JPH06172857A - Production of seamless steel tube with low yield ratio and high toughness - Google Patents
Production of seamless steel tube with low yield ratio and high toughnessInfo
- Publication number
- JPH06172857A JPH06172857A JP32816992A JP32816992A JPH06172857A JP H06172857 A JPH06172857 A JP H06172857A JP 32816992 A JP32816992 A JP 32816992A JP 32816992 A JP32816992 A JP 32816992A JP H06172857 A JPH06172857 A JP H06172857A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- less
- temperature
- point
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、低降伏比高靭性シーム
レス鋼管の製造法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a seamless steel pipe having a low yield ratio and high toughness.
【0002】[0002]
【従来の技術】近年、エネルギー資源の枯渇化により、
極北でのガス井、油井開発が活発化してきた。このた
め、生産物の輸送用機材としてのシームレス鋼管に対し
て、寒冷地での高圧操業の使用に耐えるため、低降伏比
で且つ高靭性(−60℃保証)、高強度(×52以上)
を兼ね備えた性質が要求されている。高強度材に低降伏
比を付与するには、例えば「鉄と鋼,’87−S131
5」ではC量を増加、焼入後の焼戻し温度を低下するこ
と等が報告されている。しかしながら、C量の増加はラ
インパイプ用鋼の基本的な使用性能である溶接性を著し
く低下させ、その結果、現地溶接前に予熱が必要となる
等ラインパイプ敷設時の作業性を著しく低下させる。一
方、低温焼戻し処理で製造したラインパイプ用鋼は低温
靭性が不安定になるため寒冷地での使用に制約があっ
た。2. Description of the Related Art In recent years, due to depletion of energy resources,
The development of gas and oil wells in the far north has become active. For this reason, the seamless steel pipe used as the transportation equipment for the products can withstand the use of high-pressure operation in cold regions, and thus has a low yield ratio, high toughness (-60 ° C guarantee), and high strength (x52 or more).
A property that combines both is required. To give a low yield ratio to a high strength material, for example, "Iron and Steel, '87 -S131
5 ”, it is reported that the amount of C is increased and the tempering temperature after quenching is decreased. However, an increase in the amount of C significantly reduces the weldability, which is the basic use performance of line pipe steel, and as a result, the workability during line pipe laying, which requires preheating before on-site welding, is significantly reduced. . On the other hand, since the low temperature toughness of the line pipe steel manufactured by the low temperature tempering process becomes unstable, its use in cold regions is restricted.
【0003】[0003]
【発明が解決しようとする課題】本発明は、上記のよう
な処理によることなく、多くの実験を行い検討した結果
に基づき、鋼成分、熱間圧延条件を制御することによっ
て低降伏比高靭性シームレス鋼管を製造する方法を提供
するものである。SUMMARY OF THE INVENTION The present invention is based on the results of a large number of experiments and examinations without the above-mentioned treatment, and by controlling the steel composition and hot rolling conditions, a low yield ratio and high toughness are obtained. A method for manufacturing a seamless steel pipe is provided.
【0004】[0004]
【課題を解決するための手段】すなわち本発明の要旨と
するところは、重量%として C :0.03〜0.20%、 Si:0.01〜
2.5%、Mn:0.15〜2.5%、 P :
0.020%以下、S :0.010%以下、
Al:0.005〜0.1%、Ti:0.005〜
0.1%、 Nb:0.005〜0.1%、N :
0.01%以下 を含有し、さらに必要によっては Cr:0.1〜1.5%、 Mo:0.05〜
0.5%、Ni:0.1〜2.0%、 V :
0.01〜0.1%、B:0.0003〜0.0033
%、希土類元素:0.001〜0.05%、Ca:0.
001〜0.02%、 Co:0.05〜0.5%、
Cu:0.1〜0.5% の1種または2種以上を含有して残部が実質的にFeか
らなる鋼片を1100℃以上に加熱した後、熱間穿孔圧
延した中空素管を最終傾斜圧延機前でAr3 点〜900
℃まで冷却し、その直後の最終傾斜圧延機で肉厚断面減
少率で20〜70%の成形加工を施し、さらに形状矯正
のための熱間連続圧延を行った後Ar1 点〜900℃の
温度まで降下した中空粗管を該温度より高い900〜9
50℃に加熱した後、仕上温度がAr3 点+50℃以上
の熱間仕上圧延を施し、冷却速度10℃/s以下の放冷
処理を行う低降伏比高靭性シームレス鋼管の製造法であ
る。That is, the gist of the present invention is that C: 0.03 to 0.20% as weight% and Si: 0.01 to
2.5%, Mn: 0.15 to 2.5%, P:
0.020% or less, S: 0.010% or less,
Al: 0.005-0.1%, Ti: 0.005-
0.1%, Nb: 0.005 to 0.1%, N:
0.01% or less, if necessary, Cr: 0.1 to 1.5%, Mo: 0.05 to
0.5%, Ni: 0.1 to 2.0%, V:
0.01-0.1%, B: 0.0003-0.0033
%, Rare earth elements: 0.001 to 0.05%, Ca: 0.
001 to 0.02%, Co: 0.05 to 0.5%,
Cu: 0.1 to 0.5% of a steel slab containing 0.1 or 0.5% or more and the balance substantially consisting of Fe is heated to 1100 ° C. or higher, and then a hot hollow pipe is finally subjected to hot piercing and rolling. Ar 3 points to 900 in front of the inclined rolling mill
° C. until cooled, the final slope subjected to 20% to 70% of the molding in the thickness of the reduction of the rolling machine immediately, further Ar 1 point to 900 ° C. After the continuous hot rolling for shape correction The hollow rough tube which has been lowered to the temperature is
After heating to 50 ° C., a finishing temperature is Ar 3 point + 50 ° C. or more, hot finish rolling is performed, and a cooling process at a cooling rate of 10 ° C./s or less is performed, followed by cooling treatment.
【0005】[0005]
【作用】以下本発明の製造法について詳細に説明する。
先ず、本発明において上記のような鋼成分に限定した理
由について説明する。C,Mnは、強度の確保のためお
よび細粒化を図るため重要である。少な過ぎるとその効
果がなく、多過ぎると溶接性の低下の原因となるためそ
れぞれ0.03〜0.20%、0.15〜2.5%とし
た。The operation of the present invention will be described in detail below.
First, the reason for limiting the above steel components in the present invention will be described. C and Mn are important in order to secure the strength and to reduce the grain size. If it is too small, the effect is not obtained, and if it is too large, the weldability is deteriorated. Therefore, the respective amounts were made 0.03 to 0.20% and 0.15 to 2.5%.
【0006】Siは、脱酸剤が残存したもので強度を高
める有効な成分である。少な過ぎるとその効果がなく、
多過ぎると介在物を増加して鋼の性質を低下させるため
0.01〜2.5%とした。[0006] Si is an effective component for increasing the strength because it remains a deoxidizer. If it is too small, it will have no effect,
If it is too large, inclusions increase and the properties of the steel deteriorate, so the content was made 0.01 to 2.5%.
【0007】P,Sは、本発明のなかで靭性の改善のた
めに特に重要な元素である。Pは、粒界偏析を起こして
加工の際き裂を生じ易く有害な成分でありSは、MnS
系介在物を形成して熱間連続圧延で延伸し低温靭性に有
害な成分としてその含有量をそれぞれ0.010%以
下、0.010%以下とした。P and S are particularly important elements for improving the toughness in the present invention. P is a harmful component which easily causes cracks during processing due to segregation of grain boundaries, and S is MnS.
A system inclusion was formed and stretched by hot continuous rolling, and the contents thereof as components harmful to low temperature toughness were set to 0.010% or less and 0.010% or less, respectively.
【0008】Alは、Siと同様脱酸剤が残存したもの
で、鋼中の不純物成分として含まれるNと結合して結晶
粒の成長を抑えて耐SSC性の向上および低温靭性を改
善する。少な過ぎるとその効果がなく、多過ぎると介在
物を増加して鋼の性質を脆化するため0.005〜0.
1%とした。Al, like Si, has a deoxidizing agent remaining, and is combined with N contained as an impurity component in steel to suppress the growth of crystal grains and improve the SSC resistance and the low temperature toughness. If it is too small, the effect is not obtained, and if it is too large, inclusions increase and the properties of the steel become brittle.
It was set to 1%.
【0009】Ti,Nbは、いずれもシームレス圧延中
の結晶粒径制御元素として本発明の成分の中で最も重要
な元素である。Tiは、鋼中の不純物成分として含まれ
るNと結合して、熱間穿孔圧延中の結晶粒制御および熱
間穿孔圧延した中空素管を最終段の傾斜圧延機前でAr
3 点〜900℃まで冷却し、その直後の最終傾斜圧延機
で肉厚断面減少率で20〜70%の成形加工後の結晶粒
径の粗大化を抑え低温靭性を改善させると共に、脱酸、
脱窒の作用から後述のB焼入性を発揮させ強度を高め
る。少な過ぎるとその効果がなく、多過ぎるとTiCを
析出して鋼を脆化させるため0.005〜0.1%とし
た。Both Ti and Nb are the most important elements among the components of the present invention as crystal grain size controlling elements during seamless rolling. Ti combines with N, which is contained as an impurity component in the steel, to control the crystal grains during hot piercing and to perform hot piercing and rolling on the hollow shell before the final stage of the inclined mill.
It is cooled to 3 points to 900 ° C., and immediately after that, it is possible to suppress coarsening of the crystal grain size after the forming process of 20 to 70% in the thickness reduction section by the final inclination rolling mill to improve the low temperature toughness, and to deoxidize,
From the effect of denitrification, the B hardenability described below is exerted to enhance the strength. If it is too small, the effect is not obtained, and if it is too large, TiC precipitates and the steel is embrittled, so the content was made 0.005 to 0.1%.
【0010】一方、Nbは、傾斜圧延中の結晶粒成長抑
制および連続圧延後900℃〜Ar1 点の温度まで降下
した該素管を該温度より高い900〜950℃に加熱し
た場合のγ粒の異常粗大化を抑制する重要な元素であ
る。少な過ぎるとその効果がなく、多過ぎてもその効果
が飽和し、しかも非常に高価であるため0.005〜
0.1%とした。On the other hand, Nb is a gamma grain when crystal grain growth is suppressed during tilt rolling and, after continuous rolling, the temperature of the raw tube lowered to 900 ° C. to Ar 1 point is heated to 900 to 950 ° C. higher than the temperature. Is an important element that suppresses abnormal coarsening. If the amount is too small, the effect will not be obtained, and if the amount is too large, the effect will be saturated, and since it is very expensive, 0.005-
It was set to 0.1%.
【0011】Nは、Bの効果を低下させる有害な成分と
して、その含有量を0.01%以下とした。N is a harmful component that reduces the effect of B, and its content is set to 0.01% or less.
【0012】上記の成分組成の鋼でさらに鋼の強度を高
める場合Cr,Mo,Ni,VおよびB等の成分を必要
に応じて選択的に添加する。Cr,Mo,Ni,Vは、
強度を高めるために添加するものである。少な過ぎると
その効果がなく、多過ぎてもその効果が飽和し、しかも
非常に高価であるため、それぞれ0.01〜1.5%、
0.05〜0.5%、0.1〜2.0%、0.01〜
0.1%とした。Bは、フェライトの析出を抑制し強度
を高める。少な過ぎるとその効果がなく、多過ぎても効
果は変わらず、靭性や熱間加工性を劣化させるので0.
0003〜0.003%とした。In the case of the steel having the above-mentioned composition, to further increase the strength of the steel, the components such as Cr, Mo, Ni, V and B are selectively added as required. Cr, Mo, Ni, V are
It is added to enhance the strength. If the amount is too small, the effect will not be obtained, and if the amount is too large, the effect will be saturated, and since it is very expensive, 0.01 to 1.5%, respectively.
0.05-0.5%, 0.1-2.0%, 0.01-
It was set to 0.1%. B suppresses the precipitation of ferrite and increases the strength. If the amount is too small, the effect will not be obtained, and if the amount is too large, the effect will not change and the toughness and hot workability will be deteriorated.
It was set to 0003 to 0.003%.
【0013】さらに本発明は、近年のシームレス鋼管の
使用環境を鑑み上記の成分組成で構成される鋼の耐SS
C性を改善するために希土類元素等の成分を必要に応じ
て選択的に添加する。希土類元素、Caは、介在物の形
態を球状化させて無害化する有効な成分である。少な過
ぎるとその効果がなく、多過ぎると介在物を増加して耐
SSC性を低下させるのでそれぞれ0.001〜0.0
5%、0.001〜0.02%とした。Co,Cuは、
鋼中への水素侵入抑制効果があり耐SSC性に有効に働
く。少な過ぎるとその効果がなく、多過ぎるとその効果
が飽和するためそれぞれ0.05〜0.5%、0.1〜
0.5%とした。Further, in view of the use environment of the seamless steel pipe in recent years, the present invention relates to the SS resistance of the steel having the above-mentioned composition.
In order to improve the C property, a component such as a rare earth element is selectively added as needed. The rare earth element, Ca, is an effective component that makes the inclusions spherical and harmless. If it is too small, there is no effect, and if it is too large, inclusions increase and SSC resistance decreases, so 0.001 to 0.0, respectively.
5% and 0.001-0.02%. Co and Cu are
It has an effect of suppressing hydrogen invasion into the steel and works effectively for SSC resistance. If the amount is too small, the effect will not be obtained, and if the amount is too large, the effect will be saturated, so 0.05 to 0.5% and 0.1 to 0.1%, respectively.
It was set to 0.5%.
【0014】次に熱間シームレス圧延条件を上記のよう
に限定した理由について説明する。上記のような成分組
成の鋼は転炉、電気炉等の溶解炉であるいはさらに真空
脱ガス処理を経て溶製され、連続鋳造法または造塊分塊
法で鋼片を製造する。鋼片は、直ちにあるいは一旦冷却
された後高温に加熱し熱間穿孔圧延を行う。加熱温度
は、熱間穿孔圧延を容易にするため十分高くしておかね
ばならない。本発明の成分範囲内であれば1100℃以
上の温度で熱間穿孔圧延上なんら支障が生じないので、
その温度は1100℃以上とした。Next, the reason for limiting the hot seamless rolling conditions as described above will be explained. The steel having the above-described composition is melted in a melting furnace such as a converter or an electric furnace or further subjected to vacuum degassing treatment, and a steel slab is manufactured by a continuous casting method or an agglomerating and agglomerating method. The steel slab is immediately or once cooled and then heated to a high temperature for hot piercing and rolling. The heating temperature must be sufficiently high to facilitate hot piercing and rolling. Within the composition range of the present invention, no problem occurs in hot piercing and rolling at a temperature of 1100 ° C. or higher,
The temperature was 1100 ° C. or higher.
【0015】穿孔圧延が行われた中空素管は、最終段の
傾斜圧延機前でAr3 点〜900℃の温度に冷却し、直
ちに鋼管の最終形状に近い外径、肉厚まで粗加工する傾
斜圧延を行う。傾斜圧延機(エロンゲータミル等)は、
シームレス鋼管の圧延に使用される他の圧延機(マンド
レルミル、プラグミル等)や鋼板の圧延機と異なり、剪
断ひずみの成分が非常に大きい。したがって、断面積減
少率から予測されるひずみ量と比べて実質的なひずみ量
は格段に大きい。このため、傾斜圧延機では小さな断面
積減少率の加工であってもオーステナイト組織は大きな
変形を受け、その後のフェライト変態時に微細なフェラ
イト組織が生成される。The hollow shell that has been subjected to piercing and rolling is cooled to a temperature of Ar 3 point to 900 ° C. before the final stage of the inclined rolling mill and immediately rough-processed to an outer diameter and wall thickness close to the final shape of the steel tube. Performs inclined rolling. Inclined rolling mills (elongator mills, etc.)
Unlike other rolling mills (mandrel mill, plug mill, etc.) used for rolling seamless steel pipe and rolling mills for steel plates, the component of shear strain is very large. Therefore, the substantial strain amount is much larger than the strain amount predicted from the cross-sectional area reduction rate. For this reason, in the inclined rolling mill, the austenite structure undergoes large deformation even if the work is performed with a small cross-sectional area reduction rate, and a fine ferrite structure is generated during subsequent ferrite transformation.
【0016】図1の写真は、同一断面積減少率でエロン
ゲータミルと板圧延機で加工した材料の金属組織を示し
た。エロンゲータミルでは、オーステナイト組織の変形
が板圧延機に比べて大きいことがわかる。すなわち、低
温でのエロンゲータ圧延では、未再結晶オーステナイト
組織に多くの転位が導入され微細なフェライト組織の生
成が促進される。この場合、圧延温度が900℃以上で
は未再結晶オーステナイト組織率が低下し、微細なフェ
ライト組織の生成が抑制され、目的とする細粒フェライ
ト鋼は得られないため圧延温度の上限を900℃とし
た。一方、圧延温度が低くなると圧延負荷の増大により
鋼の成形性が著しく低下し、目標とする外径、肉厚が得
られにくくなるためAr3 点以上とした。中空素管の温
度制御方法は、放冷あるいは強制冷却いずれによっても
良い。また、圧下率は、小さいと微細なフェライト組織
が生成しないため下限を20%とした。一方、圧下率が
余り大きすぎると、圧延が困難になりパイプの成形性や
表面品位の低下が起こるため、上限を70%とした。The photograph of FIG. 1 shows the metallographic structure of the material processed by the elongator mill and the plate rolling machine at the same cross-sectional area reduction rate. It can be seen that the deformation of the austenite structure of the elongator mill is larger than that of the plate rolling mill. That is, in the elongator rolling at a low temperature, many dislocations are introduced into the unrecrystallized austenite structure and the generation of a fine ferrite structure is promoted. In this case, when the rolling temperature is 900 ° C. or higher, the unrecrystallized austenite structure ratio is reduced, the formation of a fine ferrite structure is suppressed, and the target fine-grained ferritic steel cannot be obtained, so the upper limit of the rolling temperature is set to 900 ° C. did. On the other hand, the increased rolling load and the rolling temperature decreases significantly decreases the moldability of the steel, and an outer diameter, since the wall thickness is difficult to obtain Ar 3 point or more as a target. The method of controlling the temperature of the hollow shell may be either cooling by cooling or forced cooling. Further, if the rolling reduction is small, a fine ferrite structure is not formed, so the lower limit was made 20%. On the other hand, if the reduction ratio is too large, rolling becomes difficult and the formability and surface quality of the pipe deteriorate, so the upper limit was made 70%.
【0017】最終傾斜圧延終了後、中空粗管をさらに形
状矯正のための連続圧延を行い、Ar1 点〜900℃の
温度まで降下した該粗管は、該温度より高い900〜9
50℃に再加熱する。この再加熱温度が高いと再結晶が
進行し転位密度の低下により微細なフェライト組織が生
成しないため上限を950℃とした。また、低すぎると
再加熱後の最終仕上圧延での圧延温度が低下し形状の確
保が困難となるため下限を900℃とした。After the final tilt rolling is completed, the hollow rough tube is further continuously rolled to correct the shape, and the rough tube lowered to a temperature of Ar 1 point to 900 ° C. is 900 to 9 higher than the temperature.
Reheat to 50 ° C. When the reheating temperature is high, recrystallization proceeds and the dislocation density is lowered so that a fine ferrite structure is not formed. Therefore, the upper limit is set to 950 ° C. On the other hand, if the temperature is too low, the rolling temperature in the final finishing rolling after reheating becomes low and it becomes difficult to secure the shape, so the lower limit was made 900 ° C.
【0018】再加熱後Ar3 +50℃以上の温度で熱間
最終仕上圧延を行う。圧延温度は、あまり低くなると形
状の確保が困難となるAr3 +50℃以上とした。熱間
最終仕上圧延後に完全γ状態から放冷処理を行う。放冷
開始温度は、均一な組織を確保し必要とする特性を確保
するためAr3 点以上とした。放冷後の組織は、焼入組
織や中間段階組織が出現し降伏比を高めるためフェライ
ト組織が望ましい。よって、放冷時の冷却速度は10℃
/s以下とする。After reheating, hot final finish rolling is performed at a temperature of Ar 3 + 50 ° C. or higher. The rolling temperature was set to Ar 3 + 50 ° C. or higher, which makes it difficult to secure the shape when the rolling temperature is too low. After hot final finish rolling, cooling is performed from the completely γ state. The cooling start temperature was set to Ar 3 point or higher in order to secure a uniform structure and required characteristics. The structure after cooling is preferably a ferrite structure because a quenched structure or an intermediate stage structure appears and the yield ratio is increased. Therefore, the cooling rate during cooling is 10 ° C.
/ S or less.
【0019】以上の製造条件で得られる鋼は、低降伏比
で靭性の優れた耐SSC性シームレス鋼管の製造に有効
である。The steel obtained under the above manufacturing conditions is effective for manufacturing an SSC resistant seamless steel pipe having a low yield ratio and excellent toughness.
【0020】[0020]
【実施例】次に本発明の実施例について説明する。表1
は転炉で溶製し連続鋳造を経て製造された鋼片を熱間シ
ームレス圧延を行って直接焼入焼戻した鋼管の降伏比、
靭性、および耐SSC性を示す。耐SSC性は、NAC
E TM01−77に従って定荷重方式によるσth
(Threshold Stress)を求めて評価し
た。本発明によって製造された鋼管は、低降伏比で高靭
性が得られ耐SSC性が向上することがわかる。EXAMPLES Next, examples of the present invention will be described. Table 1
Is the yield ratio of the steel pipe that is directly quenched and tempered by hot seamless rolling the steel slab produced by melting in a converter and continuous casting.
It exhibits toughness and SSC resistance. SSC resistance is NAC
Σth according to the constant load method according to ETM01-77
(Threshold Pressure) was obtained and evaluated. It can be seen that the steel pipe manufactured according to the present invention has high toughness at a low yield ratio and improved SSC resistance.
【0021】[0021]
【表1】 [Table 1]
【0022】[0022]
【表2】 [Table 2]
【0023】[0023]
【発明の効果】上記のような本発明法によって製造され
た鋼管は、低降伏比でさらに細粒であるため低温靭性お
よび耐SSC性が優れ、極北の寒冷地や硫化物応力腐食
環境において使用される。The steel pipe produced by the method of the present invention as described above is excellent in low temperature toughness and SSC resistance since it has a low yield ratio and finer grains, and is used in cold regions in the far north and sulfide stress corrosion environments. To be done.
【図1】(a)は最終段の傾斜圧延後、(b)は板圧延
後における材料の金属組織(未再結晶組織)を示す10
0倍拡大顕微鏡写真。FIG. 1 (a) shows the metallographic structure (unrecrystallized structure) of the material after the final stage of tilt rolling and (b) after plate rolling.
0x magnification micrograph.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成5年9月3日[Submission date] September 3, 1993
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0020[Correction target item name] 0020
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0020】[0020]
【実施例】次に本発明の実施例について説明する。表1
は転炉で溶製し連続鋳造を経て製造された鋼片を熱間シ
ームレス圧延を行って放冷した鋼管の降伏比、靱性、お
よび耐SSC性を示す。耐SSC性は、NACE TM
01−77に従って定荷重方式によるσth(Thre
sholdStress)を求めて評価した。本発明に
よって製造された鋼管は、低降伏比で高靱性が得られ耐
SSC性が向上することがわかる。EXAMPLES Next, examples of the present invention will be described. Table 1
Shows the yield ratio, toughness, and SSC resistance of a steel pipe which is produced by melting in a converter and through continuous casting, and hot-seam-rolled to allow the steel pipe to cool . SSC resistance is NACE ™
01-77, σth (Thre
The evaluation was made by obtaining the "holdStress". It can be seen that the steel pipe manufactured according to the present invention has high toughness at a low yield ratio and improved SSC resistance.
Claims (4)
℃以上に加熱した後、熱間穿孔圧延した中空素管を最終
傾斜圧延機前でAr3 点〜900℃まで冷却し、その直
後の最終傾斜圧延機で肉厚断面減少率で20〜70%の
成形加工を施し、さらに形状矯正のための熱間連続圧延
を行った後Ar1 点〜900℃の温度まで降下した中空
粗管を、該温度より高い900〜950℃に加熱した
後、仕上温度がAr3 点+50℃以上の熱間仕上圧延を
施し、冷却速度10℃/s以下の放冷処理を行うことを
特徴とする低降伏比高靭性シームレス鋼管の製造法。1. As weight%, C: 0.03 to 0.20%, Si: 0.01 to 2.5%, Mn: 0.15 to 2.5%, P: 0.020% or less, S: 0.010% or less, Al: 0.005 to 0.1%, Ti: 0.005 to 0.1%, Nb: 0.005 to 0.1%, N: 0.01% or less Then, the steel slab consisting essentially of Fe
After heating to ℃ or more, the hollow shell subjected to hot piercing and rolling is cooled to Ar 3 point to 900 ° C. in front of the final tilt rolling mill, and immediately after that, in the final tilt rolling mill, the wall thickness cross-section reduction rate is 20 to 70%. After performing the forming process of No. 1 and further performing hot continuous rolling for shape correction, the hollow crude tube that has dropped to a temperature of Ar 1 point to 900 ° C. is heated to 900 to 950 ° C. higher than that temperature, and then finished. A method of producing a seamless steel pipe with a low yield ratio and high toughness, which comprises performing hot finish rolling at a temperature of Ar 3 points + 50 ° C. or higher and performing cooling treatment at a cooling rate of 10 ° C./s or lower.
以上 を含有して残部が実質的にFeからなる鋼片を1100
℃以上に加熱した後、熱間穿孔圧延した中空素管を最終
傾斜圧延機前でAr3 点〜900℃まで冷却し、その直
後の最終傾斜圧延機で肉厚断面減少率で20〜70%の
成形加工を施し、さらに形状矯正のための熱間連続圧延
を行った後Ar1 点〜900℃の温度まで降下した中空
粗管を、該温度より高い900〜950℃に加熱した
後、仕上温度がAr3 点+50℃以上の熱間仕上圧延を
施し、冷却速度10℃/s以下の放冷処理を行うことを
特徴とする低降伏比高靭性シームレス鋼管の製造法。2. As weight%, C: 0.03 to 0.20%, Si: 0.01 to 2.5%, Mn: 0.15 to 2.5%, P: 0.020% or less, S: 0.010% or less, Al: 0.005 to 0.1%, Ti: 0.005 to 0.1%, Nb: 0.005 to 0.1%, N: 0.01% or less Further, Cr: 0.1 to 1.5%, Mo: 0.05 to 0.5%, Ni: 0.1 to 2.0%, V: 0.01 to 0.1%, B: 0 Steel pieces containing 0.0003 to 0.0033% of 1 type or 2 types or more, and the balance being substantially Fe 1100
After heating to ℃ or more, the hollow shell subjected to hot piercing and rolling is cooled to Ar 3 point to 900 ° C. in front of the final tilt rolling mill, and immediately after that, in the final tilt rolling mill, the wall thickness cross-section reduction rate is 20 to 70%. After performing the forming process of No. 1 and further performing hot continuous rolling for shape correction, the hollow crude tube that has dropped to a temperature of Ar 1 point to 900 ° C. is heated to 900 to 950 ° C. higher than that temperature, and then finished. A method of producing a seamless steel pipe with a low yield ratio and high toughness, which comprises performing hot finish rolling at a temperature of Ar 3 points + 50 ° C. or higher and performing cooling treatment at a cooling rate of 10 ° C./s or lower.
℃以上に加熱した後、熱間穿孔圧延した中空素管を最終
傾斜圧延機前でAr3 点〜900℃まで冷却し、その直
後の最終傾斜圧延機で肉厚断面減少率で20〜70%の
成形加工を施し、さらに形状矯正のための熱間連続圧延
を行った後Ar1 点〜900℃の温度まで降下した中空
粗管を該温度より高い900〜950℃に加熱後、仕上
温度がAr3 点+50℃以上の熱間仕上圧延を施し、冷
却速度10℃/s以下の放冷処理を行うことを特徴とす
る低降伏比高靭性シームレス鋼管の製造法。3. As a weight%, C: 0.03 to 0.20%, Si: 0.01 to 2.5%, Mn: 0.15 to 2.5%, P: 0.020% or less, S: 0.010% or less, Al: 0.005 to 0.1%, Ti: 0.005 to 0.1%, Nb: 0.005 to 0.1%, N: 0.01% or less Further, rare earth element: 0.001 to 0.05%, Ca: 0.001 to 0.02%, Co: 0.05 to 0.5%, Cu: 0.1 to 0.5%, one kind Alternatively, a steel slab containing two or more kinds and the balance being substantially Fe is 1100
After heating to ℃ or more, the hollow shell subjected to hot piercing and rolling is cooled to Ar 3 point to 900 ° C. in front of the final tilt rolling mill, and immediately after that, in the final tilt rolling mill, the wall thickness cross-section reduction rate is 20 to 70%. After performing the forming process of No. 1 and further performing hot continuous rolling for shape correction, after heating the hollow coarse tube that has dropped to a temperature of Ar 1 point to 900 ° C. to 900 to 950 ° C. higher than the temperature, the finishing temperature is A method for producing a seamless steel pipe with a low yield ratio and high toughness, which comprises performing hot finish rolling of Ar 3 points + 50 ° C. or more and performing cooling treatment at a cooling rate of 10 ° C./s or less.
以上と、さらにまた 希土類元素:0.001〜0.05%、 Ca:0.001〜0.02%、 Co:0.05〜0.5%、 Cu:0.1〜0.5%の1種または2種以上 を含有して残部が実質的にFeからなる鋼片を1100
℃以上に加熱した後、熱間穿孔圧延した中空素管を最終
傾斜圧延機前でAr3 点〜900℃まで冷却し、その直
後の最終傾斜圧延機で肉厚断面減少率で20〜70%の
成形加工を施し、さらに形状矯正のための熱間連続圧延
を行った後Ar1 点〜900℃の温度まで降下した中空
粗管を該温度より高い900〜950℃に加熱後、仕上
温度がAr3 点+50℃以上の熱間仕上圧延を施し、冷
却速度10℃/s以下の放冷処理を行うことを特徴とす
る低降伏比高靭性シームレス鋼管の製造法。4. C: 0.03 to 0.20%, Si: 0.01 to 2.5%, Mn: 0.15 to 2.5%, P: 0.020% or less, as weight%. S: 0.010% or less, Al: 0.005 to 0.1%, Ti: 0.005 to 0.1%, Nb: 0.005 to 0.1%, N: 0.01% or less Further, Cr: 0.1 to 1.5%, Mo: 0.05 to 0.5%, Ni: 0.1 to 2.0%, V: 0.01 to 0.1%, B: 0 0.0003 to 0.0033% of 1 type or 2 types or more, Rare earth elements: 0.001 to 0.05%, Ca: 0.001 to 0.02%, Co: 0.05 to 0.5 %, Cu: 0.1 to 0.5% of a steel slab containing 1 type or 2 types or more and the balance substantially consisting of Fe 1100
After heating to ℃ or more, the hollow shell subjected to hot piercing and rolling is cooled to Ar 3 point to 900 ° C. in front of the final tilt rolling mill, and immediately after that, in the final tilt rolling mill, the wall thickness cross-section reduction rate is 20 to 70%. After performing the forming process of No. 1 and further performing hot continuous rolling for shape correction, after heating the hollow coarse tube that has dropped to a temperature of Ar 1 point to 900 ° C. to 900 to 950 ° C. higher than the temperature, the finishing temperature is A method for producing a seamless steel pipe with a low yield ratio and high toughness, which comprises performing hot finish rolling of Ar 3 points + 50 ° C. or more and performing cooling treatment at a cooling rate of 10 ° C./s or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32816992A JP3145515B2 (en) | 1992-12-08 | 1992-12-08 | Manufacturing method of low yield ratio high toughness seamless steel pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32816992A JP3145515B2 (en) | 1992-12-08 | 1992-12-08 | Manufacturing method of low yield ratio high toughness seamless steel pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06172857A true JPH06172857A (en) | 1994-06-21 |
JP3145515B2 JP3145515B2 (en) | 2001-03-12 |
Family
ID=18207258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32816992A Expired - Fee Related JP3145515B2 (en) | 1992-12-08 | 1992-12-08 | Manufacturing method of low yield ratio high toughness seamless steel pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3145515B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105088093A (en) * | 2015-07-23 | 2015-11-25 | 天津钢管集团股份有限公司 | Low-temperature, low-yield-ratio and S355 steel grade type seamless structural steel tube and production method |
CN108796362A (en) * | 2017-04-26 | 2018-11-13 | 宝山钢铁股份有限公司 | X70 pipe line steels and its manufacturing method with the anti-dynamic tear performance of superior low temperature |
CN115354234A (en) * | 2022-09-20 | 2022-11-18 | 江苏常宝钢管股份有限公司 | Seamless steel pipe for non-quenched and tempered non-excavation drill rod and preparation method thereof |
-
1992
- 1992-12-08 JP JP32816992A patent/JP3145515B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105088093A (en) * | 2015-07-23 | 2015-11-25 | 天津钢管集团股份有限公司 | Low-temperature, low-yield-ratio and S355 steel grade type seamless structural steel tube and production method |
CN108796362A (en) * | 2017-04-26 | 2018-11-13 | 宝山钢铁股份有限公司 | X70 pipe line steels and its manufacturing method with the anti-dynamic tear performance of superior low temperature |
CN108796362B (en) * | 2017-04-26 | 2020-12-22 | 宝山钢铁股份有限公司 | X70 pipeline steel with excellent low-temperature dynamic tearing resistance and manufacturing method thereof |
CN115354234A (en) * | 2022-09-20 | 2022-11-18 | 江苏常宝钢管股份有限公司 | Seamless steel pipe for non-quenched and tempered non-excavation drill rod and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3145515B2 (en) | 2001-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1288316B1 (en) | Method for making high-strength high-toughness martensitic stainless steel seamless pipe | |
KR100558429B1 (en) | High-strength steel sheet and high-strength steel pipe excellent in deformability and method for producing the same | |
JPH09235617A (en) | Production of seamless steel tube | |
US6540848B2 (en) | High strength, high toughness, seamless steel pipe for line pipe | |
JP2567150B2 (en) | Manufacturing method of high strength low yield ratio line pipe material for low temperature | |
JP2009287081A (en) | High-tension steel and producing method therefor | |
JP2672441B2 (en) | Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance | |
JPH06184636A (en) | Production of high strength and high toughness seamless steel pipe excellent in weldability | |
JPH09111343A (en) | Production of high strength and low yield ratio seamless steel pipe | |
JPH07331381A (en) | Seamless steel tube having high strength and high toughness and its production | |
JPH0250916A (en) | Production of low alloy high tension seamless steel pipe having fine grained structure | |
JP2527511B2 (en) | Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance | |
JPH06172855A (en) | Production of seamless steel tube with low yield ratio and high toughness | |
JP2525961B2 (en) | Manufacturing method of high toughness seamless steel pipe with fine grain structure | |
JP4196501B2 (en) | Steel for seamless steel pipe with high strength and excellent toughness | |
JP3145515B2 (en) | Manufacturing method of low yield ratio high toughness seamless steel pipe | |
JP2551692B2 (en) | Manufacturing method of low alloy seamless steel pipe with fine grain structure. | |
JP2556643B2 (en) | Low Yield Ratio High Toughness Seamless Steel Pipe Manufacturing Method | |
JPH11302785A (en) | Steel for seamless steel pipe | |
JP2527512B2 (en) | Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance | |
JPH06184635A (en) | Production of high strength seamless steel pipe excellent in fracture propagating resistance | |
JP2598357B2 (en) | Manufacturing method of high strength steel sheet with excellent low temperature toughness | |
JP3059993B2 (en) | Manufacturing method of low alloy seamless steel pipe with fine grain structure | |
JP3249210B2 (en) | Method for producing low hardness and high toughness seamless steel pipe with excellent SSC resistance | |
JP3046183B2 (en) | Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20001121 |
|
LAPS | Cancellation because of no payment of annual fees |