JPS59182915A - Production of high tensile steel - Google Patents

Production of high tensile steel

Info

Publication number
JPS59182915A
JPS59182915A JP5646483A JP5646483A JPS59182915A JP S59182915 A JPS59182915 A JP S59182915A JP 5646483 A JP5646483 A JP 5646483A JP 5646483 A JP5646483 A JP 5646483A JP S59182915 A JPS59182915 A JP S59182915A
Authority
JP
Japan
Prior art keywords
steel
temp
less
temperature
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5646483A
Other languages
Japanese (ja)
Other versions
JPH0118969B2 (en
Inventor
Ichiro Seta
一郎 瀬田
Mutsuo Nakanishi
中西 睦夫
Yuichi Komizo
裕一 小溝
Hiroshi Matsushita
宏 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5646483A priority Critical patent/JPS59182915A/en
Publication of JPS59182915A publication Critical patent/JPS59182915A/en
Publication of JPH0118969B2 publication Critical patent/JPH0118969B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a low-Mn high-tensile steel having no strain aging embrittlement by subjecting a steel having a prescribed component compsn. to hot rolling at a specific finishing temp. after heating then cooling the steel at the regulated average cooling rate in prescribed temp. range and specifying the temp. decreasing condition from said temp. down to room temp. CONSTITUTION:A steel consisting, by weight, of 0.1-0.2% C, <=0.5% Si, 0.6- 1.1% Mn, 0.01-0.08% sol.Al, and <=0.0030% N and the balance Fe and unavoidable impurities is prepd. The steel is heated to 900-1,200 deg.C to accomplish substantially formation of gamma iron and uniform solutionization of carbide and thereafter the steel is subjected to hot rolling at the finishing temp. of 900- 750 deg.C to improve toughness. The above-described steel after the hot-rolling is quickly cooled at 10-60 deg.C/sec average cooling rate in 800-500 deg.C temp. range to about <=300 deg.C. The steel after the quick cooling is cooled by taking >=5min in 300-100 deg.C temp. range to precipitate solid solution of C and solid solution of N and thereafter the temp. is decreased down to room temp., by which the intended low-Mn high-tensile steel is obtd.

Description

【発明の詳細な説明】 この発明は、歪時効脆化を生ずることのない低地高張力
鋼の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing low-grade high-strength steel that does not cause strain-age embrittlement.

従来、 Atキルド鋼では時効を引き起す主因となる固
溶NがAtNとなって十分に析出してしまい、時効を生
ずることがないと考えられており、加工によって引き起
される歪時効対策を行うことなく各方面でAtキルド鋼
が多用されていた。
Conventionally, it has been thought that in At-killed steel, the solid solute N, which is the main cause of aging, becomes AtN and precipitates sufficiently, so that aging does not occur. At-killed steel was widely used in various fields without doing so.

しかし、近年、熱間圧延後引き続いて水冷を行い、得ら
れるフェライト・ベイナイト組織のままで、調質処理を
施すことなく使用されるAtキルド高張力鋼が開発され
、制御圧延法によって製造されるものよりも高い強度が
得られるということで造船用厚板材を中心に実用化が進
み、その需要も増大してきているが、最近になって、こ
のような高張力鋼を船等に加工するとその靭性の大幅な
劣化をみる場合があるとの情報が頻繁に入るよう罠なっ
てきた。
However, in recent years, At-killed high-strength steel has been developed that is used without heat treatment, with the resulting ferrite-bainite structure maintained by water cooling after hot rolling, and produced by controlled rolling. It has been put to practical use mainly in thick plate materials for shipbuilding, as it has a higher strength than other materials, and the demand for it is also increasing. It has become increasingly common to receive information that there may be a significant deterioration in toughness.

そこで、本発明者等は、このように熱間圧延後引、冷し
て製造したAtキルド鋼材に生ずる靭性劣化の原因を究
明すべく研究を行ったところ、Atキルド鋼であっても
、急冷を行うと固溶Cや固溶Nが冷却時に完全に析出せ
ず、特にフェライト地に固溶したままとなって歪時効を
引き起すこととなり、これを加工するとベイナイトより
も軟質のフェライト部に歪が集中して、特にその部分の
靭性を劣化するとの結論を得るに至ったのである。そし
て、この歪時効は、特に低Mn材に大きいことをも見出
した。
Therefore, the present inventors conducted research to investigate the cause of toughness deterioration that occurs in At-killed steel products produced by hot-rolling, drawing, and cooling, and found that even with At-killed steel, rapid cooling If this is done, solid solution C and solid solution N will not completely precipitate during cooling, and will remain in solid solution, especially in the ferrite region, causing strain aging. They came to the conclusion that strain concentrates and particularly deteriorates the toughness of that part. It was also found that this strain aging is particularly large in low Mn materials.

本発明者等は、上述のような観点から、歪時効脆化を生
ずることのない低地高張力鋼を、コスト安く高能率で製
造すべく更に研究を続けた結果、熱間圧延後急冷を行っ
て高張力鋼を製造する際、鋼中のN含有量を低く抑える
とともに、急冷を300℃〜250℃付近で停止し、3
00〜100℃の間、好ましくは300〜220℃の間
を5分以上かけて冷却すると、過飽和のN及びCが十分
に析出してしまい、通常のAtキルド鋼と同様に非時効
性で、かつ従来の急冷材と同程度の機械的性質を有する
鋼材が得られることを知見し、更に、低Mn域での鋼の
大入熱溶接時のボンド靭性は、鋼を低N化することによ
り大幅に改善されるということをも確認したのである。
From the above-mentioned viewpoint, the present inventors continued research to produce low-grade high-strength steel that does not undergo strain aging embrittlement at a low cost and with high efficiency. As a result, the inventors conducted rapid cooling after hot rolling. When manufacturing high-strength steel using steel, the N content in the steel is kept low, and quenching is stopped at around 300°C to 250°C.
When cooled between 00 and 100 degrees Celsius, preferably between 300 and 220 degrees Celsius over 5 minutes or more, supersaturated N and C are sufficiently precipitated, resulting in non-aging properties similar to ordinary At-killed steel. We also found that a steel material with mechanical properties comparable to those of conventional quenched materials can be obtained, and furthermore, the bond toughness during high heat input welding of steel in the low Mn range can be improved by reducing the N content of the steel. It was also confirmed that there was a significant improvement.

この大入熱溶接時のボンド靭性改善は、大入熱溶接が頻
繁に行われる造船用厚板では特に好ましいことなのであ
る。
This improvement in bond toughness during high heat input welding is particularly desirable for shipbuilding plates where high heat input welding is frequently performed.

この発明は、上記知見に基づいてなされたものであり、 c : 0.1〜0.2%(以下、チは重量割合とする
)、St : 0.5%以下。
This invention was made based on the above findings, and includes c: 0.1 to 0.2% (hereinafter, "ch" is weight percentage), St: 0.5% or less.

Mn:0.6〜1.1%。Mn: 0.6-1.1%.

sol、At: 0.01〜0.08%。sol, At: 0.01-0.08%.

N : 0.0030係以下。N: 0.0030 or less.

を含有するとともに、必要により更に、V : 0.0
8%以下。
and, if necessary, further include V: 0.0
8% or less.

Ti : 0.08チ以下。Ti: 0.08 inch or less.

Nb:0.08%以下。Nb: 0.08% or less.

B : 0.0 s%以下。B: 0.0 s% or less.

のうちの1種以上をも含み、 Fe及び不可避不純物:残り、 から成る成分組成の鋼を900〜1200℃に加熱後、
仕上温度:900〜750℃の熱間圧延を施し、続いて
800〜500℃間の平均冷却速度が10〜60°C/
1lecの急冷を300℃の温度になるまで実施してか
ら、300〜100℃の間を5分以上かけて冷却し、室
温にまで降温することにより、歪時効脆化を生ずること
がなく、大入熱溶接時のボンド部靭性にも優れた高張力
鋼を、能率良く確実に製造し得るようにした点に特徴を
有するものである。
After heating a steel having a composition consisting of one or more of the following, Fe and unavoidable impurities: the remainder to 900 to 1200 °C,
Finishing temperature: Hot rolling at 900-750°C, followed by an average cooling rate of 10-60°C/800-500°C.
By carrying out rapid cooling for 1 lec to a temperature of 300°C, and then cooling between 300 and 100°C over 5 minutes to lower the temperature to room temperature, strain aging embrittlement does not occur and large This method is characterized by the ability to efficiently and reliably manufacture high-strength steel with excellent bond toughness during heat input welding.

次に、この発明の高張力鋼の製造方法において、対象鋼
の成分組成、及び加熱、圧延、冷却条件を前記のように
限定した理由を説明する。
Next, in the method for producing high-strength steel of the present invention, the reason why the composition of the target steel and the heating, rolling, and cooling conditions are limited as described above will be explained.

A)成分組成 (a)  C C成分には、鋼の強度を確保する作用があり、同様の作
用を有するMn量との関係で所定量含有せしめられるも
のであるが、その含有量が0.11未満では低Mn領域
の鋼の強度を十分に確保することができず、他方0.2
%を越えて含有させると強度上昇が過度に過ぎる上、母
材靭性を劣化するようになることから、その含有量を0
.1〜0.2%と定めた。
A) Composition (a) C The C component has the effect of ensuring the strength of steel, and is included in a predetermined amount in relation to the amount of Mn, which has the same effect. If it is less than 11, sufficient strength of the steel in the low Mn region cannot be ensured, and on the other hand, if it is 0.2
If the content exceeds 0%, the strength will increase excessively and the toughness of the base material will deteriorate.
.. It was set at 1% to 0.2%.

(b)  5i Si成分は、鋼の脱酸や母材強度の調整等、種々の目的
で添加されるものであるが、0.50%を越えて含有さ
せると母材靭性の劣化を招くこととなるので、その含有
量を0.5%以下と定めた。
(b) 5i The Si component is added for various purposes such as deoxidizing steel and adjusting the strength of the base metal, but if it is contained in excess of 0.50%, it may cause deterioration of the toughness of the base metal. Therefore, its content was set at 0.5% or less.

(c)  Mn Mn成分は、母材の強度を向上し、その靭性をも改善す
る作用があるが、その含有量が0.6%未満では前記作
用に所望の効果を得ることができない。
(c) Mn The Mn component has the effect of improving the strength and toughness of the base material, but if its content is less than 0.6%, the desired effect cannot be obtained.

他方、地合有量が1.1%を越える鋼は時効がもともと
低く、本発明の処理を施してもコストに見合う効果を得
るこ々ができないことから、Mn含有量を0.6〜1.
1チと定めた。
On the other hand, steel with a mineralization content of more than 1.1% has low aging, and even if the treatment of the present invention is applied, it is not possible to obtain an effect commensurate with the cost. ..
It was set as 1ch.

第1図は、C: 0.17%、 Si : 0.25%
、Mn:0.63%、 sol、At: 0.043%
を含む鋼を圧延後、室温まで水冷した際の3%歪時効効
果とMn含有量との関係を示す線図であるが、第1図か
らも、Mn含有量が1.1%以下の鋼では3%歪時効後
の脆化量が大きいことが明白である。なお、歪時効効果
は、歪時効前のシャルピー衝撃試験における破面遷移温
度と歪時効後の破面遷移温度々の差、即ち、 ΔvTs=vTs(歪時効前)−vTs(歪時効後)で
表わされるΔvTsで示した。
Figure 1 shows C: 0.17%, Si: 0.25%
, Mn: 0.63%, sol, At: 0.043%
Fig. 1 is a diagram showing the relationship between the 3% strain aging effect and the Mn content when steel containing Mn is water-cooled to room temperature after rolling. It is clear that the amount of embrittlement after 3% strain aging is large. The strain aging effect is calculated by the difference between the fracture surface transition temperature in the Charpy impact test before strain aging and the fracture surface transition temperature after strain aging, that is, ΔvTs = vTs (before strain aging) - vTs (after strain aging). It was expressed as ΔvTs.

(d)  sol、At 5o1.At成分は脱酸剤として使用されるものであり
、鋼中のNをAtNとして固着する作用をも有している
が、その含有量が0.01%未満では前記N固定作用に
所望の効果が得られず、他方、O,OS俤を越えて含有
させると鋼の清浄度が低下するようになることから、そ
の含有量を0.01〜0.08係と定めた。
(d) sol, At 5o1. The At component is used as a deoxidizing agent and also has the effect of fixing N in steel as AtN, but if its content is less than 0.01%, the desired effect on the N fixation effect is not achieved. On the other hand, if the content exceeds O,OS, the cleanliness of the steel will decrease, so the content was set at 0.01 to 0.08.

(e)  N Nが帆003%を越えて含有されると、第1図からも明
らかなように母材の歪時効性が大きくなると同時に1溶
接ボンド部の靭性も劣化することから、その含有量を0
.003%以下と定めた。
(e) N If N is contained in excess of 0.03%, as is clear from Figure 1, the strain aging properties of the base metal will increase and at the same time the toughness of the weld bond will deteriorate. amount to 0
.. 0.003% or less.

第2図は、第1図におけると同様の鋼について大入熱溶
接ボンド靭性に及はすN含有量の影響を調べた線図であ
るが、N含有量を0.003%以下とすることによって
溶接部ボンド靭性が極めて良好になることがわかる。な
お、高Mn銅では、N含有量がある程度増オても良好な
溶接部ボンド靭性を示すが、コスト高になって不利を招
くものである。
Figure 2 is a diagram examining the effect of N content on high heat input welding bond toughness for the same steel as in Figure 1, but the N content should be 0.003% or less. It can be seen that the weld bond toughness is extremely good. Note that high Mn copper exhibits good weld bond toughness even if the N content is increased to some extent, but this results in a disadvantage of increased cost.

従って、第1図及び第2図からも、低Mn−低N鋼とす
ることで、母材性能及びボンド靭性々もに良好で、かつ
安価な鋼材を得られることがわかる。
Therefore, it can be seen from FIGS. 1 and 2 that by using a low Mn-low N steel, it is possible to obtain a steel material that has good base material performance and bond toughness and is also inexpensive.

(f)  V 、 Ti 、 Nb 、及びBこれらの
成分には、それぞれ炭化物或いは窒化物形成作用があり
、鋼中の固溶CやNを固着して母材の強度を向上させる
ので、必要により1種以上が添加されるものであるが、
それぞれが0.08チを越えて含有されると母材の靭性
を劣化する傾向が現われ、溶接ボンド靭性にも悪影響を
及ぼすことから、それぞれの含有量を0.08%以下き
定めた。なお、■ではその含有量を0.075%以下に
制限することが、またTi 、 Nb 、 Bではそれ
ぞれ0.07%以下、0.04%以下、0.004%以
下と制限することがより好ましい。
(f) V, Ti, Nb, and B These components each have a carbide- or nitride-forming action, and fix solid solution C and N in steel to improve the strength of the base metal, so they may be added as necessary. One or more types are added,
If each content exceeds 0.08%, it tends to deteriorate the toughness of the base metal and has a negative effect on the weld bond toughness, so the content of each is determined to be 0.08% or less. In addition, for ■, it is better to limit the content to 0.075% or less, and for Ti, Nb, and B, it is better to limit it to 0.07% or less, 0.04% or less, and 0.004% or less, respectively. preferable.

B)加熱温度 加熱温度が900℃未満では、鋼のγ化や炭化物の固溶
均一化が不十分となり、他方1200 ’Cを越えて加
熱を行ってもγ化の効果には変化が無いばかりか、r粒
が大きくなり過ぎて母材靭性を劣化するようになること
から、その温度を900〜1200℃と定めた。
B) Heating temperature If the heating temperature is less than 900°C, the γ-hardening of the steel and the solid solution homogenization of carbides will be insufficient, and on the other hand, even if the steel is heated above 1200°C, there will be no change in the γ-hardening effect. However, since the R grains become too large and deteriorate the toughness of the base material, the temperature was set at 900 to 1200°C.

C)圧延仕上温度 仕上温度が900℃を越える場合には、加工の効果が少
なくて、加工による靭性向上を期待することができず、
他方750℃未満の温度で圧延を終了した場合、加工が
強すぎてα+r2相域圧延の影響が出たりするので返っ
て靭性を劣化するようになることから、圧延仕上温度を
9oO〜750℃と定めた。
C) Rolling Finishing Temperature If the finishing temperature exceeds 900°C, the effect of processing is small and no improvement in toughness can be expected through processing.
On the other hand, if rolling is completed at a temperature below 750°C, the processing is too strong and the influence of α+r2 phase region rolling appears, which in turn deteriorates the toughness. Established.

D)800〜500℃間の平均冷却速度800〜500
℃間の平均冷却速度が10℃/l!ec未満では、所望
とする鋼材の強度を確保することができず、他方、60
℃/secを越える冷却速度では母材が硬化し過ぎて靭
性が劣化することとなるので、該冷却速度を10〜b 第3図は、第1図におけると同様の鋼について、熱間圧
延後300℃まで水冷し、300〜220℃間を8分で
冷却して析出を促した鋼材の、8o。
D) Average cooling rate between 800 and 500°C: 800-500
The average cooling rate between ℃ is 10℃/l! If it is less than ec, the desired strength of the steel material cannot be secured;
If the cooling rate exceeds ℃/sec, the base metal will harden too much and the toughness will deteriorate. 8o of steel material water-cooled to 300°C and then cooled between 300 and 220°C for 8 minutes to promote precipitation.

〜500℃間の平均冷却速度と機械的性質との関係を示
す線図であるが、第3図からも、前記平均冷却速度が1
0〜b られることは明白である。
Although it is a diagram showing the relationship between the average cooling rate and mechanical properties between ~500°C, it is also clear from FIG.
0-b It is obvious that

E)急冷停止温度 水冷等の急冷停止温度が300℃よりも高いと、鋼の強
化効果が小さくて所望の強度を確保することが困難とな
るので、鋼の温度が300℃以下になるまで急冷を行う
こととした。もちろん、急冷は300℃までで良く、そ
れを大きく下回ると、次の工程での固溶Cや固溶Nの固
着が困難となるので注意すべきである。
E) Quenching stop temperature If the quenching stop temperature such as water cooling is higher than 300℃, the strengthening effect of the steel will be small and it will be difficult to secure the desired strength. We decided to do this. Of course, the temperature of the rapid cooling may be up to 300° C., and care should be taken because if the temperature is much lower than that, it will be difficult to fix solid solution C and solid solution N in the next step.

F)300〜100℃間の冷却時間 熱間圧延に続く急冷後、300〜100℃間を5分以上
かけて冷却する処理は、固溶C及び固溶Nを析出させる
ために行うものであるが、300℃を越える温度から徐
冷を行うと、析出は容易になされるけれども鋼の強度低
下が大きく、他方、100℃を下回ると析出が十分に行
われなくなってしまう。そして、この温度範囲内に5分
以上保持されないと十分な析出がなされず、歪時効の起
因を残すことになるので、300〜100℃間を5分以
上かけて冷却することと定めた。なお、徐冷温度域は、
好ましくは300〜220 ℃にするのが良い。なぜな
ら、220℃を下回ると析出の程度が急激に少なくなる
上、200℃近傍はいわゆる青熱脆性の温度域でありN
による析出時効脆化が大きいからである。従って、20
0℃近傍の温度に下がる前に多量の固溶Nを析出させ、
Nによる析出時効脆化を防止することが推奨されるので
ある。
F) Cooling time between 300 and 100°C After rapid cooling following hot rolling, the process of cooling between 300 and 100°C over 5 minutes or more is performed to precipitate solid solution C and solid solution N. However, if slow cooling is performed from a temperature exceeding 300°C, precipitation will occur easily, but the strength of the steel will be greatly reduced, while if the temperature is below 100°C, precipitation will not occur sufficiently. If the temperature is not kept within this temperature range for 5 minutes or more, sufficient precipitation will not occur and strain aging will remain, so it was decided that cooling should be carried out between 300 and 100°C over 5 minutes or more. In addition, the slow cooling temperature range is
Preferably, the temperature is 300 to 220°C. This is because the degree of precipitation decreases rapidly below 220°C, and around 200°C is the temperature range of so-called blue brittleness.
This is because precipitation aging embrittlement is large. Therefore, 20
A large amount of solid solution N is precipitated before the temperature drops to around 0℃,
It is recommended to prevent precipitation aging embrittlement caused by N.

第4図は、第1図におけると同様の鋼について、熱間圧
延後室温まで水冷した際の3%歪時効効果と固溶C,N
の析出処理温度の関係(室温まで水冷後、各温度に10
分間加熱保持した際の温度とΔvTs  との関係)を
示す線図であるが、等温保持の場合、低N鋼では300
〜100℃、特に300〜220℃間の処理が時効防止
に有効であることがわかる。なお、高N鋼では、10分
程度の保持によっても十分な効果は得られず、20〜3
0分以上の処理を必要とするであろうことが予測される
Figure 4 shows the 3% strain aging effect and solid solution C,N when water-cooled to room temperature after hot rolling for the same steel as in Figure 1.
Relationship between precipitation treatment temperatures (after water cooling to room temperature, 10% at each temperature)
This is a diagram showing the relationship between temperature and ΔvTs when heated and held for minutes.
It can be seen that treatment between 100°C and 300°C and 220°C is effective in preventing aging. In addition, with high N steel, a sufficient effect cannot be obtained even after holding for about 10 minutes, and the
It is predicted that the process will require 0 minutes or more.

第5図は、同様の鋼を熱間圧延し、300℃まで水冷し
たものの、3%歪時効に対する300〜100℃間の徐
冷(時効処理)の影醤を示す線図であるが、連続冷却の
場合には5分以上をかけて冷却する必要のあることが明
らかである。
Figure 5 is a diagram showing the effect of slow cooling (aging treatment) between 300 and 100°C on 3% strain aging of a similar steel that was hot rolled and water cooled to 300°C. In the case of cooling, it is clear that it is necessary to cool down for 5 minutes or more.

次いで、この発明を、実施例により比較鋼と対比しなが
ら説明する。
Next, the present invention will be explained with reference to examples and in comparison with comparative steel.

実施例 まず、転炉製鋼法と真空脱ガス法(RH法)を組合せた
溶解法によって、第1表に示される如き化学成分組成の
鋼A−Tを溶製し、空気中よりNを吸収しないようAr
等の不活性ガスで常にシールドを行いながら連続鋳造を
実施することによって150■厚のスラブを得た。
Example First, steel A-T having the chemical composition shown in Table 1 was melted by a melting method that combines the converter steelmaking method and the vacuum degassing method (RH method), and N was absorbed from the air. Please do not
A slab with a thickness of 150 cm was obtained by continuous casting while always shielding with an inert gas such as.

続いて、これをそれぞれ第2表に示される温度に加熱後
、同じく第2表に示される条件での熱間圧延を施して仕
上げ板厚を30〜20m(但し、試験番号2のものは1
5m)とした後、直ちに300℃まで水冷を行った(但
し、試験番号21及び22は除く)。このときの800
〜500℃間の平均冷却速度は、板厚によって若干の差
はあるものの、30〜b なお、個々については、第2表に示した通りであった。
Subsequently, each of these was heated to the temperatures shown in Table 2, and then hot rolled under the conditions shown in Table 2 to obtain a finished plate thickness of 30 to 20 m (however, test number 2 was
5 m), and immediately water-cooled to 300°C (excluding test numbers 21 and 22). 800 at this time
The average cooling rate between ~500°C and 30~b was as shown in Table 2, although there were some differences depending on the plate thickness.

これに続いて、試験番号1〜20のものは、温度域=3
00〜100℃間を20分(但し、300〜220℃間
は約7分)かけて徐冷した後、大気放冷した。試験番号
21及び22のものは、それぞれ450℃及び100℃
まで水冷を行った後そのまま大気放冷した。
Following this, for test numbers 1-20, temperature range = 3
After slowly cooling from 00 to 100°C for 20 minutes (however, about 7 minutes from 300 to 220°C), it was allowed to cool in the atmosphere. Test numbers 21 and 22 were at 450°C and 100°C, respectively.
After cooling with water until the temperature reached 100 degrees, it was left to cool in the air.

このようにして得られた銅材の機械的性質を調べ、その
結果を第2表に併せて示した。々お、溶接は、片面SA
W法を用い、入熱:17〜23万J /cmO下で行っ
た。
The mechanical properties of the copper material thus obtained were investigated, and the results are also shown in Table 2. Well, the welding is single-sided SA.
The W method was used at a heat input of 170,000 to 230,000 J/cmO.

第2表に示される結果から明らかなように1本発明方法
1〜15によって得られた高張力鋼は、3%歪時効のΔ
vTs  も20℃以下と小さく、強張強さが50kg
f/W”以上、VT8  が−40℃以下と優れた特性
を示す上、溶接ボンド部の靭性が、−20℃での衝撃エ
ネルギー吸収値(v E−20)で7kr−m以上と高
いのに対して、比較方法たる試験番号16の方法によっ
て得られた鋼は高NのためにΔvTs  が大きく、同
じく試験番号17によるものは高Mn鋼のために良好な
性能を示すが低Mn鋼に比べて約20%のコストアップ
となるものであり、試験番号18によるものはMn含有
量が低すぎて強度及び靭性が劣っており、試験番号19
によるものはC含有量が低いので引張強さが50kgf
 /簡2を割っており、そして試験番号20によるもの
はC含有量が高すぎるので靭性に劣っていることがわか
る。
As is clear from the results shown in Table 2, the high tensile strength steels obtained by methods 1 to 15 of the present invention have a Δ
vTs is also small at less than 20℃, and tensile strength is 50kg.
In addition to exhibiting excellent properties such as f/W" or higher and VT8 of less than -40°C, the toughness of the weld bond is high with an impact energy absorption value (v E-20) of more than 7 kr-m at -20°C. On the other hand, the steel obtained by the comparative method, Test No. 16, has a large ΔvTs due to high N, and the steel obtained by Test No. 17, which is a comparative method, shows good performance due to the high Mn steel, but it has poor performance compared to the low Mn steel. This results in an approximately 20% increase in cost compared to test number 18, and the test number 18 has a too low Mn content and is inferior in strength and toughness.
Because the C content is low, the tensile strength is 50 kgf.
/simple 2, and it can be seen that the one according to test number 20 has an excessively high C content and is therefore inferior in toughness.

そして、試験番号8〜15の方法によって得られた鋼材
は、V、Ti、Nb及びBの微量元素が添加されたもの
であり、溶接ボンド部靭性に若干の低下がみられるもの
の強上昇が著しく、母材靭性も向上していることがわか
る。
The steel materials obtained by the methods of test numbers 8 to 15 were added with trace elements of V, Ti, Nb, and B, and although there was a slight decrease in the toughness of the weld bond, there was a significant increase in the toughness. It can be seen that the toughness of the base material is also improved.

上述のように、この発明によれば、製造能率高く、歪時
効脆化を生ずることのない低コストの低Mn高張力鋼を
容易に得ることができ、溶接構造物の安全性が更に向上
されるなど、工業上有用な効果がもたらされるのである
As described above, according to the present invention, it is possible to easily obtain a low-cost, low-Mn high-strength steel that has high manufacturing efficiency and does not cause strain-age embrittlement, and the safety of welded structures is further improved. This brings about industrially useful effects such as:

【図面の簡単な説明】[Brief explanation of drawings]

第1図は3%歪時効効果とMn含有量との関係を示す線
図、第2図は大入熱溶接ボンド靭性に及ばすN含有量の
影響を示す線図、@3図は800〜500℃間の平均冷
却速度と機械的性質との関係を示す線図、第4図は3%
歪時効効果と固溶C1Nの析出処理温度の関係を示す線
図、第5図は3%歪時効に対する300〜100℃間の
冷却時間の影響を示す線図である。 出願人  住友金属工業株式会社 代理人  富 1)和 夫  ほか1名学1図 第2図 0 0.00IQ、002Q、0O30,0040QO
5QOO6Q、007N01(11%)
Figure 1 is a diagram showing the relationship between 3% strain aging effect and Mn content, Figure 2 is a diagram showing the influence of N content on high heat input welding bond toughness, and Figure @3 is a diagram showing the relationship between 3% strain aging effect and Mn content. A diagram showing the relationship between the average cooling rate and mechanical properties at 500℃, Figure 4 is 3%
FIG. 5 is a diagram showing the relationship between the strain aging effect and the precipitation treatment temperature of solid solution C1N, and FIG. 5 is a diagram showing the influence of the cooling time between 300 and 100° C. on 3% strain aging. Applicant Sumitomo Metal Industries Co., Ltd. Agent Tomi 1) Kazuo and 1 other person Academic 1 Figure 2 0 0.00IQ, 002Q, 0O30,0040QO
5QOO6Q, 007N01 (11%)

Claims (1)

【特許請求の範囲】[Claims] (1) c : 0.1〜0.2%。 St : o、5%以下。 Mn:0.6〜1.1%。 sol、At:0.01〜0.08%。 N : 0.0030%以下。 を含有し、 Fe及び不可避不純物:残り。 から成る成分組成(以上重量%)の鋼を900〜120
0℃に加熱後、仕上温度:900〜750℃の熱間圧延
を施し、続いて800〜500℃間の平均冷却速度が1
0〜609C/ seの急冷を300℃以下の温度にな
るまで実施してから、300〜100℃の間を5分以上
かけて冷却し、室温にま1 − で降温することを特徴とする高張力鋼の製造方法。 (21C:0.1〜0.2%。 sl: 0.5%以下。 Mn : 0−6〜1−1%。 5ol−At: 0.01〜0−08%。 N : 0.0030%以下 を含有するとともに、更に、 V : o、o s%以下。 Ti : o、□ 3%以下。 Nb:0.08%以下。 B : 0.08%以下。 のうちの1種以上をも含み、 Fe及び不可避不純物:残り、 から成る成分組成(以上Vi量%)の鋼を900〜12
00℃に加熱後、仕上温度:900〜750℃の熱間圧
延を施し、続いて800〜500℃間の平均冷却速度が
lθ〜60℃/就の急冷を300℃以下の温度になるま
で実施してから、300〜100℃の間を5分以上かけ
て冷却し、室温にまで降温することを特徴とする高張力
鋼の製造方法。
(1) c: 0.1-0.2%. St: o, 5% or less. Mn: 0.6-1.1%. sol, At: 0.01-0.08%. N: 0.0030% or less. Contains Fe and unavoidable impurities: remainder. Steel with a composition (more than 900 to 120% by weight) consisting of
After heating to 0°C, hot rolling is performed at a finishing temperature of 900 to 750°C, followed by an average cooling rate of 1 between 800 and 500°C.
A high-temperature method characterized by rapidly cooling from 0 to 609C/se until the temperature reaches 300C or less, then cooling from 300 to 100C over 5 minutes, and cooling at 1 - to room temperature. Method of manufacturing tension steel. (21C: 0.1-0.2%. sl: 0.5% or less. Mn: 0-6-1-1%. 5ol-At: 0.01-0-08%. N: 0.0030% Contains the following, and also contains one or more of the following: V: o, o s% or less; Ti: o, □ 3% or less; Nb: 0.08% or less; B: 0.08% or less. Contains Fe and unavoidable impurities: remaining, steel with a composition (more than Vi content%) of 900 to 12
After heating to 00°C, hot rolling is performed at a finishing temperature of 900 to 750°C, followed by rapid cooling at an average cooling rate of lθ to 60°C between 800 and 500°C until the temperature reaches 300°C or less. A method for manufacturing high-strength steel, which comprises cooling from 300 to 100°C over 5 minutes or more to lower the temperature to room temperature.
JP5646483A 1983-03-31 1983-03-31 Production of high tensile steel Granted JPS59182915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5646483A JPS59182915A (en) 1983-03-31 1983-03-31 Production of high tensile steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5646483A JPS59182915A (en) 1983-03-31 1983-03-31 Production of high tensile steel

Publications (2)

Publication Number Publication Date
JPS59182915A true JPS59182915A (en) 1984-10-17
JPH0118969B2 JPH0118969B2 (en) 1989-04-10

Family

ID=13027821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5646483A Granted JPS59182915A (en) 1983-03-31 1983-03-31 Production of high tensile steel

Country Status (1)

Country Link
JP (1) JPS59182915A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067621A (en) * 1983-09-22 1985-04-18 Kawasaki Steel Corp Preparation of non-refining high tensile steel
JPS6220822A (en) * 1985-07-19 1987-01-29 Kawasaki Steel Corp Manufacture of non-heat treated high tensile steel sheet superior in weldability and low temperature toughness
JPS62139816A (en) * 1985-12-16 1987-06-23 Kawasaki Steel Corp Manufacture of high tension and toughness steel plate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136716A (en) * 1982-01-28 1983-08-13 Nippon Steel Corp Manufacture of high strength hot rolled steel plate for working having low yield ratio and composite structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136716A (en) * 1982-01-28 1983-08-13 Nippon Steel Corp Manufacture of high strength hot rolled steel plate for working having low yield ratio and composite structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067621A (en) * 1983-09-22 1985-04-18 Kawasaki Steel Corp Preparation of non-refining high tensile steel
JPS626730B2 (en) * 1983-09-22 1987-02-13 Kawasaki Steel Co
JPS6220822A (en) * 1985-07-19 1987-01-29 Kawasaki Steel Corp Manufacture of non-heat treated high tensile steel sheet superior in weldability and low temperature toughness
JPS62139816A (en) * 1985-12-16 1987-06-23 Kawasaki Steel Corp Manufacture of high tension and toughness steel plate
JPH0366367B2 (en) * 1985-12-16 1991-10-17 Kawasaki Steel Co

Also Published As

Publication number Publication date
JPH0118969B2 (en) 1989-04-10

Similar Documents

Publication Publication Date Title
JPS5877528A (en) Manufacture of high tensile steel with superior toughness at low temperature
JPH02220735A (en) Production of high tensile strength steel for welding and low temperature including titanium oxide
JPS605647B2 (en) Method for manufacturing boron-containing non-thermal high tensile strength steel with excellent low-temperature toughness and weldability
WO1988010318A1 (en) High-strength, hot-rolled steel sheet having excellent cold workability and process for its production
JPS59182915A (en) Production of high tensile steel
JPH0360888B2 (en)
JPS6320414A (en) Production of high-toughness high-tensile steel plate
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability
JP3848397B2 (en) Manufacturing method of high-efficiency and highly uniform tough steel plate
JP2784207B2 (en) Method of manufacturing hot rolled steel sheet for processing and thermomechanical processing method of hot rolled steel sheet
JPS59153841A (en) Production of high-tension electric welded steel pipe having uniform strength
JP2687840B2 (en) Diffusion bonding method
JPH01172520A (en) Manufacture of 80kgf/mm2 class electric welded steel pipe having superior toughness at low temperature and low yield ratio
JPS63140034A (en) Production of low yield ratio high tensile steel having excellent low-temperature toughness
JPS6324012A (en) Production of low yielding ratio high-tensile steel plate by direct hardening and tempering method
JPH02270913A (en) Manufacture of high toughness and high tension steel plate having low yield ratio
JPS62139816A (en) Manufacture of high tension and toughness steel plate
JPS61174328A (en) Production of structural thick steel plate having high toughness
JPS63109122A (en) Production of hot rolled sheet having excellent toughness
JPS61127814A (en) Manufacture of high tension steel plate having excellent low-temperature toughness
JPS6324013A (en) Production of low yielding ratio high-tensile steel plate by direct hardening and tempering method
JPH0369979B2 (en)
JPH0768576B2 (en) Manufacturing method of thick-walled 9% Ni steel with excellent yield strength
JPS624821A (en) Manufacture of steel sheet for low temperature use
JPH08253812A (en) Production of thick steel plate excellent in brittle crack arrest property