JPH0118969B2 - - Google Patents

Info

Publication number
JPH0118969B2
JPH0118969B2 JP58056464A JP5646483A JPH0118969B2 JP H0118969 B2 JPH0118969 B2 JP H0118969B2 JP 58056464 A JP58056464 A JP 58056464A JP 5646483 A JP5646483 A JP 5646483A JP H0118969 B2 JPH0118969 B2 JP H0118969B2
Authority
JP
Japan
Prior art keywords
steel
less
temperature
content
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58056464A
Other languages
Japanese (ja)
Other versions
JPS59182915A (en
Inventor
Ichiro Seta
Mutsuo Nakanishi
Juichi Komizo
Hiroshi Matsushita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5646483A priority Critical patent/JPS59182915A/en
Publication of JPS59182915A publication Critical patent/JPS59182915A/en
Publication of JPH0118969B2 publication Critical patent/JPH0118969B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、歪時効脆化を生ずることのない低
Mn高張力鋼の製造方法に関するものである。 従来、Alキルド鋼では時効を引き起す主因と
なる固溶NがAlNとなつて十分に析出してしま
い、時効を生ずることがないと考えられており、
加工によつて引き起される歪時効対策を行うこと
なく各方面でAlキルド鋼が多用されていた。 しかし、近年、熱間圧延後引き続いて水冷を行
い、得られるフエライト・ベイナイト組織のまま
で、調質処理を施すことなく使用されるAlキル
ド高張力鋼が開発され、制御圧延法によつて製造
されるものよりも高い強度が得られるということ
で造船用厚板材を中心に実用化が進み、その需要
も増大してきているが、最近になつて、このよう
な高張力鋼を船等に加工するとその靭性の大幅な
劣化をみる場合があるとの情報が頻繁に入るよう
になつてきた。 そこで、本発明者等は、このように熱間圧延後
急冷して製造したAlキルド鋼材に生ずる靭性劣
化の原因を究明すべく研究を行つたところ、Al
キルド鋼であつても、急冷を行うと固溶Cや固溶
Nが冷却時に完全に析出せず、特にフエライト地
に固溶したままとなつて歪時効を引き起すことと
なり、これを加工するとベイナイトよりも軟質の
フエライト部に歪が集中して、特にその部分の靭
性を劣化するとの結論を得るに至つたのである。
そして、この歪時効は、特に低Mn材に大きいこ
とをも見出した。 本発明者等は、上述のような観点から、歪時効
脆化を生ずることのない低Mn高張力鋼を、コス
ト安く高能率で製造すべく更に研究を続けた結
果、熱間圧延後急冷を行つて高張力鋼を製造する
際、鋼中のN含有量を低く抑えるとともに、急冷
を300℃〜250℃付近で停止し、300〜100℃の間、
好ましくは300〜220℃の間を5分以上かけて冷却
すると、過飽和のN及びCが十分に析出してしま
い、通常のAlキルド鋼と同様に非時効性で、か
つ従来の急冷材と同程度の機械的性質を有する鋼
材が得られることを知見し、更に、低Mn域での
鋼の大入熱溶接時のボンド靭性は、鋼を低N化す
ることにより大幅に改善されるということをも確
認したのである。 この大入熱溶接時のボンド靭性改善は、大入熱
溶接が頻繁に行われる造船用厚板では特に好まし
いことなのである。 この発明は、上記知見に基づいてなされたもの
であり、 C:0.1〜0.2%(以下、%は重量割合とする)、 Si:0.5%以下、 Mn:0.6〜1.1%、 sol.Al:0.01〜0.08%、 N:0.0030%以下、 を含有するとともに、 V:0.08%以下、 Ti:0.08%以下、 Nb:0.08%以下、 のうちの1種以上をも含み、 Fe及び不可避不純物:残り、 から成る成分組成の鋼を900〜1200℃に加熱後、
仕上温度:900〜750℃の熱間圧延を施し、続いて
800〜500℃間の平均冷却速度が10〜60℃/secの
急冷を300℃の温度になるまで実施してから、300
〜100℃の間を5分以上かけて冷却し、室温にま
で降温することにより、歪時効脆化を生ずること
がなく、大入熱溶接時のボンド部靭性にも優れた
高張力鋼を、能率良く確実に製造し得るようにし
た点に特徴を有するものである。 次に、この発明の高張力鋼の製造方法におい
て、対象鋼の成分組成、及び加熱、圧延、冷却条
件を前記のように限定した理由を説明する。 (A) 成分組成 (a) C C成分には、鋼の強度を確保する作用があ
り、同様の作用を有するMn量との関係で所
定量含有せしめられるものであるが、その含
有量が0.1%未満では低Mn領域の鋼の強度を
十分に確保することができず、他方0.2%を
越えて含有させると強度上昇が過度に過ぎる
上、母材靭性を劣化するようになることか
ら、その含有量を0.1〜0.2%と定めた。 (b) Si Si成分は、鋼の脱酸や母材強度の調整等、
種々の目的で添加されるものであるが、0.50
%を越えて含有させると母材靭性の劣化を招
くこととなるので、その含有量を0.5%以下
と定めた。 (c) Mn Mn成分は、母材の強度を向上し、その靭
性をも改善する作用があるが、その含有量が
0.6%未満では前記作用に所望の効果を得る
ことができない。他方、Mn含有量が1.1%を
越える鋼は時効がもともと低く、本発明の処
理を施してもコストに見合う効果を得ること
ができないことから、Mn含有量を0.6〜1.1
%と定めた。 第1図は、C:0.17%、Si:0.25%、Nb:
0.012%、sol.Al:0.043%を含む鋼を圧延後、
室温まで水冷した際の3%歪時効効果とMn
含有量との関係を示す線図であるが、第1図
からも、Mn含有量が1.1%以下の鋼では3%
歪時効後の脆化量が大きいことが明白であ
る。なお、歪時効効果は、歪時効前のシヤル
ピー衝撃試験における破面遷移温度と歪時効
後の破面遷移温度との差、即ち、 ΔvTs=vTs(歪時効前)−vTs(歪時効後) で表わされるΔvTsで示した。 (d) sol.Al sol.Al成分は脱酸剤として使用されるもの
であり、鋼中のNをAlNとして固着する作
用をも有しているが、その含有量が0.01%未
満では前記N固定作用に所望の効果が得られ
ず、他方、0.08%を越えて含有させると鋼の
清浄度が低下するようになることから、その
含有量を0.01〜0.08%と定めた。 (e) N Nが0.003%を越えて含有されると、第1
図からも明らかなように母材の歪時効性が大
きくなると同時に、溶接ボンド部の靭性も劣
化することから、その含有量を0.003%以下
と定めた。 第2図は、第1図におけると同様の鋼につ
いて大入熱溶接ボンド靭性に及ぼすN含有量
の影響を調べた線図であるが、N含有量を
0.003%以下とすることによつて溶接部ボン
ド靭性が極めて良好になることがわかる。な
お、高Mn鋼では、N含有量がある程度増え
ても良好な溶接部ボンド靭性を示すが、コス
ト高になつて不利を招くものである。 従つて、第1図及び第2図からも、低Mn
−低N鋼とすることで、母材性能及びボンド
靭性ともに良好で、かつ安価な鋼材が得られ
ることがわかる。 (f) V、Ti、およびNb これらの成分には、それぞれ炭化物或いは
窒化物形成作用があり、鋼中の固溶CやNを
固着して母材の強度を向上させるが、それぞ
れが0.08%を越えて含有されると母材の靭性
を劣化する傾向が現われ、溶接ボンド靭性に
も悪影響を及ぼすことから、それぞれの含有
量を0.08%以下と定めた。なお、Vではその
含有量を0.075%以下に制限することが、ま
たTi、Nbではそれぞれ0.07%以下、0.04%
以下と制限することがより好ましい。 (B) 加熱温度 加熱温度が900℃未満では、鋼のγ化や炭化
物の固溶均一化が不十分となり、他方1200℃を
越えて加熱を行つてもγ化の効果には変化が無
いばかりか、γ粒が大きくなり過ぎて母材靭性
を劣化するようになることから、その温度を
900〜1200℃と定めた。 (C) 圧延仕上温度 仕上温度が900℃を越える場合には、加工の
効果が少なくて、加工による靭性向上を期待す
ることができず、他方750℃未満の温度で圧延
を終了した場合、加工が強すぎてα+γ2相域
圧延の影響が出たりするので返つて靭性を劣化
するようになることから、圧延仕上温度を900
〜750℃と定めた。 (D) 800〜500℃間の平均冷却速度 800〜500℃間の平均冷却速度が10℃/sec未
満では、所望とする鋼材の強度を確保すること
ができず、他方、60℃/secを越える冷却速度
では母材が硬化し過ぎて靭性が劣化することと
なるので、該冷却速度を10〜60℃/secと定め
た。 第3図は、C:0.17%、Si:0.25%、Mn:
0.63%、sol.Al:0.043%、Nb:0.012%を含有
する鋼について、熱間圧延後300℃まで水冷し、
300〜220℃間を8分で冷却して析出を促した鋼
材の、800〜500℃間の平均冷却速度と機械的性
質との関係を示す線図であるが、第3図から
も、前記平均冷却速度が10〜60℃/secの範囲
で好結果を得られることは明白である。 (E) 急冷停止温度 水冷等の急冷停止温度が300℃よりも高いと、
鋼の強化効果が小さくて所望の強度を確保する
ことが困難となるので、鋼の温度が300℃以下
になるまで急冷を行うこととした。もちろん、
急冷は300℃までで良く、それを大きく下回る
と、次の工程での固溶Cや固溶Nの固着が困難
となるので注意すべきである。 (F) 300〜100℃間の冷却時間 熱間圧延に続く急冷後、300〜100℃間を5分
以上かけて冷却する処理は、固溶C及び固溶N
を析出させるために行うものであるが、300℃
を越える温度から徐冷を行うと、析出は容易に
なされるけれども鋼の強度低下が大きく、他
方、100℃を下回ると析出が十分に行われなく
なつてしまう。そして、この温度範囲内に5分
以上保持されないと十分な析出がなされず、歪
時効の起因を残すことになるので、300〜100℃
間を5分以上かけて冷却することと定めた。な
お、徐冷温度域は、好ましくは300〜220℃にす
るのが良い。なぜなら、220℃を下回ると析出
の程度が急激に少なくなる上、200℃近傍はい
わゆる青熱脆性の温度域でありNによる析出時
効脆化が大きいからである。従つて、200℃近
傍の温度に下がる前に多量の固溶Nを析出さ
せ、Nによる析出時効脆化を防止することが推
奨されるのである。 第4図は、第3図におけると同様の鋼につい
て、熱間圧延後室温まで水冷した際の3%歪時
効効果と固溶C、Nの析出処理温度の関係(室
温まで水冷後、各温度に10分間加熱保持した際
の温度とΔvTsとの関係)を示す線図である
が、等温保持の場合、低N鋼では300〜100℃、
特に300〜220℃間の処理が時効防止に有効であ
ることがわかる。なお、高N鋼では、10分程度
の保持によつても十分な効果は得られず、20〜
30分以上の処理を必要とするであろうことが予
測される。 第5図は、同様の鋼を熱間圧延し、300℃ま
で水冷したものの、3%歪時効に対する300〜
100℃間の徐冷(時効処理)の影響を示す線図
であるが、連続冷却の場合には5分以上をかけ
て冷却する必要があることが明らかである。 次いで、この発明を、実施例により比較鋼と対
比しながら説明する。 実施例 まず、転炉製鋼法と真空脱ガス法(RH法)を
組合せた溶解法によつて、第1表に示される如き
化学成分組成の鋼A〜Lを溶製し、空気中よりN
を吸収しないようAr等の不活性ガスで常にシー
ルドを行いながら連続鋳造を実施することによつ
て150mm厚のスラブを得た。 続いて、これをそれぞれ第2表に示される温度
に加熱後、同じく第2表に示される条件での熱間
圧延を施して仕上げ板厚を30〜20mmとした後、直
ちに300℃まで水冷を行つた(但し、試験番号13
及び14は除く)。このときの800〜500℃間の平均
冷却速度は、板厚によつて若干の差はあるもの
の、30〜60℃/secの範囲内であつた。なお、
個々については、第2表に示した通りであつた。 これに続いて、試験番号1〜12のものは、温度
域:300〜100℃間を20分(但し、300〜220℃間は
約7分)かけて徐冷した後、大気放冷した。試験
番号13及び14のものは、それぞれ450℃及び100℃
まで水冷を行つた後そ
This invention provides a low
This invention relates to a method for manufacturing Mn high-strength steel. Conventionally, it has been thought that in Al-killed steel, solid solute N, which is the main cause of aging, becomes AlN and precipitates sufficiently, so that aging does not occur.
Al-killed steel was widely used in various fields without taking measures against strain aging caused by processing. However, in recent years, Al-killed high-strength steel has been developed, which is water-cooled after hot rolling and used with the resulting ferrite-bainite structure without heat treatment. The demand for such high-strength steel is increasing, as it has been put to practical use mainly in thick plate materials for shipbuilding because it has a higher strength than other materials. As a result, information has begun to come in frequently that there are cases where the toughness deteriorates significantly. Therefore, the present inventors conducted research to investigate the cause of the toughness deterioration that occurs in Al-killed steel materials manufactured by rapid cooling after hot rolling, and found that Al
Even for killed steel, if it is rapidly cooled, solid solution C and solid solution N will not completely precipitate during cooling, and will remain in solid solution, especially in the ferrite base, causing strain aging. They came to the conclusion that strain concentrates in the ferrite part, which is softer than bainite, and particularly deteriorates the toughness of that part.
We also found that this strain aging is particularly large in low-Mn materials. From the above-mentioned viewpoint, the present inventors continued research to produce low-Mn high-strength steel that does not suffer from strain aging embrittlement at low cost and with high efficiency. When producing high-strength steel, the N content in the steel is kept low, and quenching is stopped at around 300°C to 250°C.
Preferably, cooling between 300 and 220°C over a period of 5 minutes or more will precipitate sufficient supersaturated N and C, making it non-aging like normal Al-killed steel and the same as conventional rapidly cooled steel. Furthermore, the bond toughness during high heat input welding of steel in the low Mn range can be significantly improved by reducing the N content of the steel. It was also confirmed. This improvement in bond toughness during high heat input welding is particularly desirable for shipbuilding plates where high heat input welding is frequently performed. This invention was made based on the above findings, and includes: C: 0.1 to 0.2% (hereinafter, % is a weight percentage), Si: 0.5% or less, Mn: 0.6 to 1.1%, sol.Al: 0.01 〜0.08%, N: 0.0030% or less, V: 0.08% or less, Ti: 0.08% or less, Nb: 0.08% or less, Contains one or more of the following, Fe and unavoidable impurities: the remainder, After heating the steel with a composition of 900 to 1200℃,
Finishing temperature: Hot rolling at 900-750℃, followed by
Perform rapid cooling between 800 and 500℃ at an average cooling rate of 10 to 60℃/sec until the temperature reaches 300℃, and then
By cooling the temperature between ~100℃ over 5 minutes and lowering the temperature to room temperature, we can produce high-strength steel that does not suffer from strain aging embrittlement and has excellent bond toughness during high heat input welding. It is characterized in that it can be manufactured efficiently and reliably. Next, in the method for producing high-strength steel of the present invention, the reason why the composition of the target steel and the heating, rolling, and cooling conditions are limited as described above will be explained. (A) Ingredient composition (a) C The C component has the effect of ensuring the strength of steel, and is included in a predetermined amount in relation to the amount of Mn, which has the same effect, but the content is 0.1 If the Mn content is less than 0.2%, sufficient strength of the steel in the low Mn region cannot be ensured, while if the Mn content exceeds 0.2%, the increase in strength will be excessive and the toughness of the base material will deteriorate. The content was set at 0.1-0.2%. (b) Si The Si component is used for deoxidizing steel, adjusting base material strength, etc.
It is added for various purposes, but 0.50
If the content exceeds 0.5%, the toughness of the base material will deteriorate, so the content was set at 0.5% or less. (c) Mn The Mn component has the effect of increasing the strength of the base material and improving its toughness, but its content is
If it is less than 0.6%, the desired effect cannot be obtained. On the other hand, steel with a Mn content of more than 1.1% has low aging properties, and even if the treatment of the present invention is applied, it will not be possible to obtain an effect commensurate with the cost.
%. Figure 1 shows C: 0.17%, Si: 0.25%, Nb:
After rolling steel containing 0.012%, sol.Al: 0.043%,
3% strain aging effect and Mn when water cooled to room temperature
This is a diagram showing the relationship with the Mn content, and from Figure 1 it can be seen that for steel with a Mn content of 1.1% or less, the Mn content is 3%.
It is clear that the amount of embrittlement after strain aging is large. The strain aging effect is calculated by the difference between the fracture surface transition temperature in the Charpy impact test before strain aging and the fracture surface transition temperature after strain aging, that is, ΔvTs = vTs (before strain aging) - vTs (after strain aging). It was expressed as ΔvTs. (d) sol.Al The sol.Al component is used as a deoxidizing agent and also has the effect of fixing N in steel as AlN, but if its content is less than 0.01%, the N The desired fixing effect cannot be obtained, and on the other hand, if the content exceeds 0.08%, the cleanliness of the steel will decrease, so the content was set at 0.01 to 0.08%. (e) N If N exceeds 0.003%, the first
As is clear from the figure, the strain aging properties of the base metal increase and at the same time the toughness of the weld bond deteriorates, so the content was set at 0.003% or less. Figure 2 is a diagram examining the effect of N content on high heat input welding bond toughness for the same steel as in Figure 1.
It can be seen that by setting the content to 0.003% or less, the weld bond toughness becomes extremely good. Note that high Mn steel exhibits good weld bond toughness even if the N content increases to a certain extent, but this results in a disadvantage due to increased cost. Therefore, from Figures 1 and 2, it is clear that low Mn
- It can be seen that by using low N steel, a steel material with good base material performance and bond toughness and at low cost can be obtained. (f) V, Ti, and Nb These components each have a carbide- or nitride-forming effect, and fix solid solution C and N in steel to improve the strength of the base metal, but each of them accounts for 0.08%. If the content exceeds 0.08%, there is a tendency to deteriorate the toughness of the base metal, and it also has a negative effect on the weld bond toughness, so the content of each element was set at 0.08% or less. For V, the content must be limited to 0.075% or less, and for Ti and Nb, it is 0.07% or less and 0.04%, respectively.
It is more preferable to limit it to the following. (B) Heating temperature If the heating temperature is less than 900°C, the γ-hardening of the steel and the solid solution uniformity of carbides will be insufficient, and on the other hand, even if the heating temperature exceeds 1200°C, there will be no change in the γ-hardening effect. Otherwise, the γ grains become too large and deteriorate the toughness of the base material, so the temperature is
The temperature was set at 900-1200℃. (C) Finishing temperature of rolling If the finishing temperature exceeds 900°C, the effect of processing is small and no improvement in toughness can be expected through processing.On the other hand, if rolling is finished at a temperature of less than 750°C, processing If it is too strong, the rolling effect of α + γ2 phase region will appear, which will deteriorate the toughness, so the finishing temperature of rolling was set to 900.
The temperature was set at ~750℃. (D) Average cooling rate between 800 and 500℃ If the average cooling rate between 800 and 500℃ is less than 10℃/sec, the desired strength of the steel material cannot be secured; If the cooling rate exceeds this, the base material will harden too much and the toughness will deteriorate, so the cooling rate was set at 10 to 60°C/sec. Figure 3 shows C: 0.17%, Si: 0.25%, Mn:
For steel containing 0.63%, sol.Al: 0.043%, Nb: 0.012%, water cooling to 300℃ after hot rolling,
This is a diagram showing the relationship between the average cooling rate between 800 and 500°C and the mechanical properties of a steel material that was cooled between 300 and 220°C for 8 minutes to promote precipitation. It is clear that good results can be obtained with an average cooling rate in the range of 10 to 60°C/sec. (E) Rapid cooling stop temperature If the rapid cooling stop temperature of water cooling etc. is higher than 300℃,
Since the strengthening effect of the steel is small and it is difficult to secure the desired strength, it was decided to rapidly cool the steel until the temperature was 300°C or less. of course,
Rapid cooling can be done up to 300°C, and care should be taken because if the temperature is much lower than that, it will be difficult to fix solid solution C and solid solution N in the next step. (F) Cooling time from 300 to 100°C After rapid cooling following hot rolling, cooling from 300 to 100°C for 5 minutes or more reduces solid solution C and solid solution N.
This is done to precipitate the
If slow cooling is carried out from a temperature exceeding 100°C, precipitation will occur easily, but the strength of the steel will be greatly reduced. On the other hand, if the temperature is below 100°C, precipitation will not occur sufficiently. If the temperature is not kept within this temperature range for 5 minutes or more, sufficient precipitation will not occur and strain aging will occur, so
It was decided that the temperature should be cooled for at least 5 minutes. Note that the slow cooling temperature range is preferably 300 to 220°C. This is because the degree of precipitation decreases rapidly below 220°C, and near 200°C is a temperature range of so-called blue brittleness, where N-induced precipitation aging embrittlement is significant. Therefore, it is recommended to precipitate a large amount of solid solution N before the temperature drops to around 200°C to prevent precipitation aging embrittlement caused by N. Figure 4 shows the relationship between the 3% strain aging effect and the precipitation treatment temperature of solid solute C and N when water-cooled to room temperature after hot rolling for the same steel as in Figure 3. This is a diagram showing the relationship between temperature and ΔvTs when heated and held for 10 minutes.
It can be seen that treatment between 300 and 220°C is particularly effective in preventing aging. In addition, with high N steel, sufficient effects cannot be obtained even after holding for about 10 minutes;
It is expected that the process will take more than 30 minutes. Figure 5 shows that similar steel was hot-rolled and water-cooled to 300°C, but after 3% strain aging.
It is a diagram showing the influence of gradual cooling (aging treatment) between 100°C, and it is clear that in the case of continuous cooling, it is necessary to cool for 5 minutes or more. Next, the present invention will be explained with reference to examples and in comparison with comparative steel. Example First, steels A to L having the chemical compositions shown in Table 1 are melted by a melting method that combines a converter steelmaking method and a vacuum degassing method (RH method), and then N is melted in the air.
A slab with a thickness of 150 mm was obtained by performing continuous casting while constantly shielding with an inert gas such as Ar to prevent absorption of gas. Subsequently, each of these was heated to the temperatures shown in Table 2, hot-rolled under the conditions also shown in Table 2 to a finished plate thickness of 30 to 20 mm, and immediately water-cooled to 300°C. I went (However, test number 13
and 14). At this time, the average cooling rate between 800 and 500°C was within the range of 30 to 60°C/sec, although there were some differences depending on the plate thickness. In addition,
The individual results are as shown in Table 2. Following this, test numbers 1 to 12 were slowly cooled in the temperature range of 300 to 100°C for 20 minutes (however, approximately 7 minutes in the range of 300 to 220°C), and then allowed to cool in the atmosphere. Test numbers 13 and 14 are at 450℃ and 100℃, respectively.
After cooling with water until

【表】【table】

【表】 のまま大気放冷した。 このようにして得られた鋼材の機械的性質を調
べ、その結果を第2表に併せて示した。なお、溶
接は、片面SAW法を用い、入熱:17〜23万J/
cmの下で行つた。 第2表に示される結果から明らかなように、本
発明方法1〜7によつて得られた高張力鋼は、3
%歪時効のΔvTsも20℃以下と小さく、強張強さ
が50Kgf/mm2以上、vTsが−40℃以下と優れた特
性を示す上、溶接ボンド部の靭性が、−20℃での
衝撃エネルギー吸収値(vE-20)で7Kg−m以上
と高いのに対して、比較方法たる試験番号8の方
法によつて得られた鋼は高NのためにΔvTsが大
きく、同じく試験番号9によるものは高Mn鋼の
ために良好な性能を示すが低Mn鋼に比べて約20
%のコストアツプとなるものであり、試験番号10
によるものはMn含有量が低すぎて強度及び靭性
が劣つており、試験番号11によるものはC含有量
が低いので引張強さが50Kgf/mm2を割つており、
そして試験番号12によるものはC含有量が高すぎ
るので靭性に劣つていることがわかる。 上述のように、この発明によれば、製造能率高
く、歪時効脆化を生ずることのない低コストの低
Mn高張力鋼を容易に得ることができ、溶接構造
物の安全性が更に向上されるなど、工業上有用な
効果がもたらされるのである。
[Table] Allowed to cool in the atmosphere. The mechanical properties of the steel materials thus obtained were investigated, and the results are also shown in Table 2. In addition, welding uses the single-sided SAW method, heat input: 170,000 to 230,000 J/
I went under cm. As is clear from the results shown in Table 2, the high tensile strength steels obtained by methods 1 to 7 of the present invention have a
The ΔvTs of % strain aging is small at 20℃ or less, the tensile strength is 50Kgf/mm 2 or more, and the vTs is -40℃ or less, which are excellent properties. The absorption value (vE -20 ) is high at over 7 Kg-m, whereas the steel obtained by the comparison method Test No. 8 has a large ΔvTs due to high N; shows good performance for high Mn steel but about 20 compared to low Mn steel.
% cost increase, test number 10
The one according to Test No. 11 has a low C content and has a tensile strength of less than 50Kgf/mm 2 .
It can be seen that the material according to test number 12 had poor toughness because the C content was too high. As described above, according to the present invention, a low-cost, low-cost product that has high manufacturing efficiency and does not cause strain aging embrittlement.
Mn high-strength steel can be easily obtained, and the safety of welded structures can be further improved, resulting in industrially useful effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は3%歪時効効果とMn含有量との関係
を示す線図、第2図は大入熱溶接ボンド靭性に及
ぼすN含有量の影響を示す線図、第3図は800〜
500℃間の平均冷却速度と機械的性質との関係を
示す線図、第4図は3%歪時効効果と固溶C、N
の析出処理温度の関係を示す線図、第5図は3%
歪時効に対する300〜100℃間の冷却時間の影響を
示す線図である。
Figure 1 is a diagram showing the relationship between 3% strain aging effect and Mn content, Figure 2 is a diagram showing the influence of N content on high heat input welding bond toughness, and Figure 3 is a diagram showing the relationship between 3% strain aging effect and Mn content.
A diagram showing the relationship between the average cooling rate at 500℃ and mechanical properties. Figure 4 shows the 3% strain aging effect and solid solution C, N.
A diagram showing the relationship between precipitation treatment temperature, Figure 5 is 3%
FIG. 3 is a diagram showing the influence of cooling time between 300 and 100° C. on strain aging.

Claims (1)

【特許請求の範囲】 1 C:0.1〜0.2%、 Si:0.5%以下、 Mn:0.6〜1.1%、 sol.Al:0.01〜0.08%、 N:0.0030%以下 を含有するとともに、更に、 V:0.08%以下、 Ti:0.08%以下、 Nb:0.08%以下、 のうちの1種以上をも含み、 Fe及び不可避不純物:残り、 から成る成分組成(以上重量%)の鋼を900〜
1200℃に加熱後、仕上温度:900〜750℃の熱間圧
延を施し、続いて800〜500℃間の平均冷却速度が
10〜60℃/secの急冷を300℃以下の温度になるま
で実施してから、300〜100℃の間を5分以上かけ
て冷却し、室温にまで降温することを特徴とする
高張力鋼の製造方法。
[Claims] 1 Contains C: 0.1 to 0.2%, Si: 0.5% or less, Mn: 0.6 to 1.1%, sol.Al: 0.01 to 0.08%, N: 0.0030% or less, and further contains V: 0.08% or less, Ti: 0.08% or less, Nb: 0.08% or less, containing one or more of the following, Fe and unavoidable impurities: the remainder, the steel having a composition (more than 900% by weight) of
After heating to 1200℃, hot rolling is performed at a finishing temperature of 900 to 750℃, followed by an average cooling rate of 800 to 500℃.
A high-strength steel characterized by rapidly cooling at a rate of 10 to 60°C/sec until the temperature reaches 300°C or less, and then cooling from 300 to 100°C over 5 minutes to bring the temperature down to room temperature. manufacturing method.
JP5646483A 1983-03-31 1983-03-31 Production of high tensile steel Granted JPS59182915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5646483A JPS59182915A (en) 1983-03-31 1983-03-31 Production of high tensile steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5646483A JPS59182915A (en) 1983-03-31 1983-03-31 Production of high tensile steel

Publications (2)

Publication Number Publication Date
JPS59182915A JPS59182915A (en) 1984-10-17
JPH0118969B2 true JPH0118969B2 (en) 1989-04-10

Family

ID=13027821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5646483A Granted JPS59182915A (en) 1983-03-31 1983-03-31 Production of high tensile steel

Country Status (1)

Country Link
JP (1) JPS59182915A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067621A (en) * 1983-09-22 1985-04-18 Kawasaki Steel Corp Preparation of non-refining high tensile steel
JPH0649897B2 (en) * 1985-07-19 1994-06-29 川崎製鉄株式会社 Manufacturing method of non-heat treated high strength steel sheet with excellent weldability and low temperature toughness
JPS62139816A (en) * 1985-12-16 1987-06-23 Kawasaki Steel Corp Manufacture of high tension and toughness steel plate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136716A (en) * 1982-01-28 1983-08-13 Nippon Steel Corp Manufacture of high strength hot rolled steel plate for working having low yield ratio and composite structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136716A (en) * 1982-01-28 1983-08-13 Nippon Steel Corp Manufacture of high strength hot rolled steel plate for working having low yield ratio and composite structure

Also Published As

Publication number Publication date
JPS59182915A (en) 1984-10-17

Similar Documents

Publication Publication Date Title
JPS605647B2 (en) Method for manufacturing boron-containing non-thermal high tensile strength steel with excellent low-temperature toughness and weldability
JPH0118969B2 (en)
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JP3264956B2 (en) Accelerated cooling type manufacturing method for thick steel plate
JPH0532442B2 (en)
JPH093591A (en) Extremely thick high tensile strength steel plate and its production
JP3212344B2 (en) Manufacturing method of structural steel plate for welding with excellent toughness at low temperature
JPS642647B2 (en)
JP2784207B2 (en) Method of manufacturing hot rolled steel sheet for processing and thermomechanical processing method of hot rolled steel sheet
JPH0541687B2 (en)
JPS63179020A (en) Production of steel sheet having excellent strength and toughness and small difference in sectional hardness in thickness direction of sheet
JPS6059967B2 (en) Method for preventing surface defects in low Mn-low Al slabs
JP2823220B2 (en) Manufacturing method of steel plate with good weld joint toughness
JPH021894B2 (en)
JPS6337167B2 (en)
JPS601927B2 (en) Manufacturing method for non-temperature high tensile strength steel with excellent low-temperature toughness
JPS63186822A (en) Production of high strength austenitic stainless steel
JP3232118B2 (en) Hot-rolled steel strip for construction with excellent fire resistance and toughness and method for producing the same
JPS63145711A (en) Production of high tension steel plate having excellent low temperature toughness
JPH0215145A (en) Working and heating hardened hot rolled steel plate
JPS63109122A (en) Production of hot rolled sheet having excellent toughness
JPS61174328A (en) Production of structural thick steel plate having high toughness
JPH0545652B2 (en)
JPH02197522A (en) Manufacture of steel plate with low yield ratio reduced in ultrasonic anisotropy and having high strength and high toughness
JPH0641633A (en) Method for working high tensile strength steel small in rise of yield ratio