JPS6147885B2 - - Google Patents

Info

Publication number
JPS6147885B2
JPS6147885B2 JP19223383A JP19223383A JPS6147885B2 JP S6147885 B2 JPS6147885 B2 JP S6147885B2 JP 19223383 A JP19223383 A JP 19223383A JP 19223383 A JP19223383 A JP 19223383A JP S6147885 B2 JPS6147885 B2 JP S6147885B2
Authority
JP
Japan
Prior art keywords
upset
cooling
forming
electric resistance
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19223383A
Other languages
Japanese (ja)
Other versions
JPS6082613A (en
Inventor
Atsushi Shiga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19223383A priority Critical patent/JPS6082613A/en
Publication of JPS6082613A publication Critical patent/JPS6082613A/en
Publication of JPS6147885B2 publication Critical patent/JPS6147885B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアプセツトチユービング用電縫鋼管製
造方法に関し、詳しくは、API規格に定められた
アプセツトチユービング用J−55クラスに相当す
る機械的性質を具え、しかも、比較的に低炭素、
低合金組成で成形性や溶接性を保つことができる
電縫鋼管製造方法に関する。 最近の油井の掘削、採油用アプセツトチユービ
ング材は深層油田や海底油田の開発に伴い高強度
材が要求されるようになり、API−J55チユービ
ングの規格によると、その機械的性質は降伏強度
38.7〜56.2Kg/mm2、引張強さ52.7Kg/mm2以上、伸び
24%以上に規定されている。 従来、このグレードのアプセツトチユービング
にはその強度規格を満たすために、高炭素高合金
組成のシームレス管を原管とし、熱間でアプセツ
ト加工されたものが使用されている。しかし、こ
の鋼管はコストが高いという難点がある。 この点から、シームレス鋼管の代替として電縫
鋼管を用いることが考えられるが、J55クラスの
チユービング材はアプセツト加工後に熱処理なし
で使用される場合と焼きならし処理される場合が
あり、この両者を同一組成の素材で製造すること
は困難であり、このために、2種類の組成の素材
が必要であるという煩雑さがある。 換言すると、焼きならした処理を行なわないで
使用することを前提にした鋼管を熱処理すると降
伏強度が低くなり、API−J55の規格値を満たす
ことができず、逆に焼きならし処理することを前
提とした材料を熱処理なしで使用すると降伏強度
が規格上限を上まわる危険がある。 更に、アプセツト加工後に熱処理を施す場合、
素材組成は高炭素・高合金となるため冷間加工
性、溶接性ともに悪いという電縫鋼管製造上の大
きな欠点があつた。 本発明者はこれらを改善するために、素材組成
は比較的低炭素・低合金として成形性・溶接性を
保つことが重要であり、鋼管強度の確保はアプセ
ツト加工直後の冷却条件を規制するかあるいはア
プセツト加工後の熱処理、つまり、焼ならしまた
は焼入れ焼戻しの条件を規制することに着目して
研究したところ、このような製造方法をとれば唯
一つの種類の組成で、製造性が良くて低コストの
J55クラスアプセツト・チユービング用電縫鋼管
が得られることがわかつた。 本発明は上記ならびに実験を重ねた結果成立し
たものであつて、具体的には、C:0.13〜0.20
%、Si≦0.25%、Mn:1.0〜1.5%、P≦0.03%、
S≦0.01%、Nb:0.01〜0.05%、Al:0.005〜0.06
%、残部鉄および不純物からなる熱延コイルをス
リツテイング、成形および電縫溶接して所定サイ
ズに造管してから、アプセツト加工を行ない、そ
の直後の冷却条件や、アプセツト加工後の熱処理
条件を規制して、API−J55チユービングの規格
の電縫鋼管を製造する方法を提案する。 以下、本発明について詳しく説明する。 まず、鋼管素材の組成は比較的低炭素、低合金
とし、電縫鋼管製造上で重要なフアクターを成す
成形性ならびに溶接性や、API−J55規格に示さ
れる特性を確保する。 そこで、鋼管素材の組成から説明すると、次の
通りである。 C:0.13〜0.20%およびMn:1.0〜1.5% CおよびMnの下限をそれぞれ0.13%および1.0
%としたのは、これ以下では熱処理なしの成形の
ままの状態での母管の強度をAPI規格に満足させ
ることができないからである。また、Cおよび
Mnの上限をそれぞれ0.20%および1.5%としたの
は、これを超えて添加すると、一つにはアプセツ
ト加工後に焼入・焼戻し処理した場合、母管部の
降伏強度がAPI規格値の上限を超えるからであ
り、さらに溶接性が悪くなりパネレータ欠陥の発
生率が急増するからである。 Si≦0.25% Siは製鋼を行なう上で必然的に鋼中に含有され
る元素で0.25%を超えて添加されると溶接性が悪
くなり、ペネレータ欠陥の発生率が増加するので
0.25%を上限とした。 P≦0.03%、S≦0.01% P、Sは不純物であり溶接性を阻害する元素で
あり、それぞれの上限値0.03%、0.01%を超える
と電縫溶接部近傍にわれを生じる場合がある。 Nb:0.01〜0.05% Nbは熱処理なしの成形のままの状態で母管の
強度を確保するために必要な元素であり、APIの
強度に関する規格を満たすために0.01%以上の添
加が必要であり、0.05%を超えると降伏強度が規
格値を上まわることがあるので、これを上限とし
た。 Al:0.005〜0.06% Alは鋼の脱酸のために必要な元素であり、鋼
中酸素量を低減させないと電縫溶接部にペネレー
タ欠陥を生じるので0.005%以上含有させること
が必要であり、また、0.06%を超えると粗大な
Al2O3系介在物が生成して電縫溶接部近傍でわれ
発生の危険が生じる。 次に、上記組成の鋼管素材において、通常の工
程にしたがつて熱間圧延を行なつた後、この熱延
コイルをスリツテイング、成形および電縫溶接し
てアプセツト・チユービング用母管を製造する。 続いて、この母管の両端を1100〜1250℃に加熱
してアプセツト加工し、その後、次の熱処理条件
で熱処理を行なう。 アプセツト加工は通常、パイプ端部を1100〜
1250℃に加熱した後に加工が行なわれ、その終了
時点でアプセツト部温度は約1000℃に冷却されて
おり、この温度から空冷等で冷却され、この冷却
の間、800〜500℃間は冷却速度1.5〜5℃/秒の
条件で冷却される。 すなわち、上記組成の鋼管に対してアプセツト
加工直後の冷却を大気中放冷で行なうと、アプセ
ツト部の降伏強度はAPI規格を下まわる。降伏強
度の規格値を満たすためには、800〜500℃間を
1.5℃/秒以上で冷却することが必要であつてそ
の場合に降伏強度は38.7Kg/mm2以上になり、さら
に、同温度区間の冷却温度を5℃/秒以下によれ
ば降伏強度は56.2Kg/mm2以下となる。なお、上記
組成範囲の鋼は800〜500℃間を1.5〜5℃/秒で
冷却した場合はオーステナイトからフエライト、
パーライト、ベイナイトへの変態が500℃までに
終了するので、とくに、500℃以下の冷却条件に
ついては限定する必要がない。 また、アプセツト加工後、焼ならし処理を行な
う場合に800〜500℃間における冷却速度を15〜30
℃/秒として冷却する。 すなわち、冷却速度15℃/秒未満の場合は降伏
強度が規格値の下限を下まわるため、また、30
℃/秒を超えると降伏強度が規格値の上限を上ま
わるためである。この場合もベイナイト変態が
500℃までに完了するので、500℃以下の冷却条件
はとくに限定する必要がない。 また、アプセツト加工後に焼入れ・焼戻し処理
を行なう場合は、800〜300℃間を30〜60℃/秒の
速度で冷却し、その後、550〜650℃で焼戻す。 すなわち、焼入れ時の800〜300℃間の冷却速度
が30℃/秒未満であると、焼戻し後のアプセツト
部の降伏強度が規格値を下まわり、60℃/秒を超
えると、焼戻し後の母管部の降伏強度が規格値を
上まわるためである。 焼戻し温度を550℃未満にすると焼入れ時の冷
却速度を大きくした場合の降伏強度が規格値を上
まわり、一方、650℃を超えると焼入れ時の冷却
速度を小さくした場合の降伏強度が規格値を下ま
わるので550〜650℃の範囲に限定した。 次に、実施例について説明する。 第1表に示す本発明および従来例の組成の鋼管
素材を熱間圧延、スリツテイング、成形ならびに
電縫溶接して造管し、第2表に示す強度の母管を
得、この際に欠陥を超音波探傷によつて求めたと
ころ、第3表の通りであつた。
The present invention relates to a method for producing an electric resistance welded steel pipe for upset tubing, and more specifically, it has mechanical properties equivalent to the J-55 class for upset tubing specified by the API standard, and has relatively low carbon and
The present invention relates to a method for manufacturing ERW steel pipes that can maintain formability and weldability with a low alloy composition. Recently, with the development of deep-seated oil fields and offshore oil fields, high-strength materials have been required for upset tubing materials for oil well drilling and oil extraction.According to the API-J55 tubing standard, its mechanical properties include yield strength
38.7-56.2Kg/mm 2 , tensile strength 52.7Kg/mm 2 or more, elongation
It is stipulated to be 24% or more. Conventionally, in order to meet the strength standards for this grade of upset tubing, a seamless tube with a high carbon and high alloy composition has been used as the original tube and has been hot upset-processed. However, this steel pipe has the drawback of high cost. From this point of view, it is conceivable to use ERW steel pipes as an alternative to seamless steel pipes, but J55 class tubing materials are sometimes used without heat treatment after upset processing, and sometimes are normalized. It is difficult to manufacture using materials with the same composition, and this creates the complexity of requiring materials with two different compositions. In other words, if a steel pipe that is intended to be used without normalizing is heat treated, the yield strength will be low and it will not be able to meet the standard value of API-J55. If the assumed material is used without heat treatment, there is a risk that the yield strength will exceed the upper limit of the specification. Furthermore, when heat treatment is applied after upset processing,
Since the material composition is high carbon and high alloy, it has poor cold workability and weldability, which is a major drawback in manufacturing ERW steel pipes. In order to improve these, the present inventor believes that it is important to maintain formability and weldability with a relatively low carbon and low alloy material composition, and to ensure the strength of the steel pipe, it is necessary to regulate the cooling conditions immediately after upset processing. In addition, research focused on regulating the conditions for heat treatment after upset processing, that is, normalizing or quenching and tempering, and found that if this manufacturing method was used, it would be possible to create a product with only one type of composition, good productivity, and low cost. of cost
It has been found that electric resistance welded steel pipes for J55 class upset tubing can be obtained. The present invention was established as a result of the above and repeated experiments, and specifically, C: 0.13 to 0.20.
%, Si≦0.25%, Mn: 1.0-1.5%, P≦0.03%,
S≦0.01%, Nb: 0.01~0.05%, Al: 0.005~0.06
%, the remainder iron and impurities are slitted, formed, and electrically welded to form a pipe of a specified size, and then upset processing is performed, and the cooling conditions immediately after and heat treatment conditions after upset processing are regulated. We propose a method for manufacturing ERW steel pipes that meet the API-J55 tubing standard. The present invention will be explained in detail below. First, the composition of the steel pipe material is relatively low carbon and low alloy to ensure formability and weldability, which are important factors in the manufacture of ERW steel pipes, and properties specified in the API-J55 standard. Therefore, the composition of the steel pipe material will be explained as follows. C: 0.13-0.20% and Mn: 1.0-1.5% The lower limits of C and Mn are 0.13% and 1.0, respectively.
% because if it is less than this, the strength of the main tube in the as-formed state without heat treatment cannot satisfy the API standard. Also, C and
The reason why the upper limits of Mn are set at 0.20% and 1.5%, respectively, is that if added in excess of this, the yield strength of the main tube will exceed the upper limit of the API standard value when quenching and tempering are performed after upset processing. This is because the weldability deteriorates and the incidence of panel defects rapidly increases. Si≦0.25% Si is an element that is inevitably contained in steel during steel manufacturing, and if added in excess of 0.25%, weldability will deteriorate and the incidence of penetrator defects will increase.
The upper limit was set at 0.25%. P≦0.03%, S≦0.01% P and S are impurities and elements that inhibit weldability, and if their respective upper limit values of 0.03% and 0.01% are exceeded, cracks may occur near the electric resistance welding part. Nb: 0.01-0.05% Nb is an element necessary to ensure the strength of the main tube in the as-formed state without heat treatment, and it is necessary to add 0.01% or more to meet the API strength standards. If it exceeds 0.05%, the yield strength may exceed the standard value, so this was set as the upper limit. Al: 0.005-0.06% Al is a necessary element for deoxidizing steel, and if the amount of oxygen in the steel is not reduced, penetrator defects will occur in the ERW weld, so it is necessary to contain it at 0.005% or more. Also, if it exceeds 0.06%, it becomes coarse.
Al 2 O 3 based inclusions are generated and there is a risk of cracking near the electric resistance welding area. Next, the steel pipe material having the above composition is hot-rolled according to a normal process, and then the hot-rolled coil is slitted, formed, and electric resistance welded to produce a mother pipe for upset tubing. Subsequently, both ends of this main tube are heated to 1100 to 1250°C for upset processing, and then heat treated under the following heat treatment conditions. Upset processing is usually performed on pipe ends with a diameter of 1100~
Processing is performed after heating to 1250℃, and at the end of the process, the upset part temperature has been cooled to approximately 1000℃. From this temperature, it is cooled by air cooling, etc., and during this cooling, the cooling rate is reduced between 800 and 500℃. It is cooled at a rate of 1.5 to 5°C/sec. That is, if a steel pipe with the above composition is cooled in the atmosphere immediately after upset processing, the yield strength of the upset portion will be lower than the API standard. In order to meet the standard value of yield strength, the temperature must be between 800 and 500℃.
If it is necessary to cool at a rate of 1.5℃/second or higher, the yield strength will be 38.7Kg/ mm2 or higher, and if the cooling temperature in the same temperature range is 5℃/second or lower, the yield strength will be 56.2. Kg/mm 2 or less. In addition, when steel in the above composition range is cooled between 800 and 500 degrees Celsius at a rate of 1.5 to 5 degrees Celsius/second, it changes from austenite to ferrite,
Since the transformation to pearlite and bainite is completed by 500°C, there is no need to particularly limit the cooling conditions below 500°C. In addition, when performing normalizing treatment after upset processing, the cooling rate at 800 to 500℃ should be increased to 15 to 30°C.
Cool as °C/sec. In other words, if the cooling rate is less than 15°C/sec, the yield strength will be below the lower limit of the specified value;
This is because if the temperature exceeds °C/sec, the yield strength exceeds the upper limit of the standard value. In this case too, the bainite metamorphosis
Since the cooling process is completed by 500°C, there is no need to particularly limit the cooling conditions below 500°C. When quenching and tempering are performed after upset processing, the material is cooled between 800 and 300°C at a rate of 30 and 60°C/second, and then tempered at 550 and 650°C. In other words, if the cooling rate between 800 and 300℃ during quenching is less than 30℃/second, the yield strength of the upset part after tempering will be below the standard value, and if it exceeds 60℃/second, the yield strength of the upset part after tempering will be lower than the standard value. This is because the yield strength of the pipe exceeds the standard value. If the tempering temperature is less than 550℃, the yield strength when the cooling rate during quenching is increased will exceed the standard value, while if it exceeds 650℃, the yield strength when the cooling rate during quenching is decreased will exceed the standard value. The temperature was limited to 550 to 650°C. Next, examples will be described. The steel pipe materials having the compositions of the present invention and the conventional example shown in Table 1 are hot-rolled, slitted, formed, and electrically welded to obtain a main pipe with the strength shown in Table 2. As determined by ultrasonic flaw detection, the results were as shown in Table 3.

【表】【table】

【表】【table】

【表】 第2表ならびに第3表から明らかな如く、本発
明法による場合は、成形性・溶接性も良くて造管
のままでもAPI J55規格を満足している。これに
対し、従来例に係る鋼管Eは焼ならし処理をする
ように構成されたものであるが、組成的に溶接欠
陥が発生し易く、造管のままでは降伏強度が規格
値を上まわつている。従来例に係る鋼管D、Eが
アプセツト加工後、焼ならし処理(900℃5分保
持後空冷)されたときの強度を第4表に示すよう
に、造管のままで使用することを前提とした鋼管
Dは降伏強度の下限を下まわつている。
[Table] As is clear from Tables 2 and 3, the method of the present invention has good formability and weldability, and satisfies the API J55 standard even when the pipe is made as is. On the other hand, although conventional steel pipe E is constructed to be subjected to normalizing treatment, welding defects are likely to occur due to its composition, and the yield strength exceeds the standard value if the pipe is made as is. It's on. As shown in Table 4, the strength of conventional steel pipes D and E after upset processing and normalizing treatment (held at 900°C for 5 minutes and then air cooled) is based on the assumption that they will be used as they are. The yield strength of steel pipe D is below the lower limit.

【表】 一方、本発明法によつて鋼管A、B、Cに対し
アプセツト加工後にそれぞれの熱処理を第5表に
示す如く施すと、第5表に示す如き強度が得られ
る。
[Table] On the other hand, when steel pipes A, B, and C are subjected to the respective heat treatments as shown in Table 5 after upset processing by the method of the present invention, the strengths shown in Table 5 are obtained.

【表】 これらのところから、本発明法によつて製造す
ると、その電縫管はいずれの場合も強度規格は満
たされている。 以上詳しく説明した通り、本発明によつて低炭
素、低合金の素材から造管し、熱処理すると、従
来困難とされていた強度と成形性・溶接性という
相反する特性を備えた電縫鋼管を母管とするJ55
クラスのアプセツトチユービングを製造すること
ができる。
[Table] From these points, when manufactured by the method of the present invention, the resistance welded pipe satisfies the strength standards in all cases. As explained in detail above, by manufacturing pipes from low-carbon, low-alloy materials and heat-treating them according to the present invention, it is possible to create ERW steel pipes with contradictory properties such as strength, formability, and weldability, which were previously considered difficult. J55 as main pipe
A class of upset tubes can be manufactured.

Claims (1)

【特許請求の範囲】 1 重量%でC:0.13〜0.20%、Si≦0.25%、
Mn:1.0〜1.5%、P≦0.03%、S≦0.01%、Nb:
0.01〜0.05%、Al:0.005〜0.06%、残部鉄および
不純物からなる熱延コイルをスリツテイング、成
形および電縫溶接して所定サイズに造管した後、
1100〜1250℃に加熱してアプセツト加工を行な
い、その冷却過程中800〜500℃間を1.5〜5℃/
秒の速度で冷却することを特徴とするアプセツト
チユービング用電縫鋼管の製造方法。 2 重量%で、C:0.13〜0.20%、Si≦0.25%、
Mn:1.0〜1.5%、P≦0.03%、S≦0.01%、Nb:
0.01〜0.05%、Al:0.005〜0.06%、残部鉄および
不純物からなる熱延コイルをスリツテイング、成
形および電縫溶接して所定サイズに造管した後、
1100〜1250℃に加熱してアプセツト加工を行な
い、そのアプセツト加工後の焼ならし処理時の冷
却条件として800〜500℃間を15〜30℃/秒で冷却
することを特徴とするアプセツトチユービング用
電縫鋼管の製造方法。 3 重量%でC:0.13〜0.20%、Si≦0.25%、
Mn:1.0〜1.5%、P≦0.03%、S≦0.01%、Nb:
0.01〜0.05%、Al:0.005〜0.06%、残部鉄および
不純物からなる熱延コイルをスリツテイング、成
形および電縫溶接して所定サイズに造管した後、
1100〜1250℃に加熱してアプセツト加工を行な
い、そのアプセツト加工後の焼入れ時の冷却条件
として800〜300℃間を30〜60℃/秒の速度で冷却
した後、550〜650℃で焼戻すことを特徴とするア
プセツトチユービング用電縫鋼管の製造方法。
[Claims] 1% by weight: C: 0.13-0.20%, Si≦0.25%,
Mn: 1.0-1.5%, P≦0.03%, S≦0.01%, Nb:
After forming a hot rolled coil consisting of 0.01~0.05%, Al: 0.005~0.06%, and the balance iron and impurities into a specified size by slitting, forming, and electric resistance welding,
Upset processing is performed by heating to 1100 to 1250℃, and during the cooling process the temperature is 1.5 to 5℃/800 to 500℃.
A method for manufacturing an electric resistance welded steel pipe for upset tubing, which is characterized by cooling at a speed of seconds. 2 In weight%, C: 0.13-0.20%, Si≦0.25%,
Mn: 1.0-1.5%, P≦0.03%, S≦0.01%, Nb:
After forming a hot rolled coil consisting of 0.01~0.05%, Al: 0.005~0.06%, and the balance iron and impurities into a specified size by slitting, forming, and electric resistance welding,
An upset tube characterized by performing upset processing by heating to 1100 to 1250°C, and cooling at a rate of 15 to 30°C/second between 800 and 500°C as a cooling condition during normalizing treatment after the upset processing. Manufacturing method of ERW steel pipe for Bing. 3 C in weight%: 0.13-0.20%, Si≦0.25%,
Mn: 1.0-1.5%, P≦0.03%, S≦0.01%, Nb:
After forming a hot rolled coil consisting of 0.01~0.05%, Al: 0.005~0.06%, and the balance iron and impurities into a specified size by slitting, forming, and electric resistance welding,
Upset processing is performed by heating to 1100 to 1250℃, and the cooling conditions for quenching after upset processing are cooling between 800 and 300℃ at a rate of 30 to 60℃/second, and then tempering at 550 to 650℃. A method for producing an ERW steel pipe for upset tubing, characterized by:
JP19223383A 1983-10-13 1983-10-13 Preparation of electric welded tube for upset tubing Granted JPS6082613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19223383A JPS6082613A (en) 1983-10-13 1983-10-13 Preparation of electric welded tube for upset tubing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19223383A JPS6082613A (en) 1983-10-13 1983-10-13 Preparation of electric welded tube for upset tubing

Publications (2)

Publication Number Publication Date
JPS6082613A JPS6082613A (en) 1985-05-10
JPS6147885B2 true JPS6147885B2 (en) 1986-10-21

Family

ID=16287867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19223383A Granted JPS6082613A (en) 1983-10-13 1983-10-13 Preparation of electric welded tube for upset tubing

Country Status (1)

Country Link
JP (1) JPS6082613A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0313119Y2 (en) * 1985-06-03 1991-03-26
JPH0313118Y2 (en) * 1985-06-03 1991-03-26
CN106591703A (en) * 2016-12-14 2017-04-26 舞阳钢铁有限责任公司 Steel plate for pressure vessel with yield strength being 345 MPa stage and production method

Also Published As

Publication number Publication date
JPS6082613A (en) 1985-05-10

Similar Documents

Publication Publication Date Title
JP5251089B2 (en) Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method
WO2011040624A1 (en) Steel plate with low yield ratio, high strength, and high toughness and process for producing same
JPS629646B2 (en)
JP6886519B2 (en) Sour-resistant thick plate steel with excellent low-temperature toughness and post-heat treatment characteristics and its manufacturing method
JP2834276B2 (en) Manufacturing method of high strength steel with excellent sulfide stress cracking resistance
JPH05271766A (en) Manufacture of high strength steel plate excellent in hydrogen induced cracking resistance
JPH06184636A (en) Production of high strength and high toughness seamless steel pipe excellent in weldability
JP2711163B2 (en) Method for producing high corrosion resistant low alloy linepipe steel with excellent corrosion resistance
JPS6147885B2 (en)
JPH0250916A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JPS61284554A (en) Alloy steel for unrefined bolt or the like having superior toughness and steel material for unrefined bolt or the like using same
JP2598357B2 (en) Manufacturing method of high strength steel sheet with excellent low temperature toughness
JPH0892649A (en) Production of high strength hot bend steel tube
JPS6144123B2 (en)
JPS5920423A (en) Production of 80kgf/mm2 class seamless steel pipe having excellent low temperature toughness
JPH07286213A (en) Production of thick hot coil good in dwtt property
JP3666457B2 (en) Manufacturing method of high yield steel with low yield ratio and small material difference in thickness direction
JPS6149365B2 (en)
JPH06256842A (en) Production of light-gaged high-strength steel sheet having excellent sour resistance
JPS59153841A (en) Production of high-tension electric welded steel pipe having uniform strength
JPH07122098B2 (en) Manufacturing method of high strength ERW steel pipe excellent in low temperature toughness
JPH07292414A (en) Production of thin high strength steel plate having superior toughness at low temperature and sour resistance
JPS6210240A (en) Steel for seamless drawn oil well pipe excellent in corrosion resistance and collapsing strength
JPH0319286B2 (en)
JPS59150019A (en) Production of seamless steel pipe having high toughness