Ingredient (% by weight) CC SiSi MnMn CrCr 발명강 1Invention Lecture 1 0.920.92 0.150.15 0.50.5 0.60.6 발명강 2Invention Lecture 2 0.970.97 0.20.2 0.50.5 0.60.6 비교강 1Comparative lecture 1 0.970.97 2.02.0 0.50.5 0.30.3

이후, 하기 표 2의 조건으로 신선가공 및 열처리하여 강선을 제조하였다. Thereafter, wire drawing and heat treatment were performed under the conditions of Table 2 below to manufacture a steel wire.

제조된 실시예와 비교예의 기계적 특성(인장강도, 단면감소율, 디라미네이션 발생여부)을 측정하고, 그 결과를 하기 표 2에 나타내었다.The mechanical properties (tensile strength, cross-sectional reduction rate, and delamination occurrence) of the prepared Examples and Comparative Examples were measured, and the results are shown in Table 2 below.

인장강도는, 열간압연된 선재를 ASTM E8 규격에 맞게 인장시편을 가공한 후, 전술한 강선 제조방법에 따른 후 인장시험을 실시하여 측정하였다. Tensile strength was measured by processing a tensile specimen of the hot-rolled wire rod according to ASTM E8 standard, and then performing a tensile test after following the above-described steel wire manufacturing method.

RA는 단면감소율(Reduction Ratio)을 의미하며, 소재의 인장시험시 파단된 인장시편에서 단면적의 변화를 측정한 것으로 소재의 연성을 수치로 표현한 것이다. RA means the reduction ratio, and it is a measurement of the change in the cross-sectional area of the tensile specimen broken during the tensile test of the material, and expresses the ductility of the material as a numerical value.

또한, 횡방향 응력을 가하는 비틀림 시험 시 강선이 파단할 때까지의 회전수를 비틀림수로 하였으며, 소선 파단부에 나선형의 파단 불량이 나타나는지 확인하여 디라미네이션 발생 유무 하기 표 2에 기재하였다. In addition, the number of rotations until the breakage of the steel wire was taken as the number of twists in the torsion test in which the lateral stress was applied, and it was checked whether or not a helical break failure appeared in the broken part of the wire, and the presence or absence of delamination was shown in Table 2 below.

구분division 선재Wire 제조공정Manufacture process 기계적 특성Mechanical properties 도전율
(%IACS)
Conductivity
(%IACS)
신선변형율(%)Fresh strain (%) 열처리온도Heat treatment temperature 인장강도
(MPa)
The tensile strength
(MPa)
RA(%)RA(%) 디라미네이션 발생 유무Whether or not delamination has occurred
실시예 1Example 1 발명강 1Invention Lecture 1 1.711.71 330℃330℃ 20402040 5454 미발생Not occurring 8.458.45 실시예 2Example 2 발명강 2Invention Lecture 2 1.711.71 330℃330℃ 21642164 5151 미발생Not occurring 8.428.42 비교예 1Comparative Example 1 발명강 1Invention Lecture 1 1.921.92 240℃240℃ 21632163 5656 발생Occur 8.418.41 비교예 2Comparative Example 2 발명강 2Invention Lecture 2 1.711.71 240℃240℃ 21992199 5757 발생Occur 8.408.40 비교예 3Comparative Example 3 비교강 1Comparative lecture 1 1.711.71 240℃240℃ 19761976 2727 발생Occur 4.794.79 비교예 4Comparative Example 4 비교강 1Comparative lecture 1 1.711.71 330℃330℃ 21632163 2828 발생Occur 4.804.80

상기 표 2에 나타난 바와 같이, 본 발명에 부합되는 성분 및 조건으로 제조된 실시예 1 및 2는 인장강도를 2,200MPa 이상으로 확보할 수 있을 뿐만 아니라, RA가 40% 이상으로 나타났고, 디라미네이션이 발생하지 않았음을 확인할 수 있다. 따라서, 개시된 실시예에 따르면 연성을 저하시키지 않으면서 강도를 증가시킬 수 있음을 확인할 수 있다. As shown in Table 2, Examples 1 and 2 prepared with components and conditions conforming to the present invention not only secured a tensile strength of 2,200 MPa or more, but also had a RA of 40% or more, and delamination It can be seen that this did not occur. Therefore, it can be seen that according to the disclosed embodiment, the strength can be increased without reducing the ductility.

또한, 실시예 1 및 2는 도전율이 8%IACS 이상으로 나타나, 송선선용 소재에 적용이 가능하다. 이는 고용강화 원소인 Si의 함량을 0.3% 이하로 감소함으로써 자유전자의 이동을 원활하게 하여 도전율을 확보한 본 발명의 합금설계에 기인한 것으로 판단된다. In addition, Examples 1 and 2 showed a conductivity of 8% IACS or more, and thus can be applied to materials for transmission lines. It is believed that this is due to the alloy design of the present invention in which the content of Si, which is a solid solution strengthening element, is reduced to 0.3% or less to facilitate the movement of free electrons to secure electrical conductivity.

또한, 실시예 1 및 2의 경우 비교예 2 및 3에 비해 열처리 온도를 증가시켜 시효현상을 억제시킴으로써 제안된 범위의 변형율을 인가하더라도, 강선의 디라미네이션 발생을 억제할 있었다.In addition, in the case of Examples 1 and 2, by increasing the heat treatment temperature compared to Comparative Examples 2 and 3 to suppress the aging phenomenon, even if the strain in the suggested range was applied, the occurrence of delamination of the steel wire was suppressed.

반면, 비교예 1은 신선변형율이 1.92%로 1.65~1.80% 범위를 벗어나, 지나친 가공경화로 인하여 신선가공시 디라미네이션이 발생하였다.On the other hand, in Comparative Example 1, the wire strain rate was 1.92%, out of the range of 1.65 to 1.80%, and delamination occurred during wire drawing due to excessive work hardening.

비교예 2는 열처리온도가 240℃로 낮아, 전위의 이동이 어려워짐으로써 신선가공시 디라미네이션이 발생하였다.In Comparative Example 2, the heat treatment temperature was as low as 240° C., and the dislocation was difficult to move, and delamination occurred during wire drawing.

비교예 3 및 4는 RA값이 40% 미만으로 나타나 소재가 충분히 연화되지 못하였음을 알 수 있다. 이는 강선의 연성을 열위하게 하여 신선가공성을 악화시킬 수 있다. 또한 도전율이 8%IACS 미만으로 나타나 본 발명에서 목표하는 송선선용 소재에 적용에 무리가 있다. Comparative Examples 3 and 4 showed that the RA value was less than 40%, indicating that the material was not sufficiently softened. This may deteriorate the ductility of the steel wire and deteriorate the wire drawing. In addition, since the conductivity is less than 8% IACS, it is unreasonable to apply to the material for transmission line targets in the present invention.

결론적으로, 개시된 실시예에 따른 중량%로, C: 0.95 내지 1%, Mn: 0.3 내지 0.8%, Si: 0.1 내지 0.3%, Cr: 0.4 내지 0.8%, 나머지는 Fe 및 불가피한 불순물을 포함하는 강선은 신선변형율 및 열처리온도를 최적화하여 강도를 높이면서도 신선가공성 및 도전율을 확보할 수 있다. In conclusion, in wt% according to the disclosed embodiment, C: 0.95 to 1%, Mn: 0.3 to 0.8%, Si: 0.1 to 0.3%, Cr: 0.4 to 0.8%, the rest is a steel wire containing Fe and inevitable impurities By optimizing the wire strain and heat treatment temperature, it is possible to increase the strength while securing the wire drawability and conductivity.

상술한 바에 있어서, 본 발명의 예시적인 실시예들을 설명하였지만, 본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 특허청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다. As described above, although exemplary embodiments of the present invention have been described, the present invention is not limited thereto, and those of ordinary skill in the art are within the scope not departing from the concept and scope of the following claims. It will be appreciated that various changes and modifications are possible in.

Claims (6)

중량%로, C: 0.95 내지 1%, Mn: 0.3 내지 0.8%, Si: 0.1 내지 0.3%, Cr: 0.4 내지 0.8%, 나머지는 Fe 및 불가피한 불순물을 포함하고,
단면감소율(Reduction Ratio)이 40% 이상이고,
인강강도가 1,800 내지 2,300Mpa 이며,
도전율이 8%IACS 이상인 신선가공성이 향상된 고강도 강선.
In wt%, C: 0.95 to 1%, Mn: 0.3 to 0.8%, Si: 0.1 to 0.3%, Cr: 0.4 to 0.8%, the remainder contains Fe and inevitable impurities,
The reduction ratio is more than 40%,
The tensile strength is 1,800 to 2,300Mpa,
High-strength steel wire with improved drawability with a conductivity of 8%IACS or higher
삭제delete 삭제delete 중량%로, C: 0.95 내지 1%, Mn: 0.3 내지 0.8%, Si: 0.1 내지 0.3%, Cr: 0.4 내지 0.8%, 나머지는 Fe 및 불가피한 불순물을 포함하는 선재를 500~630℃에서 LP 열처리하는 단계;
상기 LP 열처리된 선재를 변형율(e) 1.65 내지 1.80%의 범위로 신선 가공하여 강선을 얻는 단계; 및
상기 강선을 280~350℃에서 열처리하는 단계;를 포함하는 신선가공성이 향상된 고강도 강선의 제조방법.
In wt%, C: 0.95 to 1%, Mn: 0.3 to 0.8%, Si: 0.1 to 0.3%, Cr: 0.4 to 0.8%, the remainder is LP heat treatment at 500 to 630 °C of a wire including Fe and inevitable impurities The step of doing;
Obtaining a steel wire by wire drawing the LP heat-treated wire rod at a strain rate (e) of 1.65 to 1.80%; And
Heat-treating the steel wire at 280 to 350°C; Method for manufacturing a high-strength steel wire with improved drawability.
삭제delete 삭제delete
KR1020180164551A 2018-12-18 2018-12-18 High strength steel wire with improved drawability and the method for manufacturing the same KR102181731B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180164551A KR102181731B1 (en) 2018-12-18 2018-12-18 High strength steel wire with improved drawability and the method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180164551A KR102181731B1 (en) 2018-12-18 2018-12-18 High strength steel wire with improved drawability and the method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20200075644A KR20200075644A (en) 2020-06-26
KR102181731B1 true KR102181731B1 (en) 2020-11-24

Family

ID=71136534

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180164551A KR102181731B1 (en) 2018-12-18 2018-12-18 High strength steel wire with improved drawability and the method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR102181731B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101428174B1 (en) 2012-07-13 2014-08-07 주식회사 포스코 Steel wire having excellent torsion property and method for manufacturing thereof
JP2017218659A (en) * 2016-06-10 2017-12-14 住友電気工業株式会社 Wire for diagonal winding spring, diagonal winding spring and method for producing the same
WO2018069955A1 (en) * 2016-10-11 2018-04-19 新日鐵住金株式会社 Steel wire and coated steel wire

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100610098B1 (en) * 2004-07-26 2006-08-08 현대자동차주식회사 steering locking system
KR20110066637A (en) * 2009-12-11 2011-06-17 주식회사 포스코 Method for manufacturing high strength steel wire for prestressed concrete stranded wire and high strength steel wire for prestressed concrete stranded wire produced by the same
KR20110069353A (en) * 2009-12-17 2011-06-23 주식회사 포스코 High strength steel wire having excellent twist properties and mothod for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101428174B1 (en) 2012-07-13 2014-08-07 주식회사 포스코 Steel wire having excellent torsion property and method for manufacturing thereof
JP2017218659A (en) * 2016-06-10 2017-12-14 住友電気工業株式会社 Wire for diagonal winding spring, diagonal winding spring and method for producing the same
WO2018069955A1 (en) * 2016-10-11 2018-04-19 新日鐵住金株式会社 Steel wire and coated steel wire

Also Published As

Publication number Publication date
KR20200075644A (en) 2020-06-26

Similar Documents

Publication Publication Date Title
KR100979006B1 (en) Wire Rods Having Superior Strength And Ductility For Drawing And Method For Manufacturing The Same
KR20130034045A (en) Special steel steel-wire and special steel wire material
KR102042062B1 (en) Steel wire rod for cold forging and methods for manufacturing thereof
KR101987656B1 (en) High strength steel wire and the method for manufacturing the same
KR102181731B1 (en) High strength steel wire with improved drawability and the method for manufacturing the same
KR101657803B1 (en) High strength cable having excellent sour properties and manufacturing method for the same
KR101657848B1 (en) Soft magnetic steel having excellent forging characteristic, soft magnetic part and method of manufacturing the same
KR102031425B1 (en) High strength steel wire having sulfide stress cracking resistance properties and method of manufacturing the same
KR101767822B1 (en) High strength wire rod and steel wire having excellent corrosion resistance and method for manufacturing thereof
KR101889179B1 (en) High-strength steel wire and method for manufacturing same
KR101328298B1 (en) High strength wire rod, stell wire having excellent drawability and method for manufacturing thereof
KR102223272B1 (en) High strength flexible steel wire with excellent fatigue properties and manufacturing method thereof, manufacturing method of high carbon steel wire rod for flexible steel wire
KR101560877B1 (en) Medium carbon sofr wire rod having excellent impact toughness and method for manufacturing the same
KR102464611B1 (en) Steel wire with improved wire drawability and the method for manufacturing the same
KR102312331B1 (en) High strenth plated steel wire and manufacturing method thereof
KR20110069353A (en) High strength steel wire having excellent twist properties and mothod for manufacturing the same
KR101328338B1 (en) Wire rod and heat treated wire rod for drawing and high strength stell wire
KR102415307B1 (en) High Strength Hypoeutectoid Steel Wire and method for Manufacturing the same
KR101328320B1 (en) Hyper eutectoid wire rod having high strength and method for manufacturing the same
KR101449113B1 (en) High carbon steel wire having excellent bending-fatigue properties and ductility and method for manufacturing thereof
KR20160075957A (en) High strength and corrosion resistance steel wire and method for manufacturing the same
EP3553197A1 (en) High strength steel wire having excellent corrosion resistance and method for manufacturing same
KR102326268B1 (en) High strenth plated steel wire and manufacturing method thereof
KR101769535B1 (en) Method for manufacturing Cu-Mg-P alloy materials and Cu-Mg-P alloy materials
KR20150061281A (en) Ultra high strength steel wire having excellent dtawability and mothod for manufacturing the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant