JPS6220822A - Manufacture of non-heat treated high tensile steel sheet superior in weldability and low temperature toughness - Google Patents

Manufacture of non-heat treated high tensile steel sheet superior in weldability and low temperature toughness

Info

Publication number
JPS6220822A
JPS6220822A JP15837085A JP15837085A JPS6220822A JP S6220822 A JPS6220822 A JP S6220822A JP 15837085 A JP15837085 A JP 15837085A JP 15837085 A JP15837085 A JP 15837085A JP S6220822 A JPS6220822 A JP S6220822A
Authority
JP
Japan
Prior art keywords
cooling
toughness
rolling
less
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15837085A
Other languages
Japanese (ja)
Other versions
JPH0649897B2 (en
Inventor
Motomu Kimura
木村 求
Taneo Hatomura
波戸村 太根生
Kenichi Amano
虔一 天野
Yoshifumi Nakano
中野 善文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60158370A priority Critical patent/JPH0649897B2/en
Publication of JPS6220822A publication Critical patent/JPS6220822A/en
Publication of JPH0649897B2 publication Critical patent/JPH0649897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To provide both superior weldability and low temp. toughness, by rolling a steel contg. decreased S, N quantities and specified quantities of C, Si, Mn, Al in two steps under a specified condition, immediately cooling the sheet in two steps while specifying cooling stopping temp. CONSTITUTION:The steel contg. by weight 0.005-0.20% C, 0.05-0.5% Si, 0.5-2.0% Mn, 0.005-0.08% Al, <=0.01% S, <=0.008% N is refined. The sheet is rolled at (Ar3+70 deg.C)-Ar3 range by >=30% draft, further rolled at Ar3-(Ar3-80 deg.C) range by 10-60% draft. Thereafter, immediately the sheet is cooled from 700 deg.C to 500 deg.C at 4-30 deg.C/sec rate, successively cooled at 500-200 deg.C range by 1-3 deg.C/sec rate, successively air cooled or cooled slowly. By the controlled rolling and cooling, it is highly strengthened and variance in material quality and inferior shape are avoided.

Description

【発明の詳細な説明】 (産業上の利用分野) 溶接性と低温じん性に優れた50〜60キロ級の高張力
厚鋼板を制御圧延と加速冷却の併用により製造する方法
に関してこの明細書には従来にない高強度化が図れる対
策を講じることによって、造船用厚鋼板やタンクなどの
圧力容器用鋼板その他寒冷地向はラインパイプ用鋼板や
海洋構造物用鋼板などの使途での要請を満たすことにつ
いての開発研究の成果に関連して以下に述べる。
[Detailed Description of the Invention] (Industrial Application Field) This specification describes a method for manufacturing a 50-60 kg class high-tensile steel plate with excellent weldability and low-temperature toughness by a combination of controlled rolling and accelerated cooling. By taking measures to achieve unprecedented high strength, we are meeting the requirements for thick steel plates for shipbuilding, steel plates for pressure vessels such as tanks, steel plates for line pipes in cold regions, steel plates for offshore structures, etc. The following describes the results of development research on this subject.

(従来の技術) 溶接性と低温じん性にすぐれた厚鋼板を提供するために
合金成分を削減し、それによる強度低下を補うために制
御圧延(C1?と略す)、加速冷却(ACCと略す)と
云ったオンラインでの加工熱処理を適用する手法が知ら
れている。たとえば特開昭52−123921号公報、
あるいは特開昭55−115924号公報にはCR後A
CCを施して圧延まま材に比べ3〜5 kgf/n+m
2以上の高強度化を図る手法が提案されている。これら
はいずれも冷却停止強度を500℃よりも高く定めてい
るので強度増加に限りがある。
(Prior technology) In order to provide thick steel plates with excellent weldability and low-temperature toughness, alloy components are reduced, and in order to compensate for the resulting decrease in strength, controlled rolling (abbreviated as C1?) and accelerated cooling (abbreviated as ACC) are used. ) is known as a method of applying online processing heat treatment. For example, Japanese Patent Application Laid-open No. 52-123921,
Or, in Japanese Patent Application Laid-open No. 55-115924, A after CR
3 to 5 kgf/n+m compared to as-rolled material subjected to CC
A method for increasing the strength of 2 or more has been proposed. In all of these, the cooling stop strength is set higher than 500°C, so there is a limit to the increase in strength.

一方冷却停止温度を500℃以下とすることにより圧延
まま材よりも10〜20kgf/mm”以上の高強度化
が図れることが特開昭57−143431号または特開
昭58−61224号などに開示されている。しかしな
がら冷却停止温度を500℃以下とすると単調な水冷の
際の必然的現象である膜沸騰から核沸騰への遷移現象が
起って、鋼板のひずみおよび材質ばらつきが生じること
により製品化が困難であった。
On the other hand, it is disclosed in JP-A-57-143431 or JP-A-58-61224 that by setting the cooling stop temperature to 500°C or less, it is possible to achieve a higher strength of 10 to 20 kgf/mm'' than as-rolled material. However, if the cooling stop temperature is set to 500°C or lower, a transition phenomenon from film boiling to nucleate boiling, which is an inevitable phenomenon during monotonous water cooling, will occur, causing distortion of the steel plate and material variation, resulting in poor product quality. It was difficult to

(発明が解決しようとする問題点) ACCによる高強度化の機構を最大限に生かすためには
、ACCの冷却停止温度を500℃以下とし、かつその
温度域でひずみ及び材質ばらつきを少なくできる手法が
必要である。
(Problems to be Solved by the Invention) In order to make the most of the high-strength mechanism by ACC, it is necessary to set the cooling stop temperature of ACC to 500°C or less, and to reduce strain and material variation in that temperature range. is necessary.

従って500℃以下に達するACCを行った際に従来不
可避であったひずみ及び材質ばらつきを有利に抑制しつ
つACCによる強度増加を有効に実現させることがこの
発明の目的である。
Therefore, it is an object of the present invention to effectively realize an increase in strength by ACC while advantageously suppressing the conventionally unavoidable distortion and material variation when performing ACC at temperatures below 500°C.

(問題点を解決するための手段) コノ発明はC:0.005〜0.20wt% 、 Si
:0.05〜0.5wt%、Mn:0.5〜2.0wt
%、A 1. :0.005〜0.08wtχを含み、
S: 0.01wt%以下、N:0.008wt%以下
に低減した成分組成にて溶製した鋼を、(Ar3+ 7
0℃)からAr3までの温度範囲で少なくとも30%の
圧下率で圧延し、さらにArから(Ar3− sooC
)までの温度範囲で10%以上60%以下Φ圧下率で圧
延し、その後直ちに700℃から500℃の温度域まで
を4〜30”c/sの冷却速度で冷却し、さらに該温度
域から500〜200℃の温度域までを1〜b度で冷却
し、引き続き空冷ないし徐冷する手順にて溶接性と低温
じん性の優れた非調質高張力鋼板を得るものである。
(Means for solving the problem) The present invention has C: 0.005 to 0.20 wt%, Si
:0.05~0.5wt%, Mn:0.5~2.0wt
%, A1. : Contains 0.005-0.08wtχ,
S: 0.01 wt% or less, N: 0.008 wt% or less.
0°C) to Ar3 with a reduction of at least 30%, and further rolled from Ar to (Ar3- sooC
) in a temperature range of 10% to 60% Φ reduction, then immediately cooled in a temperature range of 700°C to 500°C at a cooling rate of 4 to 30”c/s, and further from that temperature range. A non-heat treated high tensile strength steel plate with excellent weldability and low temperature toughness is obtained by cooling at 1 to 2 degrees Celsius to a temperature range of 500 to 200 degrees Celsius, followed by air cooling or slow cooling.

発明者らはACCにおける500℃よりも低い冷却停止
温度を、鋼板面内でむらなく確保する手法およびCRに
おけるAr=以下の圧延が強度、じん性におよぼす影響
を、種々検討した結果A r、から(Ar*−80℃)の温度域での圧下率を10
%以上60%以下にとり、かつ500℃未満の温度域に
おける冷却速度を1〜b 靭性劣化をともなわない10kgf/mm2以上の高強
度化(高TS化)が、面内の冷却停止温度にむらを伴わ
ずに、実現できることを新規に知見した。
The inventors conducted various studies on methods for ensuring a cooling stop temperature lower than 500°C in ACC evenly within the steel plate surface, and the effects of rolling below Ar in CR on strength and toughness. The rolling reduction rate in the temperature range from (Ar*-80℃) to 10
% or more and 60% or less, and the cooling rate in the temperature range of less than 500℃ is 1 to b. High strength of 10 kgf/mm2 or more (high TS) without deterioration of toughness causes unevenness in the in-plane cooling stop temperature. We discovered something new that can be achieved without having to do so.

さて第1図は、C:0.07wt%、Si:0.25%
:、Mn:1.4wtχ 、 八(1:0.020wt
1  、P:0.015wt 、 S:0.003wt
!、N : 0.003w t!の成分組成に成る鋼(
Arff= 787℃)をそれぞれ下記の処理を施した
ときの鋼板(板厚16mm)の強度とじん性におよぼす
冷却停止温度の影響を示すものである。
Now, Figure 1 shows C: 0.07wt%, Si: 0.25%
:, Mn:1.4wtχ, 8(1:0.020wt
1, P: 0.015wt, S: 0.003wt
! , N: 0.003wt! Steel with the chemical composition (
This figure shows the influence of the cooling stop temperature on the strength and toughness of a steel plate (thickness: 16 mm) when the following treatments were applied to the steel plate (Arff=787°C).

i ) (Ar++ 70℃)〜Ar、間で圧下率50
χてC12−10℃/SでACCおよび空冷(第1図の
口印)。
i) (Ar++ 70℃) - Ar, rolling reduction rate 50
ACC and air cooling at C12-10°C/S (marks in Figure 1).

ii )  (Ar:+ +70℃)〜^r、1間で圧
下率5oχでCR→Ar:+(Ar:+−30℃)間で
圧下率4oχでCR→10℃/sでACCおよび空冷(
第1図△印)。
ii) CR at a reduction rate of 5oχ between (Ar: + +70℃) ~ ^r, 1 → CR at a reduction rate of 4oχ between (Ar: + - 30℃) → ACC and air cooling at 10℃/s (
Figure 1 (△ mark).

iii )  (Arz+ 70℃) 〜Ar、間で圧
下率5ozでCR= Arl〜(Ar3−30℃)間で
圧下率4oχでCR→10℃/SテACC(停止温度4
50〜710 ’c) →2.5”C/Sで八CC(停
止温度400℃)(第1図○印)。
iii) CR at a reduction rate of 5oz between (Arz + 70℃) ~ Ar, CR = CR at a reduction rate of 4oχ between Arl ~ (Ar3-30℃) → 10℃/Ste ACC (stop temperature 4
50-710'c) → 8CC at 2.5"C/S (stopping temperature 400°C) (○ mark in Figure 1).

iii )の○印のプロットがこの発明の高強度化法で
ある。
The plot marked with ◯ in iii) is the strength increasing method of this invention.

i)、ii)により圧延ままで40キロ級のTSを示す
鋼にTS50キロ級の強度を賦与するには冷却停止温度
を500℃未満とする必要があることがわかるがこの温
度域は前述のように冷却むらを起こしやすく安定製造が
困難である。
From i) and ii), it can be seen that in order to impart a TS of 50 kg to a steel that exhibits a TS of 40 kg as rolled, it is necessary to set the cooling stop temperature to less than 500°C, but this temperature range is As such, uneven cooling tends to occur, making stable production difficult.

iii )での最終冷却停止温度は400℃であるが、
ACC冷却途上で、冷却速度を2.5℃/Sと遅くして
いる。それにもかかわらずTSはi)、ii)で500
℃未満の冷却停止温度をとった鋼と同等のTSが得られ
る。
The final cooling stop temperature in iii) is 400°C,
In the middle of cooling the ACC, the cooling rate is slowed down to 2.5°C/S. Nevertheless, TS is 500 in i) and ii)
A TS equivalent to that of steel with a cooling stop temperature of less than 0.degree. C. can be obtained.

次ぎに第2図はt 20 x W2O0x LlooO
O)鋼板を実験圧延機で圧延後750℃から400℃ま
で10℃/Sで冷却したもの(比較法)と、750℃か
ら600℃までLO’C/Sで冷却しその後400℃ま
で2.2℃/Sで冷却したもの(発明法)の冷却完了後
の鋼板長手方向表面温度分布を示す。このように冷却途
中から冷却速度を遅くすることにより500℃未満の冷
却停止においても温度むらは大幅に軽減されている。
Next, in Figure 2, t 20 x W2O0x LlooO
O) Steel plate rolled in an experimental rolling mill and then cooled at 10°C/S from 750°C to 400°C (comparative method), and 2. Steel plate cooled from 750°C to 600°C by LO'C/S and then cooled to 400°C. The temperature distribution in the longitudinal direction of the steel sheet after cooling is completed after cooling at 2° C./S (inventive method) is shown. In this way, by slowing down the cooling rate during cooling, temperature unevenness is significantly reduced even when cooling is stopped at less than 500°C.

以上のような高強度化はγ+α域での圧延にょる加工フ
ェライトの生成とその後のACCによるマルテンサイト
の生成によるが、ここで通常マルテンサイトが混入する
と靭性が劣化するのであるが、この発明のようなプロセ
スを経て製造する場合圧延時未変態であったTから変態
するフェライト粒が従来以上に微細化し、その中にマル
テンサイトが微細に分散して混入するため靭性の劣化は
非常に小さいことと、ACCの途上において一定水量で
500℃未満の温度域まで一本調子の冷却をm続すると
膜沸騰から核沸騰に移行して冷却停止温度が不安定にな
るのに対して、500℃以上の温度で冷却速度を遅くし
もって膜沸騰が500℃未満の温度域まで維持されてこ
の温度域での冷却停止温度が安定化することとは、注目
すべき知見である。
The above-mentioned high strength is achieved by the formation of processed ferrite by rolling in the γ+α region and the subsequent formation of martensite by ACC. Normally, if martensite is mixed in, the toughness deteriorates, but the present invention When manufacturing through such a process, the ferrite grains that transform from untransformed T during rolling become finer than before, and martensite is finely dispersed and mixed into them, so the deterioration in toughness is extremely small. During ACC, if continuous cooling is continued for m to a temperature range of less than 500℃ with a constant amount of water, the temperature will shift from film boiling to nucleate boiling and the cooling stop temperature will become unstable; It is a noteworthy finding that film boiling is maintained up to a temperature range below 500°C by slowing the cooling rate at a temperature of , and the cooling stop temperature is stabilized in this temperature range.

この発明は上記2つの知見に基づき、種々の検討を加え
た結果到達しえたものである。
This invention was achieved as a result of various studies based on the above two findings.

この発明の方法を適用する熱間圧延素材の成分組成の限
定は次の事由による。
The composition of the hot rolled material to which the method of the present invention is applied is limited due to the following reasons.

C: Cは、0.00!5wtχ未満では鋼板強度が不足し、
また溶接熱影響部(以下1(AZと記す)の軟化を来た
し、一方0.20wtχを越えると母材のじん性が劣化
するとともに溶接部の硬化に加え、耐割れ性の劣化も著
しくなるので、Cは0.005〜0.20wtχの範囲
内にする必要がある。
C: If C is less than 0.00!5wtχ, the steel plate strength is insufficient,
In addition, the weld heat affected zone (hereinafter referred to as AZ) will soften, and if it exceeds 0.20wtχ, the toughness of the base metal will deteriorate, the weld will harden, and the cracking resistance will deteriorate significantly. , C must be within the range of 0.005 to 0.20wtχ.

Si: Siは鋼精錬時に脱酸上必然的に含有される元素である
が、0,05χ未満では母材じん性が不足し、一方0.
5wtχを越えると鋼の清浄度が劣化してじん性紙下の
原因になるので、Siは0.05〜0.5intχ の
範囲内にする必要がある。
Si: Si is an element that is inevitably included for deoxidation during steel refining, but if it is less than 0.05χ, the base metal toughness will be insufficient;
If it exceeds 5 wt.chi., the cleanliness of the steel deteriorates and causes a tough paper, so Si must be within the range of 0.05 to 0.5 int.chi.

Mn: Mnは0.5wtX未満では鋼板の強度およびじん性が
不足し、さらにHAZの軟化がひどくなり、一方2、O
wtχを越えるとHAZのじん性が劣化するので、Mn
は0.5〜2.Owtχの範囲内にする必要がある。
Mn: If Mn is less than 0.5 wt
Since the toughness of HAZ deteriorates when exceeding wtχ,
is 0.5-2. It is necessary to keep it within the range of Owtχ.

^ 1; 鋼の脱酸上、最低0.005wtχのiが固溶するよう
に含有させることが必要であり、一方0 、08w t
Xを越えるとHAZのじん性のみならず溶接金属のじん
性も著しく劣化するので、AAは0.005〜0.08
wtχの範囲にする必要がある。
^ 1; In order to deoxidize steel, it is necessary to contain at least 0.005wtχ of i in solid solution, while 0.08wt
If it exceeds
It is necessary to keep it within the range of wtχ.

S ; Sは0.01wtχを越えると圧延と直角方向の吸収エ
ネルギーが著しく低下するので、0.01wt%以下に
制限する必要がある。
S; If S exceeds 0.01wtχ, the absorbed energy in the direction perpendicular to rolling will drop significantly, so it must be limited to 0.01wt% or less.

N : Nは溶接部じん性の劣化を防止するために限定する必要
がある。すなわち、HAZじん性のためには固溶Nが少
ない程、望ましく、また溶接時に溶接金属へNが流入し
て溶接金属のしん性をも劣化させるので0.008wt
%以下に制限する必要がある。
N: N needs to be limited in order to prevent deterioration of the welded part toughness. In other words, for HAZ toughness, it is better to have less solid solution N, and since N flows into the weld metal during welding and deteriorates the toughness of the weld metal, 0.008 wt.
% or less.

以上の成分組成において、この発明の方法による所期し
た効果を奏するがこの他、以下に掲げる各群の成分がそ
れらの添加目的の下で含有される場合にあっても、この
発明の方法による効果の達成を妨げることはない。
In the above component composition, the method of this invention achieves the desired effect, but in addition, even if the following components of each group are contained for the purpose of their addition, the method of this invention can achieve the desired effect. It does not prevent the achievement of the effect.

第1群成分: Nb+Cr+Mo、Ti、V、Cu、N
iNbは0.005wtχ程度以上でフェライトの細粒
化に効果があるが、0.1wtχを越えると溶接金属中
に拡散し、溶接金属のしん性を低下させるので、Nbは
0.005〜0.1wtXの範囲内で細粒化を目指す。
1st group components: Nb+Cr+Mo, Ti, V, Cu, N
iNb is effective in refining ferrite grains when it is about 0.005wtχ or more, but if it exceeds 0.1wtχ it will diffuse into the weld metal and reduce the toughness of the weld metal. Aiming for finer grains within the range of 1wtX.

TiはTiN析出物となりγ粒を微細化させて、フェラ
イト、ベイナイト粒を微細にする効果があるので、O,
0Q3tvt%以上でTiN析出物が不足することなく
細粒効果を有利にもたらすように含有させるを可とする
が、一方0 、04w tXを越えるとTiN析出物が
過剰となりじん性が劣化するのでTiは0.04wt%
以下が好適である。
Since Ti forms TiN precipitates and has the effect of refining γ grains and refining ferrite and bainite grains, O,
At 0Q3tvt% or more, TiN precipitates can be contained to advantageously bring about a fine grain effect without running out of TiN precipitates. On the other hand, if TiN precipitates exceed 0.04wtX, TiN precipitates become excessive and the toughness deteriorates. is 0.04wt%
The following are preferred.

Vは鋼板の母材の強度とじん性向上、継手部強度確保の
ためむしろ0.01wt%以上の含有を可とするが0.
10wtχを越えると母材および11^Zのじん性を劣
化させるので、Vは0.10wt%以下の範囲内が好ま
しい。
In order to improve the strength and toughness of the base material of the steel plate and ensure the strength of the joint, V may be contained in an amount of 0.01 wt% or more, but 0.01 wt% or more is allowed.
If it exceeds 10wtχ, the toughness of the base material and 11^Z deteriorates, so V is preferably within the range of 0.10wt% or less.

Cuは次にべるNiとほぼ同様の効果があるほか耐食性
の向上に寄与するが、0.5wtχを越えると熱間圧延
中にクランクが発生しやすくなり、鋼板の表面性状が劣
化するので、0.5Wt%以下にするのが好ましい。
Cu has almost the same effect as Ni, which will be discussed next, and also contributes to improving corrosion resistance, but if it exceeds 0.5wtχ, cranks are likely to occur during hot rolling and the surface quality of the steel sheet deteriorates. The content is preferably 0.5 Wt% or less.

NiはFIAZの硬化性およびじん性に悪い影響を与え
ることなく、母材の強度、じん性を向上させるに有利で
あるが、1.Owtχを越えて含有させるのは製造コス
トの上昇を招くので1.0wt%以下が好適である。
Ni is advantageous in improving the strength and toughness of the base material without adversely affecting the hardenability and toughness of FIAZ, but 1. If the content exceeds Owtχ, it will increase the manufacturing cost, so the content is preferably 1.0wt% or less.

Crは鋼板の母材強度と継手部強度確保のために含有さ
せ得るが、0.5wtχを越えると母材のじん性ばかり
力嗜容接部じん性にも悪影響が生じるので、0.5wt
%以下に含有させて一層の高強度化を目指す。
Cr can be included to ensure the strength of the base material of the steel plate and the strength of the joint, but if it exceeds 0.5wtχ, it will adversely affect not only the toughness of the base metal but also the toughness of the force-receptive joint.
% or less to achieve even higher strength.

Moは圧延時の1粒を整粒となし、なおかつ微細なベイ
ナイトを生成するので強度、じん性の向上に有利であり
、その限りにおいて0.5wtχを越える必要はない。
Mo is advantageous in improving strength and toughness because it makes each grain uniform during rolling and also produces fine bainite, and as long as that is the case, it is not necessary to exceed 0.5 wtχ.

第2群成分:Ca、REM Caは、0.002wtχ程度の微量にてMnSの形態
制御に効果をもたらし鋼板の圧延と直角方向のしん性向
上に有効であるがO,OLOwtχを越えると鋼の清浄
度が悪くなり内部欠陥の原因となるので、o、oi。
2nd group component: Ca, REM Ca is effective in controlling the morphology of MnS in a small amount of about 0.002wtχ, and is effective in improving the toughness of the steel plate in the direction perpendicular to the rolling direction. o, oi, as it will deteriorate the cleanliness and cause internal defects.

wt%以下の範囲がじん住改善により好適である。A range of wt% or less is more suitable for improving living conditions.

REMつまり希土類元素は0.005wtχ程度の微量
にてやはりMnSの形態制御をあられし鋼板の圧延と直
角方向のしん性に有利であるが0.010wtχを越え
ると鋼の清浄度が悪くなるほかにアーク溶接の面でも不
利があるので、0.010wt%以下がじん住改善に一
層好適な範囲である。
REM, that is, rare earth elements, can control the morphology of MnS in trace amounts of about 0.005 wtχ, and is advantageous for rolling and perpendicular toughness of steel sheets, but if it exceeds 0.010 wtχ, the cleanliness of the steel deteriorates. Since it is also disadvantageous in terms of arc welding, a range of 0.010 wt % or less is more suitable for improving air pollution.

以上の理由から明らかなように、第1群成分は主として
強度増強、第2成分は専らじん住改善に関し、それぞれ
同効成分と見なされる。
As is clear from the above reasons, the first group of ingredients mainly relates to strength enhancement, and the second group of ingredients exclusively relates to improvement of health and well-being, and they are considered to have the same effect.

(作 用) (Ar3+ 70℃)からAr1までの間を少なくとも
30χの圧下率で圧延するが上限を越える温度域、下限
未満の圧下率での圧延では、オーステナイト粒内への変
形帯の導入が不十分で変態後のフェライト粒が微細化で
きない。
(Function) Rolling is carried out at a reduction rate of at least 30χ between (Ar3+ 70°C) and Ar1, but in the temperature range exceeding the upper limit and rolling at a reduction rate below the lower limit, deformation bands may be introduced into the austenite grains. Insufficient ferrite grains cannot be refined after transformation.

一方、Ar=から(Arl−80℃)の温度域での圧下
率を10%以上60%以下で圧延するがこの圧延が除外
されるとACCによるTS上昇量が目標とする10kg
f/mm”以上とならない。それというのはフェライト
の加工が不十分だからである。Ar+〜(Ar+−80
℃)間 の圧下率が10χ未満ではフェライトの加工度
が小さいためTS上昇量が少なく、逆に60χを越える
かあるいは(Ar3−80℃)よりも低い温度での圧延
を行うとフェライト加工度が大きくなりすぎてじん性劣
化を招く他、不必要にセパレーションが増加して板厚方
向特性も劣化する。
On the other hand, rolling is carried out at a rolling reduction rate of 10% to 60% in the temperature range from Ar= to (Arl-80°C), but if this rolling is excluded, the TS increase due to ACC will reach the target of 10 kg.
f/mm" or more. This is because the processing of the ferrite is insufficient. Ar+~(Ar+-80
When the rolling reduction rate between (℃) is less than 10χ, the degree of ferrite work is small, so the amount of TS increase is small.On the other hand, when rolling is performed at a temperature exceeding 60χ or lower than (Ar3-80℃), the degree of ferrite work increases. If it becomes too large, not only will it cause deterioration in toughness, but also separation will increase unnecessarily and the properties in the thickness direction will also deteriorate.

圧延後直ちに700℃から500℃の温度域までを4〜
b するが4〜b 停止するとTSはほとんど上昇しない。また4〜30”
C/sのACCを500℃よりも低い温度で停止すると
冷却むらは急激に大きくなる。
Immediately after rolling, heat in the temperature range of 700℃ to 500℃ for 4~
b Yes, but 4~b When stopped, TS hardly increases. Also 4 to 30"
When the C/s ACC is stopped at a temperature lower than 500° C., the cooling unevenness increases rapidly.

一方、700℃〜500℃間の冷却速度が4’c/S未
満ではTS上昇効果かえられず逆に30℃/Sをこえる
と塊状のマルテンサイトまたはベイナイトあるいはそれ
らの混合組織が多くなり、じん性が劣化する。
On the other hand, if the cooling rate between 700°C and 500°C is less than 4'c/S, the TS increasing effect cannot be reversed, and on the other hand, if it exceeds 30°C/S, lumpy martensite, bainite, or a mixed structure thereof increases, and the toughness increases. deteriorates.

700〜500℃間から500℃未満〜200℃間まで
を冷却速度1〜3℃/s、  500℃未満〜200℃
間でACC(後段冷却と云う)するが、その冷却速度が
1”C/s未満ではTS上昇量はこの処理を施さないと
同程度になり、また3℃/Sを越えると冷却停止温度が
面内でばらつく。
From 700 to 500°C to less than 500°C to 200°C, cooling rate 1 to 3°C/s, less than 500°C to 200°C
ACC (referred to as post-cooling) is performed between It varies within the plane.

500℃をこえる冷却停止温度ではTS上昇量が不十分
となりそれと云うのは強度を上昇させるマルテンサイト
の量が不十分となるためであ。ところが200℃未満ま
でACCを続けると、水素の除去が不十分となって水素
欠陥を生ずる。従って200”C以上で後段冷却するこ
とが必要で、以後空冷ないし徐冷すればよい。
At a cooling stop temperature exceeding 500° C., the amount of increase in TS becomes insufficient, because the amount of martensite that increases strength becomes insufficient. However, if ACC is continued to a temperature below 200° C., hydrogen will not be removed sufficiently and hydrogen defects will occur. Therefore, it is necessary to perform subsequent cooling at a temperature of 200''C or higher, and then air cooling or slow cooling may be used.

実施例) 実施例1 表1の鋼記号(S) 、 (C)を表2に示す処理によ
って16mm厚の鋼板とした。それらの機械的性質を表
3に示す。
Examples) Example 1 The steel symbols (S) and (C) in Table 1 were processed to have a thickness of 16 mm as shown in Table 2. Their mechanical properties are shown in Table 3.

表2,3において試験光1〜10は鋼記号(S)につい
ての比較例であり、1t14.15は、それぞれ鋼記号
 (S) 、 (C)についての参考例を示し、残りの
N[111〜13がこの発明の適用例であって、表2,
3のデータから次のことがわかる。
In Tables 2 and 3, test lights 1 to 10 are comparative examples for the steel symbol (S), 1t14.15 is a reference example for the steel symbols (S) and (C), respectively, and the remaining N[111 -13 are application examples of this invention, Table 2,
The following can be seen from the data in 3.

tlh I  Ar:++ 70’C−Ar:+間の圧
下率が低すぎるのでじん性が劣化している。
tlh I Ar:++ The rolling reduction ratio between 70'C and Ar:+ is too low, resulting in poor toughness.

N112  Ar3〜Ar3−80℃間の圧下率が大き
すぎるためしん性が劣化している。
N112 The rolling reduction between Ar3 and Ar3-80°C is too large, resulting in poor toughness.

11h3  前段冷却の冷却速度が遅すぎてTSが低い
11h3 The cooling rate of the first stage cooling is too slow and the TS is low.

11h4  前段冷却の冷却速度が速すぎてじん性が劣
化している。
11h4 The cooling rate of the first stage cooling is too fast and the toughness has deteriorated.

丸5 前段冷却の停止温度が高すぎてTSが低い。Circle 5: The stop temperature of the first stage cooling is too high and the TS is low.

隘6 前段冷却の停止温度が低すぎて鋼板にひずみと材
質ばらつきを生じた。
Problem 6: The stopping temperature of the first stage cooling was too low, causing distortion and material variations in the steel plate.

IVh7  後段冷却の冷却速度が遅すぎてマルチ、ン
サイトの生成が不十分となりTSが低い。
IVh7 The cooling rate of the latter stage cooling is too slow, resulting in insufficient generation of multi-sites and low TS.

隘8 後段冷却の冷却速度が速すぎて鋼板にひずみ、材
質ばらつきが生じた。
Problem 8: The cooling rate of the latter stage cooling was too fast, causing distortion in the steel plate and variations in material quality.

隘9 後段冷却の冷却停止温度が高すぎてTSが低い。Problem 9: The cooling stop temperature of the latter stage cooling is too high and the TS is low.

11hlo  後段冷却の冷却停止温度が低すぎて水素
割れを生じた。
11hlo The cooling stop temperature of the latter stage cooling was too low and hydrogen cracking occurred.

以上の比較例に比し、11k111〜11h13のいず
れもこの発明に従い強度、じん性のバランスの良いHT
50がえられている。
Compared to the above comparative examples, all of 11k111 to 11h13 have good balance of strength and toughness according to the present invention.
50 has been obtained.

なおNo、14は加速冷却を施さない圧延後空冷材であ
って、これに比べ、この発明による患11〜患13はT
Sが10kgf/mm”以上上昇し、しかもしん性の劣
化はほとんどない。
Note that No. 14 is an air-cooled material after rolling that is not subjected to accelerated cooling, and in comparison, No. 11 to No. 13 according to the present invention are T
S increases by more than 10 kgf/mm'', and there is almost no deterioration.

また隘15は従来型の焼ならし処理材であってこのタイ
プのHT50の成分に比べ、発明鋼の炭素当量は大幅に
低くでき溶接性にすぐれる。
Further, No. 15 is a conventional normalized material, and compared to the composition of this type of HT50, the carbon equivalent of the invented steel is significantly lower and has excellent weldability.

実施例2 再び表1の鋼記号(NV)に、表4に示す処理を施して
t 16mmの鋼板とした。その機械的性質を表4にあ
わせ示す。
Example 2 The steel code (NV) in Table 1 was again subjected to the treatments shown in Table 4 to produce a steel plate with a t of 16 mm. Its mechanical properties are also shown in Table 4.

試験m16は、Ar+〜Arz−80℃間を圧延しなか
ったときの結果で、試験光17はこの発明に従い患16
に比べ、TSが4kgf/mm2上昇して60kgf/
mm2以上を満足する。またDWTT特性も大幅に向上
する。
Test m16 is the result when no rolling was carried out between Ar+ and Arz-80°C, and test light 17 was the result when rolling was not carried out between Ar+ and Arz-80°C.
Compared to
Satisfies mm2 or more. Furthermore, the DWTT characteristics are also significantly improved.

実施例3 再び表1の鋼(A)、 (B)に表5に示す処理を施し
てそれぞれt20mm、 t40mmの鋼板とした。機
械的性質も表5にあわせ示す。
Example 3 Steels (A) and (B) in Table 1 were again subjected to the treatments shown in Table 5 to produce steel plates with t20 mm and t40 mm, respectively. Mechanical properties are also shown in Table 5.

試験Th18.20は従来のγ+α2相域圧延をほどこ
してのち空冷した結果で試験11h19.21はこの発
明に従い加速冷却を行うことにより比較鋼のN11LL
8゜20に比べてTSで10kgf/mn+”以上の高
強度化に加えじん性もvTrsで10℃以上の改善がみ
られる。
Test Th18.20 is the result of conventional γ+α2 phase region rolling followed by air cooling, and test 11h19.21 is the result of the comparison steel N11LL obtained by performing accelerated cooling according to the present invention.
Compared to 8°20, in addition to the higher strength of 10 kgf/mn+'' in TS, the toughness is also improved by more than 10°C in vTrs.

(発明の効果) 通常のCRよりも、溶接性にすぐれかつ10kgf/m
m”以上の高強度化(高TS化)が軽度の(Ar3直下
圧延と、前後段加速冷却プロセスによってえられ、しか
も加速冷却の弊害となる材質ばらつきや鋼板の形状不良
が回避される。
(Effect of the invention) Better weldability than normal CR and 10kgf/m
A high strength (high TS) of more than m'' can be obtained by mild (Ar3 direct rolling) and front and rear accelerated cooling processes, and material variations and poor shape of the steel plate, which are harmful effects of accelerated cooling, are avoided.

従ってこの発明による鋼は強度、じん性のバランスのよ
い1(TS0.601iとして造船材、バイブ材、タン
ク材、陸上機械材などの用途にて効率的に従って安価に
供給できる。
Therefore, the steel according to the present invention can be efficiently and inexpensively supplied as TS 0.601i with a good balance of strength and toughness for applications such as shipbuilding materials, vibrator materials, tank materials, and land machinery materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、強度、じん性の冷却停止温度依存性を示すグ
ラフ、 第2図は、冷却停止時の鋼板表面温度分布の比較グラフ
である。 第1図 ンや印停止温A’ (’(:)
FIG. 1 is a graph showing the dependence of strength and toughness on cooling stop temperature, and FIG. 2 is a comparison graph of steel sheet surface temperature distribution at cooling stop. Figure 1 Stop temperature A'('(:)

Claims (1)

【特許請求の範囲】 1、C:0.005〜0.20wt%、Si:0.05
〜0.5wt%、Mn0.5〜2.0wt%、Al:0
.005〜0.08wt%を含み、 S:0.01wt%以下、N:0.008wt%以下に
低減した 成分組成にて溶製した鋼を、 (Ar_3+70℃)からAr_3までの温度範囲で少
なくとも30%の圧下率で圧延し、さらにAr_3から
(Ar_3−80℃)までの温度範囲で10%以上60
%以下の圧下率で圧延し、 その後直ちに700℃から500℃の温度域までを4〜
30℃/sの冷却速度で冷却し、 さらに該温度域から500〜200℃の温度域までを1
〜3℃/sの冷却速度で冷却し、 引き続き空冷ないし徐冷する ことを特徴とする溶接性と低温じん性の優れた非調質高
張力鋼板の製造方法。
[Claims] 1. C: 0.005 to 0.20 wt%, Si: 0.05
~0.5wt%, Mn0.5~2.0wt%, Al: 0
.. 005 to 0.08 wt%, reduced to S: 0.01 wt% or less and N: 0.008 wt% or less. % rolling reduction and further 10% or more in the temperature range from Ar_3 to (Ar_3-80℃) 60
% or less, and then immediately rolled at a temperature range of 700℃ to 500℃ for 4 to 50℃.
Cooled at a cooling rate of 30°C/s, and further cooled from this temperature range to a temperature range of 500 to 200°C.
A method for producing a non-temperature high tensile strength steel sheet with excellent weldability and low-temperature toughness, characterized by cooling at a cooling rate of ~3° C./s, followed by air cooling or slow cooling.
JP60158370A 1985-07-19 1985-07-19 Manufacturing method of non-heat treated high strength steel sheet with excellent weldability and low temperature toughness Expired - Fee Related JPH0649897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60158370A JPH0649897B2 (en) 1985-07-19 1985-07-19 Manufacturing method of non-heat treated high strength steel sheet with excellent weldability and low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60158370A JPH0649897B2 (en) 1985-07-19 1985-07-19 Manufacturing method of non-heat treated high strength steel sheet with excellent weldability and low temperature toughness

Publications (2)

Publication Number Publication Date
JPS6220822A true JPS6220822A (en) 1987-01-29
JPH0649897B2 JPH0649897B2 (en) 1994-06-29

Family

ID=15670210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60158370A Expired - Fee Related JPH0649897B2 (en) 1985-07-19 1985-07-19 Manufacturing method of non-heat treated high strength steel sheet with excellent weldability and low temperature toughness

Country Status (1)

Country Link
JP (1) JPH0649897B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188652A (en) * 1988-01-25 1989-07-27 Sumitomo Metal Ind Ltd Steel for welding having excellent low temperature toughness and manufacture thereof
JPH0211721A (en) * 1988-06-30 1990-01-16 Nkk Corp Manufacture of steel for pressure vessel of low temperature use for liquid ammonia having excellent stress corrosion cracking resistance
JP2008045174A (en) * 2006-08-18 2008-02-28 Jfe Steel Kk High-strength thick steel plate for structural purpose having excellent brittle crack propagation property and its production method
JP2008069380A (en) * 2006-09-12 2008-03-27 Jfe Steel Kk High-strength thick steel plate excellent in brittle crack propagation preventing property and its manufacturing method
JP2008111165A (en) * 2006-10-31 2008-05-15 Jfe Steel Kk High strength thick steel plate for structural use having excellent brittle crack arrest property, and its production method
JP2008111166A (en) * 2006-10-31 2008-05-15 Jfe Steel Kk High strength thick steel plate for structural use having excellent brittle crack arrest property, and its production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117825A (en) * 1981-12-29 1983-07-13 Kawasaki Steel Corp Production of non-tempered high tensile steel having excellent characteristic in thickness direction
JPS59123713A (en) * 1982-12-28 1984-07-17 Kawasaki Steel Corp Production of non-tempered high tension steel having excellent weldability and high yield point
JPS59182915A (en) * 1983-03-31 1984-10-17 Sumitomo Metal Ind Ltd Production of high tensile steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117825A (en) * 1981-12-29 1983-07-13 Kawasaki Steel Corp Production of non-tempered high tensile steel having excellent characteristic in thickness direction
JPS59123713A (en) * 1982-12-28 1984-07-17 Kawasaki Steel Corp Production of non-tempered high tension steel having excellent weldability and high yield point
JPS59182915A (en) * 1983-03-31 1984-10-17 Sumitomo Metal Ind Ltd Production of high tensile steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188652A (en) * 1988-01-25 1989-07-27 Sumitomo Metal Ind Ltd Steel for welding having excellent low temperature toughness and manufacture thereof
JPH0211721A (en) * 1988-06-30 1990-01-16 Nkk Corp Manufacture of steel for pressure vessel of low temperature use for liquid ammonia having excellent stress corrosion cracking resistance
JP2008045174A (en) * 2006-08-18 2008-02-28 Jfe Steel Kk High-strength thick steel plate for structural purpose having excellent brittle crack propagation property and its production method
JP2008069380A (en) * 2006-09-12 2008-03-27 Jfe Steel Kk High-strength thick steel plate excellent in brittle crack propagation preventing property and its manufacturing method
JP2008111165A (en) * 2006-10-31 2008-05-15 Jfe Steel Kk High strength thick steel plate for structural use having excellent brittle crack arrest property, and its production method
JP2008111166A (en) * 2006-10-31 2008-05-15 Jfe Steel Kk High strength thick steel plate for structural use having excellent brittle crack arrest property, and its production method

Also Published As

Publication number Publication date
JPH0649897B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
JPS5983722A (en) Preparation of low carbon equivalent unnormalized high tensile steel plate
JP4134355B2 (en) Manufacturing method of continuous cast tempered high strength steel plate with excellent toughness
JP3546726B2 (en) Method for producing high-strength steel plate with excellent HIC resistance
JP2913426B2 (en) Manufacturing method of thick high strength steel sheet with excellent low temperature toughness
JP4112733B2 (en) Method for producing 50 kg (490 MPa) to 60 kg (588 MPa) thick high-tensile steel sheet having excellent strength and low temperature toughness
JPH09143557A (en) Production of thick nickel-containing steel plate excellent in toughness at low temperature and having high strength
JP3502691B2 (en) Fitting material excellent in hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance and method for producing the same
JPS6220822A (en) Manufacture of non-heat treated high tensile steel sheet superior in weldability and low temperature toughness
JPH0225968B2 (en)
JPS59136418A (en) Preparation of high toughness and high strength steel
JPS613833A (en) Manufacture of high strength steel with superior weldability
JPH05148539A (en) Production of steel for uoe steel pipe which is less embrittled by heating in (gamma+alpha) two-phase region
JPH05295432A (en) Production of steel plate having high strength and high toughness by online thermomechanical treatment
JPH09295067A (en) Manufacture of high strength bent pipe excellent in toughness at welded metal part
JPH11140584A (en) Steel for welded structure excellent in toughness at low temperature, fracture toughness, and fatigue characteristic, and its production
WO2023134616A1 (en) Ozone corrosion resistant high-strength pipeline and manufacturing method therefor
JP2562771B2 (en) Method for producing ultra-high strength steel with excellent resistance to stress corrosion cracking
JPH05271757A (en) Manufacture of steel sheet for low temperature use
JP2634961B2 (en) Manufacturing method of 80kgf / mm2 class high strength steel with excellent weldability
JPS60149722A (en) Manufacture of cu added steel having superior toughness at low temperature in weld zone
JPS59113120A (en) Production of low carbon equivalent high tensile steel having excellent weldability and low temperature toughness
JPH1121625A (en) Production of thick steel plate excellent in strength and toughness
JPH0517286B2 (en)
JPH0365407B2 (en)

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees