JPH0545652B2 - - Google Patents

Info

Publication number
JPH0545652B2
JPH0545652B2 JP4672484A JP4672484A JPH0545652B2 JP H0545652 B2 JPH0545652 B2 JP H0545652B2 JP 4672484 A JP4672484 A JP 4672484A JP 4672484 A JP4672484 A JP 4672484A JP H0545652 B2 JPH0545652 B2 JP H0545652B2
Authority
JP
Japan
Prior art keywords
temperature
less
cementite
rolled
aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4672484A
Other languages
Japanese (ja)
Other versions
JPS60190525A (en
Inventor
Kazuo Koyama
Yukio Kuroda
Hiroshi Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4672484A priority Critical patent/JPS60190525A/en
Publication of JPS60190525A publication Critical patent/JPS60190525A/en
Publication of JPH0545652B2 publication Critical patent/JPH0545652B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野(発明の属する技術分野) 本発明は、製鋼での真空脱ガスによる脱炭や、
Ti、Nbなどの元素を使わないで、非時効性のり
ん添加高強度冷延鋼板を連続焼鈍にて製造する方
法に関するものである。 従来技術 軟質冷延鋼板は、その良加工性のために自動車
用を中心として厳しい成形加工を経て最終製品と
される鋼板として使用されている。 近年、軽量化や耐デント性向上のため、この軟
質冷延鋼板は35〜45Kgf/mm2の引張強度を有する
高強度鋼板に取つて替わられようとしている。そ
して従来品と同程度の加工性が要求されるため
に、ランクフオード値(F値)等の加工性を比較
的劣化させないで有効に鋼を強化できるりんが合
金元素としてこのクラスには使われ、りん添加高
強度冷延鋼板という一つの分野ができている。 ところが、加工性は経時劣化する場合があり、
この経時劣化を時効性と称しており、特に厳しい
成形を受ける用途に使われるものはこの時効性が
あつてはならない。この時効性は、鋼中に侵入型
に固溶したC、Nが最終工程の調質圧延で導入さ
れた可動転位を固着するために生ずるもので、降
伏点の上昇、破断伸びの低下、降伏点伸びの発生
といつた劣化を生ずる。 この時効性の原因であるC、NのうちNは微量
故にアルミニウムキルド鋼とすることで窒化アル
ミニウムの形で固定したり、またはB添加により
窒化ほう素として固定することができるのでNに
よる時効は回避できる。 一方、固溶Cは低温でのセメンタイト固溶限が
極めて小さいので箱焼鈍のように時間をかけて冷
却すれば、ほとんど残留しない。しかし連続焼鈍
では短時間で冷却するために固溶Cが残留し、そ
のため大きなC時効が生ずる。この固溶Cを低減
するため、一般に連続焼鈍後急冷して過冷度を高
め、その後過時効と呼ばれるセメンタイト析出処
理を施す。 このセメンタイト析出処理は核生成段階と成長
段階とからなり、しかも実用鋼の場合、不純物が
多く含まれているので、核生成も不純物等をサイ
トとした不均一核生成が生じていると考えられ
る。焼鈍後の冷却速度を極めて大きくとれば、結
晶粒内に微細なセメンタイトが生成することは多
く報告されている。例えば、「鉄と鋼」第62年
(1976)第6号624〜643ページに記載の論文中の
Photo.1(C)には2000℃/Sの冷却速度で700℃から
水冷し、次いで過時効処理を行つた鋼板に微細な
炭化物が認められることが報告されている。炭化
物密度が大きければ、その成長のために要する拡
散距離が小さくなり、固溶炭素の低減が速やかに
進行するが、一方この微細炭化物による析出硬化
や分散硬化により鋼自身が硬質、低延性となる。
従つて、この粒内炭化物密度はある適当な範囲に
コントロールする必要があるが上記論文ではその
ことに考慮を払つていない。また、2000℃/Sと
いう急冷では焼入歪のため鋼板形状がくずれると
いう欠点があり、さらに、このような急冷では水
冷が必然となり、そのため水温まで冷却の後、過
時効温度まで昇温しなければならないという熱エ
ネルギー上のロスや、水冷のための表面酸化の問
題が残る。 前記結晶粒内微細セメンタイトの析出コントロ
ールに関し、その核生成段階を認識し、これを顧
慮したものとして、特開昭51−20715号記載の発
明と、特開昭55−44584号記載の発明とがある。
セメンタイト核生成処理として、前者では、焼鈍
後20℃/S以上の冷却速度で急冷して200〜350℃
の温度範囲に10秒以上保持し、また後者では、
250〜400℃の温度に少なくとも600℃以下の温度
範囲に350℃/S以上の、冷却速度で冷却しその
温度で10秒以下保持する。しかしながらこれだけ
の条件では核生成コントロールとしては不十分
で、特に本発明の目指す非時効性鋼板を得ること
は困難である。時効性は時効指数(AI)または
100℃、60分の促進時効での降伏点伸び(YP−
El)で示されることが多いが、非時効性とみなす
ためには少なくともAIで3Kgf/mm2以下、かつ
YP−Elで0.4%以下、好ましくはAIで2Kgf/mm2
以下かつYP−Elで0でなければならない。これ
に対して特開昭51−20715号記載の発明では、そ
の実施例によるとAIは一番小さくてAlキルド鋼
の場合で3.8Kgf/mm2であり、また特開昭55−
44584号記載発明においても、同じくAlキルド鋼
の場合でYP−Elが下がつてもせいぜい0.5%であ
る。これらは上述のセメンタイト核生成コントロ
ールの不十分さを裏付けている。 本発明者らはすでに昭和59年2月7日に出願済
である「連続焼鈍による非時効性冷延鋼板の製造
方法」(小山、加藤)(特開昭60−165321号)にお
いて、軟鋼板中でのセメンタイト核生成条件を知
得し、連続焼鈍の冷却過時効条件を提示したが、
りん添加鋼においてはこの条件があてはまらな
い。 発明の目的 本発明は上記欠点を解消し、特殊な製鋼設備や
処理を必要とせずに、また高価なTi、Nbなどの
合金を使用せずに、連続焼鈍中に硫化マンガン
(MnS)を主とした不純物上へのセメンタイト核
生成を促進し、またPがこの核生成を阻害するこ
とを考慮して適度なセメンタイト粒数が得られる
ように成分および連続焼鈍後の冷却・過時効条件
を限定することによつて、実質箱焼鈍により製造
したものと同程度の高延性非時効性りん添加高強
度冷延鋼板を連続焼鈍にて製造する方法を提供す
ることを目的とする。 発明の構成 本発明者等は、連続焼鈍中における速やかな固
溶炭素低減に必須な結晶粒内セメンタイトは実用
冷延鋼板においては、MnSを主とする不純物上
への不均一核生成により生じ、かつPがこの核生
成を阻害すると言う知見を得、その核生成をコン
トロールする冷却過時効条件を知得し、本発明に
到つた。 而して、本発明の要旨は以下の通りである。 (1) C 0.01〜0.05wt%、 Mn 0.05〜0.25wt%、 P 0.025〜0.10wt%、 S 0.003〜0.015wt%、 Al 0.005〜0.10wt%、 N 0.0050wt%以下 を含有し、残部Feおよび不可避的不純物からな
る鋼を熱延し650℃以上の温度で巻取り、その後
冷延し、次いで連続焼鈍を行うにあたり、700〜
850℃の温度で再結晶焼鈍後650℃以上の温度から
急冷し、続いて温度T(℃)で10〜60秒保定して
セメンタイトの核生成を行わせ、この温度Tを
150℃以上でかつ−70×(logv/1000)2+320以下 (ただし、vは上記急冷速度(℃/s)で1000
℃/s以下とする)の温度とし、しかるのちに
250〜400℃で2〜10分の析出処理を行うことを特
徴とする連続焼鈍による非時効性高強度冷延鋼板
の製造方法。 (2) C 0.01〜0.05wt%、 Si 0.8wt%以下、 Mn 0.05〜0.25wt%、 P 0.025〜0.10wt%、 S 0.003〜0.015wt%、 Al 0.005〜0.10wt%、 N 0.0050wt%以下 を含有し、残部Feおよび不可避的不純物からな
る鋼を熱延し650℃以上の温度で巻取り、その後
冷延し、次いで連続焼鈍を行うにあたり、700〜
850℃の温度で再結晶焼鈍後650℃以上の温度から
急冷し、続いて温度T(℃)で10〜60秒保定して
セメンタイトの核生成を行わせ、この温度Tを
150℃以上でかつ−70×(logv/1000)2+320以下 (ただし、vは上記急冷速度(℃/s)で1000
℃/s以下とする)の温度とし、しかるのちに
250〜400℃で2〜10分の析出処理を行うことを特
徴とする連続焼鈍による非時効性高強度冷延鋼板
の製造方法。 (3) C 0.01〜0.05wt%、 Mn 0.05〜0.25wt%、 P 0.025〜0.10wt%、 S 0.003〜0.015wt%、 Al 0.005〜0.10wt%、 N 0.0050wt%以下、 B 0.0005〜0.0040wt% を含有し、残部Feおよび不可避的不純物からな
る鋼を熱延し650℃以上の温度で巻取り、その後
冷延し、次いで連続焼鈍を行うにあたり、700〜
850℃の温度で再結晶焼鈍後650℃以上の温度から
急冷し、続いて温度T(℃)で10〜60秒保定して
セメンタイトの核生成を行わせ、この温度Tを
150℃以上でかつ−70×(logv/1000)2+320以下 (ただし、vは上記急冷速度(℃/s)で1000
℃/s以下とする)の温度とし、しかるのちに
250〜400℃で2〜10分の析出処理を行うことを特
徴とする連続焼鈍による非時効性高強度冷延鋼板
の製造方法。 (4) C 0.01〜0.05wt%、 Si 0.8wt%以下、 Mn 0.05〜0.25wt%、 P 0.025〜0.10wt%、 S 0.003〜0.015wt%、 Al 0.005〜0.10wt%、 N 0.0050wt%以下、 B 0.0005〜0.0040wt% を含有し、残部Feおよび不可避的不純物からな
る鋼を熱延し650℃以上の温度で巻取り、その後
冷延し、次いで連続焼鈍を行うにあたり、700〜
850℃の温度で再結晶焼鈍後650℃以上の温度から
急冷し、続いて温度T(℃)で10〜60秒保定して
セメンタイトの核生成を行わせ、この温度Tを
150℃以上でかつ−70×(logv/1000)2+320以下 (ただし、vは上記急冷速度(℃/s)で1000
℃/s以下とする)の温度とし、しかるのちに
250〜400℃で2〜10分の析出処理を行うことを特
徴とする連続焼鈍による非時効性高強度冷延鋼板
の製造方法。 以下、構成要件の説明とその数値範囲の限定理
由について述べる。 第1図は第1表に示す3種類の鋼を熱延し725
℃で巻取つたあと冷延し、ついで800℃、1分の
焼鈍を行つたあと700℃まで2℃/Sで冷却し、
その後100℃/Sの冷却速度で種々の温度まで冷
却し、その温度で30秒保定し最後に水焼入れした
材料のセメンタイト粒数を測定した結果を示す。
セメンタイト粒数はセメンタイト現出エツチを施
した後3000倍の走査型電顕写真をとり、セメンタ
イトのみをカウントして測定した。その結果、本
発明に最適なセメンタイト核の数は4×104〜2
×106個/mm2であることがわかつた。 尚、以下に説明する%はwt%である。
Industrial application field (technical field to which the invention pertains) The present invention is directed to decarburization by vacuum degassing in steel manufacturing,
This relates to a method for producing non-aging, phosphorus-added, high-strength cold-rolled steel sheets by continuous annealing without using elements such as Ti and Nb. BACKGROUND OF THE INVENTION Due to its good workability, soft cold-rolled steel sheets are used as steel sheets, mainly for automobiles, which are made into final products after undergoing severe forming processes. In recent years, in order to reduce weight and improve dent resistance, this soft cold-rolled steel sheet is being replaced by high-strength steel sheet having a tensile strength of 35 to 45 Kgf/mm 2 . Since the same level of workability as conventional products is required, phosphorus is used as an alloying element in this class because it can effectively strengthen steel without relatively deteriorating workability such as the Rankford value (F value). , a new field has emerged: phosphorous-added high-strength cold-rolled steel sheets. However, workability may deteriorate over time.
This deterioration over time is called aging property, and products used in applications that undergo particularly severe molding must not exhibit this aging property. This aging property is caused by the interstitial solid solution of C and N in the steel fixing mobile dislocations introduced in the final process of temper rolling, resulting in an increase in the yield point, a decrease in the elongation at break, and a decrease in the elongation at break. This results in point elongation and other deterioration. Of the C and N that cause this aging property, N is in trace amounts and can be fixed in the form of aluminum nitride by making aluminum killed steel, or fixed in the form of boron nitride by adding B. It can be avoided. On the other hand, the solubility limit of solid solution C in cementite at low temperatures is extremely small, so if it is cooled over time as in box annealing, almost no residue remains. However, in continuous annealing, solid solution C remains because the steel is cooled in a short time, resulting in large C aging. In order to reduce this solid solution C, generally, after continuous annealing, the steel is rapidly cooled to increase the degree of supercooling, and then a cementite precipitation treatment called overaging is performed. This cementite precipitation process consists of a nucleation stage and a growth stage, and since practical steel contains many impurities, it is thought that nucleation occurs through heterogeneous nucleation using impurities as sites. . It has been often reported that if the cooling rate after annealing is extremely high, fine cementite is formed within the crystal grains. For example, in the paper described in "Tetsu to Hagane" No. 6, 1976, pages 624-643,
In Photo.1(C), it is reported that fine carbides are observed in a steel plate that has been water-cooled from 700°C at a cooling rate of 2000°C/S and then over-aged. If the density of carbides is large, the diffusion distance required for their growth becomes small, and the reduction of solute carbon progresses rapidly, but on the other hand, the steel itself becomes hard and has low ductility due to precipitation hardening and dispersion hardening caused by these fine carbides. .
Therefore, it is necessary to control this intragranular carbide density within a certain appropriate range, but the above paper does not take this into account. In addition, rapid cooling at 2000℃/S has the disadvantage that the shape of the steel sheet collapses due to quenching distortion.Furthermore, such rapid cooling requires water cooling, which means that after cooling to water temperature, the temperature must be raised to the overaging temperature. There remains the problem of thermal energy loss due to water cooling and surface oxidation due to water cooling. Regarding the control of precipitation of fine cementite within crystal grains, the invention described in JP-A No. 51-20715 and the invention described in JP-A No. 55-44584 have been developed by recognizing the nucleation stage and taking this into consideration. be.
As a cementite nucleation treatment, in the former case, after annealing, the temperature is rapidly cooled to 200 to 350℃ at a cooling rate of 20℃/S or more.
temperature range for more than 10 seconds, and in the latter case,
Cool to a temperature of 250 to 400°C to a temperature range of at least 600°C at a cooling rate of 350°C/S or more and hold at that temperature for 10 seconds or less. However, these conditions are insufficient to control nucleation, and it is particularly difficult to obtain the non-aging steel sheet that the present invention aims at. The statute of limitations is determined by the statute of limitations index (AI) or
Yield point elongation after accelerated aging at 100℃ for 60 minutes (YP−
El), but in order to be considered non-ageable, it must be at least 3Kgf/mm 2 or less in AI, and
0.4% or less for YP-El, preferably 2Kgf/mm 2 for AI
Must be less than or equal to YP-El and 0. On the other hand, in the invention described in JP-A No. 51-20715, according to its embodiment, the AI is the smallest, 3.8 Kgf/mm 2 in the case of Al-killed steel;
Similarly, in the invention described in No. 44584, even if YP-El decreases in the case of Al-killed steel, it is at most 0.5%. These findings support the insufficiency of cementite nucleation control described above. The present inventors have already applied for a mild steel plate on February 7, 1982 in ``Method for producing non-aging cold rolled steel sheet by continuous annealing'' (Koyama, Kato) (Japanese Patent Application Laid-open No. 165321-1981). We learned the conditions for cementite nucleation in
This condition does not apply to phosphorous-added steel. Purpose of the Invention The present invention solves the above-mentioned drawbacks and eliminates the need for special steelmaking equipment or processing, and without using expensive alloys such as Ti and Nb. The composition and cooling/overaging conditions after continuous annealing were limited to obtain an appropriate number of cementite grains, considering that P promotes cementite nucleation on impurities and inhibits this nucleation. By doing so, it is an object of the present invention to provide a method for producing, by continuous annealing, a highly ductile, non-aging, phosphorus-added, high-strength cold-rolled steel sheet that is substantially equivalent to that produced by box annealing. Structure of the Invention The present inventors have discovered that intragranular cementite, which is essential for rapid reduction of solid solute carbon during continuous annealing, occurs in practical cold-rolled steel sheets due to heterogeneous nucleation on impurities mainly consisting of MnS. In addition, they obtained the knowledge that P inhibits this nucleation, and learned the cooling overaging conditions that control the nucleation, leading to the present invention. Therefore, the gist of the present invention is as follows. (1) Contains C 0.01-0.05wt%, Mn 0.05-0.25wt%, P 0.025-0.10wt%, S 0.003-0.015wt%, Al 0.005-0.10wt%, N 0.0050wt% or less, and the balance is Fe and In hot rolling steel containing unavoidable impurities, coiling at a temperature of 650°C or higher, then cold rolling, and then continuous annealing, a temperature of 700°C to
After recrystallization annealing at a temperature of 850℃, it is rapidly cooled from a temperature of 650℃ or higher, and then held at a temperature T (℃) for 10 to 60 seconds to allow cementite nucleation.
150℃ or higher and −70×(logv/1000) 2 +320 or less (where v is 1000 at the above rapid cooling rate (℃/s)
℃/s or less), and then
A method for producing a non-aging, high-strength cold-rolled steel sheet by continuous annealing, characterized by performing precipitation treatment at 250-400°C for 2-10 minutes. (2) C 0.01-0.05wt%, Si 0.8wt% or less, Mn 0.05-0.25wt%, P 0.025-0.10wt%, S 0.003-0.015wt%, Al 0.005-0.10wt%, N 0.0050wt% or less When hot-rolling steel containing Fe and unavoidable impurities with the remainder being Fe and coiling at a temperature of 650°C or higher, then cold rolling, and then continuous annealing,
After recrystallization annealing at a temperature of 850℃, it is rapidly cooled from a temperature of 650℃ or higher, and then held at a temperature T (℃) for 10 to 60 seconds to allow cementite nucleation.
150℃ or higher and −70×(logv/1000) 2 +320 or less (where v is 1000 at the above rapid cooling rate (℃/s)
℃/s or less), and then
A method for producing a non-aging, high-strength cold-rolled steel sheet by continuous annealing, characterized by performing precipitation treatment at 250-400°C for 2-10 minutes. (3) C 0.01-0.05wt%, Mn 0.05-0.25wt%, P 0.025-0.10wt%, S 0.003-0.015wt%, Al 0.005-0.10wt%, N 0.0050wt% or less, B 0.0005-0.0040wt% When hot rolling steel containing Fe and unavoidable impurities with the balance being Fe and unavoidable impurities, it is rolled at a temperature of 650°C or higher, then cold rolled, and then continuously annealed.
After recrystallization annealing at a temperature of 850℃, it is rapidly cooled from a temperature of 650℃ or higher, and then held at a temperature T (℃) for 10 to 60 seconds to allow cementite nucleation.
150℃ or higher and −70×(logv/1000) 2 +320 or less (where v is 1000 at the above rapid cooling rate (℃/s)
℃/s or less), and then
A method for producing a non-aging, high-strength cold-rolled steel sheet by continuous annealing, characterized by performing precipitation treatment at 250-400°C for 2-10 minutes. (4) C 0.01-0.05wt%, Si 0.8wt% or less, Mn 0.05-0.25wt%, P 0.025-0.10wt%, S 0.003-0.015wt%, Al 0.005-0.10wt%, N 0.0050wt% or less, In hot rolling steel containing 0.0005 to 0.0040 wt% of B, with the remainder being Fe and unavoidable impurities, it is coiled at a temperature of 650°C or higher, then cold rolled, and then continuously annealed.
After recrystallization annealing at a temperature of 850°C, it is rapidly cooled from a temperature of 650°C or higher, and then held at a temperature T (°C) for 10 to 60 seconds to allow cementite nucleation.
150℃ or higher and −70×(logv/1000) 2 +320 or less (where v is 1000 at the above rapid cooling rate (℃/s)
℃/s or less), and then
A method for producing a non-aging, high-strength cold-rolled steel sheet by continuous annealing, characterized by performing a precipitation treatment at 250-400°C for 2-10 minutes. Below, we will explain the constituent requirements and the reasons for limiting their numerical ranges. Figure 1 shows hot-rolled 725 types of steel shown in Table 1.
After being coiled at ℃, it was cold rolled, then annealed at 800℃ for 1 minute, and then cooled to 700℃ at 2℃/S.
The materials were then cooled to various temperatures at a cooling rate of 100° C./S, held at that temperature for 30 seconds, and finally water-quenched. The results of measuring the number of cementite grains are shown below.
The number of cementite grains was measured by taking a scanning electron micrograph at 3000x magnification after etching to expose the cementite, and counting only the cementite. As a result, the optimal number of cementite nuclei for the present invention is 4×10 4 to 2
It was found that the number of particles was × 106 / mm2 . Note that the percentages explained below are wt%.

【表】 第1図から明らかなようにりん添加鋼種B、C
は鋼種Aと比べて同じセメンタイト粒数を得るた
めには、より低温に保定しなければならない。一
方りん含有量の0.041%と0.089%とでは低温保定
を除き差は少ない。 このようにりん添加鋼においてはセメンタイト
核生成は阻害されることが知得された。この理由
はまだ明らかではないが、不均一核生成サイトで
あるMnS等の不純物と鉄マトリツクスの界面に
りんが偏析し、このためにセメンタイト核生成を
阻害するものと考えられる。 第1図より、りん添加鋼で低炭素アルミニウム
キルド鋼と同程度のセメンタイト粒数を得るには
保定温度を低炭素アルミニウムキルド鋼の保足温
度よりも約30℃下げる必要があることが判つた。
これより、保定温度Tの上限 〔−70×(logv/1000)2+320〕(℃)を得た。尚、 好ましくは〔−70×(logv/1000)2+270〕(℃)以 下とすべきである。 保定時間は10秒〜60秒とした。10秒未満の保定
では工業的に安定して行うことが難かしく、60秒
で効果は飽和し、かつこれを越えるとライン設備
が大きくなつて工業的意義がうすれる。以上が核
生成に関する冷却一保定条件とその限定理由であ
る。 核生成に続く析出処理として250〜400℃で2〜
10分の処理を必要とする。250℃未満ではセメン
タイト核数を増して拡散距離を短くしても、拡散
係数の温度依存性により炭素原子の拡散に長時間
を要する。また、400℃を越えると炭素の平衡固
溶限そのものが大きくなり、析出速度を増したと
ころで残留固溶炭素は減少しない。拡散係数、炭
素の平衡固溶限の温度依存性を考えるならば、析
出処理の前半を300〜400℃の高温で、後半を250
〜320℃の低温で行うのが好ましい形態であると
言える。析出処理時間はセメンタイト成長のため
に2分は必要である。また、10分程度で飽和し、
さらにこれより長い時間では連続焼鈍では意義が
薄れることを考慮して10分を上限とした。 鋼の化学成分には次のような限定が必要であ
る。Cは0.01〜0.05%と、低炭素鋼としては比較
的低目にする必要がある。本発明は粒内セメンタ
イトを利用して非時効化を計るものであるが、こ
の粒内炭化物はElを劣化させる傾向にあるため、
全体の延性を補う意味でCの上限を0.05%と低く
してある。この意味でCの上限を0.03%とするこ
とは好ましい条件である。Cの下限は急冷開始前
の過飽和度を高めるために0.01%とする。より安
定して粒内セメンタイトを得るにはCは0.015%
以上とすることが好ましい。 MnおよびSは、MnSが既述のようにセメンタ
イトの不均一核生成サイトの主要なものとなるた
め極めて重要である。それぞれの下限値0.05%お
よび0.003%はMnSの量を確保するために必要で
あり、それぞれ上限を0.25%および0.015%とす
るのはMnSの溶解度が限られ、これ以上では適
度なMnSの分散状態を得ることができないため
である。 Pは本発明にあつては強度を担う重要な元素で
ある。 0.025%未満では十分な強度が得られず、0.1%
を越えると鋼を脆化させ、また溶接性を損ねる。
従つて、Pの添加範囲は0.025〜0.1%とした。 また、Siはセメンタイト核生成や値等の加工
性に大なる影響を与えずに鋼を強化するので、必
要に応じて0.8%以下を添加する。0.8%を越える
と連続焼鈍においても表面に酸化膜が形成されや
すくなり、塗装のための化成処理性が劣化する。 本発明は炭素時効を最小化するところにその特
徴があり、そのため同じく大きな時効劣化を生じ
させる窒素についてはその処置が必要である。そ
のためにAlを0.005%以上添加し、かつNを
0.0050%以下としてNをAlNとして固定する必要
がある。Nは低ければ低いほど望ましく、0.0020
%以下とすることが最も好ましい。また、もつと
強固にNを安定な窒化物として固定する場合に
は、Bを0.005〜0.0040%添加する。 熱延条件においては巻取条件が重要である。こ
れは通常のAlN析出処理とともに本発明では
MnS分散処理も関与していると推定され、その
ために650℃以上の温度とする必要がある。その
他の熱延条件としては通常とられている条件でよ
いが、加熱温度については熱延組織の粗大化を防
ぐために1000〜1150℃の温度とすることが好まし
い。冷延は通常行われているように60〜90%の圧
下率でよいが、安定して高ランクフオード値(
値)を得るためには75%以上の高圧下が望まし
い。 次に連続焼鈍では700〜850℃の再結晶焼鈍を行
う。700℃未満では再結晶が不十分で、かつまた
炭化物の溶解が不十分となり、この後いくら急冷
しても炭素の過飽和度が高まらない。また850℃
を越えるとオーステナイト量が増し、集合組織が
ランダム化し値が下がり、また結晶粒が粗大化
する。なお、炭化物の溶解を十分とするために、
焼鈍温度からこの溶解度の最も大きい700℃付近
まで5℃/S以下で徐冷することが好ましい。焼
鈍時間は通常行なわれているように20秒〜3分で
よい。 このあと既述の条件で冷却を行うが冷却速度の
上限は1000℃/Sとする。これを越えると鋼板形
状を保つことが困難となるからである。冷却は保
定温度までとすることが望ましいが、急冷になる
と保定温度で停止するための制御が困難となるの
で保定温度以下までの過冷却があつてもよい。そ
の場合、過冷却の度合は、省エネルギーの観点か
らなるべく小さい方が好ましく、また保定温度ま
での昇温速度は10℃/S以上の高速とする必要が
ある。 保定温度は150℃以上とする。150℃未満ではε
炭化物生成が主となり、ε炭化物に平衡する固溶
C量は多いため、本法の適用外となる。安定した
セメンタイト領域を目指すには200℃以上とする
ことが好ましい。 なお本発明方法の適用製鋼法として連続鋳造
法、インゴツト法を問わない。また、連続焼鈍に
おける急冷手段としても、ガスジエツト冷却、気
水冷却、金属接触冷却、温水中冷却、水冷却、塩
浴浸漬等手段は問わない。 実施例 1 第2表に示す成分を有する鋼を転炉にて溶製
し、連続鋳造にてスラブとした。これらスラブを
1050〜1100℃に加熱し熱延した。熱延条件として
は仕上終了温度870〜885℃、巻取温度600、700、
750℃とした。このコイルを80%冷延して0.8mm厚
とした後連続焼鈍を行つた。 連続焼鈍条件および1.2%調質圧延後の機械的
性質を第3表に示す。
[Table] As is clear from Figure 1, phosphorus-added steel types B and C
Compared to steel type A, steel must be kept at a lower temperature in order to obtain the same number of cementite grains. On the other hand, there is little difference between the phosphorus content of 0.041% and 0.089%, except for low temperature retention. It has thus been found that cementite nucleation is inhibited in phosphorous-added steel. The reason for this is not yet clear, but it is thought that phosphorus segregates at the interface between impurities such as MnS and the iron matrix, which are heterogeneous nucleation sites, and this inhibits cementite nucleation. From Figure 1, it was found that in order to obtain the same number of cementite grains with phosphorus-added steel as with low carbon aluminum killed steel, the retention temperature needs to be lowered by approximately 30°C than that of low carbon aluminum killed steel. .
From this, the upper limit of the holding temperature T [-70×(logv/1000) 2 +320] (° C.) was obtained. Note that it should preferably be less than [-70×(logv/1000) 2 +270] (°C). The retention time was 10 seconds to 60 seconds. If the holding time is less than 10 seconds, it is difficult to perform it industrially stably, and the effect is saturated after 60 seconds, and if it exceeds this, the line equipment becomes large and the industrial significance is lost. The above are the constant cooling conditions for nucleation and the reasons for their limitations. As a precipitation treatment following nucleation, 2 to 400℃ at 250 to 400℃
Requires 10 minutes processing. At temperatures below 250°C, even if the number of cementite nuclei is increased to shorten the diffusion distance, it takes a long time for carbon atoms to diffuse due to the temperature dependence of the diffusion coefficient. Moreover, when the temperature exceeds 400°C, the equilibrium solid solubility limit of carbon itself increases, and even if the precipitation rate is increased, the residual solid solute carbon does not decrease. Considering the temperature dependence of the diffusion coefficient and the equilibrium solid solubility limit of carbon, the first half of the precipitation treatment is at a high temperature of 300 to 400℃, and the second half is at a high temperature of 250℃.
It can be said that the preferred form is to carry out at a low temperature of ~320°C. A precipitation treatment time of 2 minutes is required for cementite growth. Also, it saturates in about 10 minutes,
Furthermore, considering that continuous annealing becomes less meaningful if the time is longer than this, 10 minutes was set as the upper limit. The chemical composition of steel requires the following limitations. C needs to be kept relatively low for a low carbon steel, at 0.01 to 0.05%. The present invention uses intragranular cementite to achieve non-aging, but since this intragranular carbide tends to deteriorate El,
In order to compensate for the overall ductility, the upper limit of C is set low at 0.05%. In this sense, it is a preferable condition to set the upper limit of C to 0.03%. The lower limit of C is set to 0.01% in order to increase the degree of supersaturation before the start of rapid cooling. To obtain more stable intragranular cementite, C should be 0.015%.
It is preferable to set it as above. Mn and S are extremely important because MnS becomes the main site for heterogeneous nucleation of cementite, as described above. The respective lower limits of 0.05% and 0.003% are necessary to secure the amount of MnS, and the upper limits of 0.25% and 0.015%, respectively, are due to the limited solubility of MnS, and above these limits the MnS dispersion state is moderate. This is because it is not possible to obtain P is an important element responsible for strength in the present invention. If it is less than 0.025%, sufficient strength cannot be obtained, and if it is less than 0.1%
Exceeding this will make the steel brittle and impair weldability.
Therefore, the addition range of P was set to 0.025 to 0.1%. Furthermore, since Si strengthens steel without significantly affecting cementite nucleation or workability such as value, Si is added in an amount of 0.8% or less as necessary. If it exceeds 0.8%, an oxide film is likely to be formed on the surface even during continuous annealing, and the chemical conversion treatment properties for painting deteriorate. The present invention is characterized by minimizing carbon aging, so it is necessary to take measures to deal with nitrogen, which also causes large aging deterioration. For this purpose, 0.005% or more of Al is added and N is added.
It is necessary to fix N as AlN at 0.0050% or less. The lower N is, the more desirable it is, 0.0020
% or less is most preferable. Further, in order to firmly fix N as a stable nitride, B is added in an amount of 0.005 to 0.0040%. Coiling conditions are important in hot rolling conditions. This is done in the present invention along with the usual AlN precipitation process.
It is presumed that MnS dispersion treatment is also involved, and for this reason the temperature needs to be 650°C or higher. Other hot rolling conditions may be those normally used, but the heating temperature is preferably 1000 to 1150°C in order to prevent coarsening of the hot rolled structure. Cold rolling can be carried out at a rolling reduction of 60 to 90% as is usually done, but it is possible to achieve a stable high rank Ford value (
A high pressure of 75% or more is desirable in order to obtain the desired value. Next, in continuous annealing, recrystallization annealing is performed at 700 to 850°C. Below 700°C, recrystallization is insufficient and dissolution of carbides is also insufficient, and the degree of carbon supersaturation does not increase no matter how rapidly it is cooled thereafter. Also 850℃
When the value exceeds 1, the amount of austenite increases, the texture becomes random, the value decreases, and the crystal grains become coarser. In addition, to ensure sufficient dissolution of carbides,
It is preferable to perform slow cooling from the annealing temperature to around 700°C, where the solubility is highest, at a rate of 5°C/S or less. The annealing time may be 20 seconds to 3 minutes, as is commonly done. After that, cooling is performed under the conditions described above, but the upper limit of the cooling rate is 1000° C./S. This is because if it exceeds this, it becomes difficult to maintain the shape of the steel plate. It is desirable that the cooling is carried out to a holding temperature, but if the cooling becomes rapid, it becomes difficult to control the cooling to stop at a holding temperature, so supercooling to below the holding temperature may occur. In that case, the degree of supercooling is preferably as small as possible from the viewpoint of energy saving, and the rate of temperature increase to the holding temperature needs to be as high as 10° C./S or more. The holding temperature shall be 150℃ or higher. ε below 150℃
This method is not applicable because carbides are mainly produced and the amount of solid solute C in equilibrium with ε carbides is large. In order to aim for a stable cementite region, it is preferable to set the temperature to 200°C or higher. Note that the steel manufacturing method to which the method of the present invention is applied does not matter whether it is a continuous casting method or an ingot method. Further, the rapid cooling means in continuous annealing may be any means such as gas jet cooling, air/water cooling, metal contact cooling, hot water cooling, water cooling, salt bath immersion, etc. Example 1 Steel having the components shown in Table 2 was melted in a converter and made into a slab by continuous casting. these slabs
It was heated to 1050-1100°C and hot-rolled. The hot rolling conditions are finishing temperature 870-885℃, coiling temperature 600, 700℃,
The temperature was 750℃. This coil was cold rolled by 80% to a thickness of 0.8 mm and then continuously annealed. Continuous annealing conditions and mechanical properties after 1.2% skin pass rolling are shown in Table 3.

【表】 成分符号イ〜ハおよびホは引張強度35Kgf/mm2
級、符号ニは40Kgf/mm2級狙いの成分である。 第3表から明らかなように、本発明に従つたも
のはそれぞれの引張強度にあつた降伏点強度と伸
びを有し、かつ時効性についてもYP−Elで0.2%
以内、AIで3Kgf/mm2以内と良好である。 これに対し比較の条件のものでは時効性を満た
さず、かつNo.3の鋼のようにElが引張強度とのバ
ランスにおいても悪い。
[Table] Component codes I to C and E indicate tensile strength 35Kgf/mm 2
Class, code 2 is the component aiming for 40Kgf/mm 2nd class. As is clear from Table 3, the products according to the present invention have yield point strength and elongation that match the respective tensile strengths, and also have aging properties of 0.2% in YP-El.
Within 3Kgf/mm 2 using AI, which is good. On the other hand, the steels under the comparative conditions did not satisfy the aging properties and, like steel No. 3, had a poor balance between El and tensile strength.

【表】 発明の効果 本発明によれば以上の実施例から明らかなよう
に製鋼に負担をかけず経済的に非時効性りん添加
高強度冷延鋼板を製造することができる。 これにより、従来高級の非時効性鋼板は箱焼鈍
で、低級鋼は連続焼鈍と作り別けられていたもの
が、連続焼鈍でも高級の非時効性鋼板の製造が可
能となつた。その結果、連続焼鈍の良い点、すな
わち高生産性、均一な品質、省エネルギー、省
力、短期納期、高強度鋼板が製造しやすいなどの
点を享受でき、経済的効果は極めて大きい。
[Table] Effects of the Invention According to the present invention, as is clear from the above examples, a non-aging phosphorus-added high-strength cold-rolled steel sheet can be produced economically without putting a burden on steel manufacturing. As a result, high-grade non-aging steel sheets were previously produced by box annealing, and lower-grade steels were produced by continuous annealing, but it is now possible to produce high-grade non-aging steel plates even by continuous annealing. As a result, the advantages of continuous annealing, such as high productivity, uniform quality, energy saving, labor saving, short delivery time, and ease of manufacturing high-strength steel sheets, can be enjoyed, and the economic effects are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は保定温度とそのときに得られたセメン
タイト粒数との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the retention temperature and the number of cementite grains obtained at that time.

Claims (1)

【特許請求の範囲】 1 C 0.01〜0.05wt%、 Mn 0.05〜0.25wt%、 P 0.025〜0.10wt%、 S 0.003〜0.015wt%、 Al 0.005〜0.10wt%、 N 0.0050wt%以下 を含有し、残部Feおよび不可避的不純物からな
る鋼を熱延し650℃以上の温度で巻取り、その後
冷延し、次いで連続焼鈍を行うにあたり、700〜
850℃の温度で再結晶焼鈍後650℃以上の温度から
急冷し、続いて温度T(℃)で10〜60秒保定して
セメンタイトの核生成を行わせ、この温度Tを
150℃以上でかつ−70×(logv/1000)2+320以下 (ただし、vは上記急冷速度(℃/s)で1000
℃/s以下とする)の温度とし、しかるのちに
250〜400℃で2〜10分の析出処理を行うことを特
徴とする連続焼鈍による非時効性高強度冷延鋼板
の製造方法。 2 C 0.01〜0.05wt%、 Si 0.8wt%以下、 Mn 0.05〜0.25wt%、 P 0.025〜0.10wt%、 S 0.003〜0.015wt%、 Al 0.005〜0.10wt%、 N 0.0050wt%以下 を含有し、残部Feおよび不可避的不純物からな
る鋼を熱延し650℃以上の温度で巻取り、その後
冷延し、次いで連続焼鈍を行うにあたり、700〜
850℃の温度で再結晶焼鈍後650℃以上の温度から
急冷し、続いて温度T(℃)で10〜60秒保定して
セメンタイトの核生成を行わせ、この温度Tを
150℃以上でかつ−70×(logv/1000)2+320以下 (ただし、vは上記急冷速度(℃/s)で1000
℃/s以下とする)の温度とし、しかるのちに
250〜400℃で2〜10分の析出処理を行うことを特
徴とする連続焼鈍による非時効性高強度冷延鋼板
の製造方法。 3 C 0.01〜0.05wt%、 Mn 0.05〜0.25wt%、 P 0.025〜0.10wt%、 S 0.003〜0.015wt%、 Al 0.005〜0.10wt%、 N 0.0050wt%以下、 B 0.0005〜0.0040wt% を含有し、残部Feおよび不可避的不純物からな
る鋼を熱延し650℃以上の温度で巻取り、その後
冷延し、次いで連続焼鈍を行うにあたり、700〜
850℃の温度で再結晶焼鈍後650℃以上の温度から
急冷し、続いて温度T(℃)で10〜60秒保定して
セメンタイトの核生成を行わせ、この温度Tを
150℃以上でかつ−70×(logv/1000)2+320以下 (ただし、vは上記急冷速度(℃/s)で1000
℃/s以下とする)の温度とし、しかるのちに
250〜400℃で2〜10分の析出処理を行うことを特
徴とする連続焼鈍による非時効性高強度冷延鋼板
の製造方法。 4 C 0.01〜0.05wt%、 Si 0.8wt%以下、 Mn 0.05〜0.25wt%、 P 0.025〜0.10wt%、 S 0.003〜0.015wt%、 Al 0.005〜0.10wt%、 N 0.0050wt%以下、 B 0.0005〜0.0040wt% を含有し、残部Feおよび不可避的不純物からな
る鋼を熱延し650℃以上の温度で巻取り、その後
冷延し、次いで連続焼鈍を行うにあたり、700〜
850℃の温度で再結晶焼鈍後650℃以上の温度から
急冷し、続いて温度T(℃)で10〜60秒保定して
セメンタイトの核生成を行わせ、この温度Tを
150℃以上でかつ−70×(logv/1000)2+320以下 (ただし、vは上記急冷速度(℃/s)で1000
℃/s以下とする)の温度とし、しかるのちに
250〜400℃で2〜10分の析出処理を行うことを特
徴とする連続焼鈍による非時効性高強度冷延鋼板
の製造方法。
[Claims] 1 Contains 0.01 to 0.05 wt% of C, 0.05 to 0.25 wt% of Mn, 0.025 to 0.10 wt% of P, 0.003 to 0.015 wt% of S, 0.005 to 0.10 wt% of Al, and 0.0050 wt% or less of N. , the remaining Fe and unavoidable impurities are hot rolled, coiled at a temperature of 650°C or higher, then cold rolled, and then continuously annealed.
After recrystallization annealing at a temperature of 850℃, it is rapidly cooled from a temperature of 650℃ or higher, and then held at a temperature T (℃) for 10 to 60 seconds to allow cementite nucleation.
150℃ or higher and −70×(logv/1000) 2 +320 or less (where v is 1000 at the above rapid cooling rate (℃/s)
℃/s or less), and then
A method for producing a non-aging, high-strength cold-rolled steel sheet by continuous annealing, characterized by performing precipitation treatment at 250-400°C for 2-10 minutes. 2 Contains C 0.01-0.05wt%, Si 0.8wt% or less, Mn 0.05-0.25wt%, P 0.025-0.10wt%, S 0.003-0.015wt%, Al 0.005-0.10wt%, N 0.0050wt% or less. , the remaining Fe and unavoidable impurities are hot rolled, coiled at a temperature of 650°C or higher, then cold rolled, and then continuously annealed.
After recrystallization annealing at a temperature of 850℃, it is rapidly cooled from a temperature of 650℃ or higher, and then held at a temperature T (℃) for 10 to 60 seconds to allow cementite nucleation.
150℃ or higher and −70×(logv/1000) 2 +320 or less (where v is 1000 at the above rapid cooling rate (℃/s)
℃/s or less), and then
A method for producing a non-aging, high-strength cold-rolled steel sheet by continuous annealing, characterized by performing precipitation treatment at 250-400°C for 2-10 minutes. 3 Contains C 0.01-0.05wt%, Mn 0.05-0.25wt%, P 0.025-0.10wt%, S 0.003-0.015wt%, Al 0.005-0.10wt%, N 0.0050wt% or less, B 0.0005-0.0040wt% However, when steel consisting of the remainder Fe and unavoidable impurities is hot rolled, coiled at a temperature of 650°C or higher, then cold rolled, and then continuously annealed,
After recrystallization annealing at a temperature of 850℃, it is rapidly cooled from a temperature of 650℃ or higher, and then held at a temperature T (℃) for 10 to 60 seconds to allow cementite nucleation.
150℃ or higher and −70×(logv/1000) 2 +320 or less (where v is 1000 at the above rapid cooling rate (℃/s)
℃/s or less), and then
A method for producing a non-aging, high-strength cold-rolled steel sheet by continuous annealing, characterized by performing precipitation treatment at 250-400°C for 2-10 minutes. 4 C 0.01-0.05wt%, Si 0.8wt% or less, Mn 0.05-0.25wt%, P 0.025-0.10wt%, S 0.003-0.015wt%, Al 0.005-0.10wt%, N 0.0050wt% or less, B 0.0005 ~0.0040wt%, with the remainder being Fe and unavoidable impurities, is hot rolled, coiled at a temperature of 650°C or higher, then cold rolled, and then continuously annealed.
After recrystallization annealing at a temperature of 850℃, it is rapidly cooled from a temperature of 650℃ or higher, and then held at a temperature T (℃) for 10 to 60 seconds to allow cementite nucleation.
150℃ or higher and −70×(logv/1000) 2 +320 or less (where v is 1000 at the above rapid cooling rate (℃/s)
℃/s or less), and then
A method for producing a non-aging, high-strength cold-rolled steel sheet by continuous annealing, characterized by performing precipitation treatment at 250-400°C for 2-10 minutes.
JP4672484A 1984-03-12 1984-03-12 Production of non-ageable high-strength cold rolled steel sheet by continuous annealing Granted JPS60190525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4672484A JPS60190525A (en) 1984-03-12 1984-03-12 Production of non-ageable high-strength cold rolled steel sheet by continuous annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4672484A JPS60190525A (en) 1984-03-12 1984-03-12 Production of non-ageable high-strength cold rolled steel sheet by continuous annealing

Publications (2)

Publication Number Publication Date
JPS60190525A JPS60190525A (en) 1985-09-28
JPH0545652B2 true JPH0545652B2 (en) 1993-07-09

Family

ID=12755284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4672484A Granted JPS60190525A (en) 1984-03-12 1984-03-12 Production of non-ageable high-strength cold rolled steel sheet by continuous annealing

Country Status (1)

Country Link
JP (1) JPS60190525A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139849A (en) * 1985-12-13 1987-06-23 Kobe Steel Ltd Hot rolled soft steel sheet having superior workability
JPS6318023A (en) * 1986-07-10 1988-01-25 Nippon Steel Corp Manufacture of high-strength cold-rolled steel sheet excellent in workability
EP0406619A1 (en) * 1989-06-21 1991-01-09 Nippon Steel Corporation Process for producing galvanized, non-aging cold rolled steel sheets having good formability in a continuous galvanizing line

Also Published As

Publication number Publication date
JPS60190525A (en) 1985-09-28

Similar Documents

Publication Publication Date Title
US7959747B2 (en) Method of making cold rolled dual phase steel sheet
JP2005126733A (en) Steel sheet for hot press having excellent hot workability, and automotive member
JP4457681B2 (en) High workability ultra-high strength cold-rolled steel sheet and manufacturing method thereof
JP2876968B2 (en) High-strength steel sheet having high ductility and method for producing the same
JP2004018912A (en) High-tensile strength cold-rolled steel plate excellent in elongation and stretch-flanging property and method for manufacturing the same
JP2004018911A (en) High-tensile strength cold-rolled steel plate having excellent elongation property and elongation-flanging property, and method for manufacturing the same
KR20000043762A (en) Method of manufacturing super high-strength cold-rolled steel sheet improved in ductility
JP2005154872A (en) Method for manufacturing high-strength cold-rolled steel sheet superior in formability for extension flange
JPH0545652B2 (en)
JPH025803B2 (en)
JPH058256B2 (en)
JPS6347338A (en) Production of high tension zinc hot dip coated steel sheet
JP2776203B2 (en) Manufacturing method of cold rolled steel sheet excellent in non-aging at normal temperature
JPH01184227A (en) Production of alloyed and galvanized steel sheet for drawing
KR100435467B1 (en) A method for manufacturing high strength cold rolled steel sheet having superior ductility by continuous annealing
JPH0321611B2 (en)
JP2734867B2 (en) Method for producing thin steel sheet with excellent formability and surface properties
JP3381440B2 (en) Manufacturing method of cold rolled steel sheet with excellent deep drawability
JP3288424B2 (en) Manufacturing method of high strength cold rolled steel sheet with excellent elongation properties
JPH0545654B2 (en)
JP3419000B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and secondary work brittle resistance, and method for producing the same
JP3704790B2 (en) Cold-rolled steel sheet with good aging resistance
JPH0813030A (en) Production of steel plate for metal saw base plate
JPS6349726B2 (en)
JPS6153411B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees