JPS59150019A - Production of seamless steel pipe having high toughness - Google Patents

Production of seamless steel pipe having high toughness

Info

Publication number
JPS59150019A
JPS59150019A JP2257983A JP2257983A JPS59150019A JP S59150019 A JPS59150019 A JP S59150019A JP 2257983 A JP2257983 A JP 2257983A JP 2257983 A JP2257983 A JP 2257983A JP S59150019 A JPS59150019 A JP S59150019A
Authority
JP
Japan
Prior art keywords
pipe
seamless steel
steel pipe
toughness
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2257983A
Other languages
Japanese (ja)
Inventor
Yoshi Tomoya
遠茂谷 好
Yoshio Tanaka
良夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2257983A priority Critical patent/JPS59150019A/en
Publication of JPS59150019A publication Critical patent/JPS59150019A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain a seamless steel pipe having high toughness and good weldability by making a steel contg. a decreased amt. of C and Mn and a specified amt. of Ni, Cu and carbide forming element into a pipe by a seamless method and subjecting the pipe to reheating, cooling, heating and tempering treatments under specific conditions. CONSTITUTION:A steel consisting of 0.02-0.10wt% C, 0.02-0.50% Si, 0.70- 1.80% Mn, <=2.0% Mn + 10C, 0.10-1.00% Cu, 0.05-0.70% Ni, 0.15<=Ni+Cu<= 1.00% and further >=1 kind of 0.010-0.050% Ti and 0.020-0.070% Nb and the balance Fe with inevitable impurities is melted. Such steel is made into a pipe at a finishing temp. of >=700 deg.C by a Mannesmann plug mill hot seamless steel pipe making method. The pipe is heated to the Ac3 point or above after cooling and is cooled at a cooling rate of 20-70 deg.C/sec down to a temp. region of <=300 deg.C. The pipe is further heated to a temp. region of 550- Ac1 transformation point and is subjected to a tempering treatment. The seamless steel pipe having high toughness and good weldability is thus obtd. with less alloy components.

Description

【発明の詳細な説明】 この発明は、AP工規格5LXの52〜707ラスの、
比較的強度が低く、かつ高靭性で良好な溶接性を備えた
継目無鋼管をコスト安く製造する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION This invention is based on 52 to 707 laths of AP Engineering Standard 5LX.
The present invention relates to a method for manufacturing seamless steel pipes having relatively low strength, high toughness, and good weldability at low cost.

従来、鋼板の高強度高靭性化対策としては、適当に合金
元素を含有させた素材を圧延後再加熱して焼入れ焼もど
しするか、或いは通常の熱間圧延後直接焼入れし、さら
に焼もどす調質処理と、低温圧延による組織の微細化並
びに圧延後さらに加速冷却を行い、より高強度高靭性鋼
板を得るいわゆる制御圧延、調整冷却法が一般に採用さ
れている。
Conventionally, measures to improve the strength and toughness of steel sheets include rolling a material containing appropriate alloying elements and then reheating it to quench and temper it, or directly quenching it after normal hot rolling, and then tempering it. Generally, a so-called controlled rolling or controlled cooling method is employed, which involves quality treatment, microstructural refinement by low-temperature rolling, and further accelerated cooling after rolling to obtain a steel sheet with higher strength and toughness.

しかし、マンイ・スマンプラグミル継目無鋼管製管方式
においては、製造設備の特徴から、低温圧延が困難なこ
とから、非調質銅鋼管の靭性確保がむずかしく、製管後
の焼入れ焼もどしによる靭性改善を行うのが普通であっ
た。
However, in the Man-i-Suman Pragmill seamless steel tube manufacturing method, it is difficult to ensure the toughness of non-tempered copper steel tubes because low-temperature rolling is difficult due to the characteristics of the manufacturing equipment. Improvements were common.

しかし、調質処理によって十分な高靭性を得るためには
、焼入組織のマルテンサイト化率 90%以」二を確保
する必要があり、特に継目無鋼管においては、通常外面
からの焼入処理を施さざるを得す、特に内面で安定した
マルテンサイト組織を得るためには、多量の焼入れ元素
を含有させる必要があった。
However, in order to obtain sufficient toughness through tempering treatment, it is necessary to ensure a martensitic rate of 90% or more in the quenched structure. Especially for seamless steel pipes, quenching treatment from the outside is usually required. In order to obtain a stable martensitic structure, especially on the inner surface, it was necessary to contain a large amount of quenching elements.

特に寒冷地で使用されるAPI規格(アメリカ石油規格
)5LX−,52〜70クラスの比較的低強度で高靭性
を要求される継目無鋼管のラインパイプを製造する場合
には、調質処理を行うと靭性は確保されるものの強度が
高すぎ、また比較的高温で焼もどし、強度を低下させて
も現地での周継手溶接が小人熱であるため溶接施工時の
溶接割れ、および熱影響部の組織変化を少なくするため
には、予熱、後熱の工程が必要とされるとともに合金元
素の多量添加による製造コストの高騰等経済的で々いと
いう問題があった。
In particular, when manufacturing line pipes of API standard (American petroleum standard) 5LX-, 52-70 class seamless steel pipes that are used in cold regions and require relatively low strength and high toughness, heat treatment is necessary. If we do this, the toughness will be ensured, but the strength will be too high, and even if we reduce the strength by tempering at a relatively high temperature, welding of circumferential joints on-site will cause welding cracks during welding work and thermal effects. In order to reduce the structural change in the part, preheating and postheating steps are required, and there are problems in that the manufacturing cost increases due to the addition of a large amount of alloying elements, which is an economical problem.

この発明の目的は、かかる問題の生しない高靭性継目無
鋼管の製造法を提供せんとするものである。
An object of the present invention is to provide a method for manufacturing a high-toughness seamless steel pipe that does not cause such problems.

本発明者等は、この目的を達成すべく鋭意研究を重ねた
結果、C1および1釦を下はフェライト強化のため、 
Cu、 Niのうち1種または2種を含有させ、これに
T1およびNbの炭化物形成元素を添加し、初期オース
テナイト粒の微細化および冷却時の初析セメンタイトの
析出の遅延並びに炭化物を核とした微細フェライトの生
成を図ることにより、得られた微細フェライト パーラ
イト組織を有する非調質継目無鋼管に焼入、焼もどし処
理を施すと微細フェライト組織の高靭性継目無鋼管が得
られることを知見したのである。
As a result of intensive research in order to achieve this purpose, the inventors of the present invention discovered that the C1 and 1 buttons below are reinforced with ferrite.
One or two of Cu and Ni are contained, and carbide-forming elements T1 and Nb are added to this to refine the initial austenite grains, delay the precipitation of pro-eutectoid cementite during cooling, and make the carbide a core. By attempting to generate fine ferrite, we discovered that by applying quenching and tempering to a non-tempered seamless steel pipe with a fine ferrite pearlite structure, a high-toughness seamless steel pipe with a fine ferrite structure could be obtained. It is.

この発明の方法によれば、従来に比べ高靭性をもった継
目無鋼管が得られるばかりでなく、合金成分が少なくて
よいので周継手溶接部の硬化が少なく、かつ溶接性も良
好になシ、製造コストの低減が可能になった。
According to the method of the present invention, not only can a seamless steel pipe with higher toughness than before be obtained, but also a system with less hardening of the circumferential joint weld and good weldability because it requires less alloying components. , it became possible to reduce manufacturing costs.

本発明の要旨とするところは、C:0.02〜010係
(以下、成分割合を表わす係は重量係とする)、’Si
: 0.02〜0.50%、Mn:07o〜180%を
含有し、かつ該CとMllの10倍量の和CC(%)+
1OMn(%)〕が20以下であるとともに、Cu: 
0.10〜1.O0%、 Ni: 0.05〜0.70
%のうち1種以上を0.15 <Ni(%)+Cu[%
)<1. OOを満足させる値で含有し、さらにTi:
0.010〜○o50係、 Nbi O,02〜007
0%のうち1種以上をも含有しく好ましくは、’ri/
cおよびNb/Cが0.10%以」二とする)、残部が
鉄および不可避的不純物元素からなる鋼を素材として、
700℃以上で製管を終了し、冷却後さらにAC3点以
上に再加熱し、300℃以下まで冷却速度20〜70℃
/ secの範囲で強制冷却し、さらに500℃〜A 
C、変態点に加熱して焼もどし処理を行うことにより微
細フェライト組織を有する高靭性継目無鋼管を製造する
ことに特徴を有するものである。
The gist of the present invention is that C: 0.02 to 010 (hereinafter, the ratio representing the component ratio is the weight ratio), 'Si
: Contains 0.02 to 0.50%, Mn: 07o to 180%, and the sum CC (%) + of 10 times the amount of C and Mll
1OMn (%)] is 20 or less, and Cu:
0.10-1. O0%, Ni: 0.05-0.70
0.15 <Ni (%) + Cu [%
)<1. Contains Ti at a value that satisfies OO, and further contains Ti:
0.010~○o50 Section, Nbi O, 02~007
Preferably, it also contains one or more of 'ri/
C and Nb/C of 0.10% or more), the balance being iron and unavoidable impurity elements.
Finish pipe making at 700°C or higher, cool down and then reheat to 3 AC points or higher, cooling at a cooling rate of 20 to 70°C to 300°C or lower.
Forced cooling in the range of / sec, and then 500℃~A
C. The method is characterized in that a high-toughness seamless steel pipe having a fine ferrite structure is manufactured by heating to a transformation point and performing a tempering treatment.

本発明法に係わる鋼の各添加元素の添加量および製造条
件を前記のように限定した理由を以下に述べる。
The reasons for limiting the amount of each additive element and manufacturing conditions of the steel according to the method of the present invention as described above will be described below.

Cは、鋼管の強度を増加させるが、0.10%を越えて
含有させると、ベーナイトが析出するため010%以下
としだ。
C increases the strength of steel pipes, but if it is contained in an amount exceeding 0.10%, bainite will precipitate, so the content should not exceed 0.10%.

このことがこの発明の最大特徴の1っである。This is one of the greatest features of this invention.

そして、フェライト組織を多く占有させるためにばC含
有量は低い程よいが、経済性を考慮して持株精錬(脱炭
処理)を必要としない○02%未iJを下限とした。
In order to occupy a large amount of ferrite structure, the lower the C content, the better, but in consideration of economic efficiency, the lower limit was set to 02% iJ, which does not require holding refining (decarburization treatment).

Mnは、脱酸のためのみでなく強度保持」−において必
要な成分である。しかし、180%を越えると靭性、溶
接性に好ましくなく、特に焼入れによるベーナイト、マ
ルテンサイトを生成するためよ限を1.80%とした。
Mn is a necessary component not only for deoxidizing but also for maintaining strength. However, if it exceeds 180%, it is unfavorable for toughness and weldability, and in particular, bainite and martensite are generated by quenching, so the upper limit was set at 1.80%.

Mnの丁限は、脱酸とSの固定1強度、靭性確保のため
に070%とした。
The limit of Mn was set to 0.70% to ensure deoxidation, S fixation strength, and toughness.

また、Cと1vinの10倍の和〔C(%)+10Mn
(%)〕の上限値を20%以下としたのは、フェライト
の状態を保って、Cを固溶させ得る限度が20%であり
、これを越えると、第1図に示すようにベーナイトを析
出して靭性を劣化させるためである。
Also, the sum of C and 10 times 1vin [C (%) + 10Mn
(%)] was set at 20% or less because 20% is the limit at which C can be dissolved as a solid solution while maintaining the ferrite state. This is because it precipitates and deteriorates toughness.

Slは、脱酸および所望強度を得るために添加されるが
、0.02 %未満では十分な脱酸が行われず、また0
50%を越えると靭性が劣化するのでその含有量を0.
02〜050裂とした。
Sl is added to deoxidize and obtain the desired strength, but if it is less than 0.02%, sufficient deoxidation will not occur and
If it exceeds 50%, the toughness will deteriorate, so the content should be reduced to 0.
It was set as 02 to 050 cracks.

CUおよびNiには、フェライト基質を強化し、鋼管に
所望の強度を確保する作用がある。
CU and Ni have the effect of strengthening the ferrite matrix and ensuring the desired strength of the steel pipe.

特にこの発明の鋼管は、熱処理後に微細フェライト組織
を得るためにCおよび1vln含有量を下げ、ベーナイ
トやマルテンサイトの生成を抑制しているので、これに
よる強度低下を補い1.かつ靭性を向上させる作用もあ
り、1種以上の添加が必要な元素である。
In particular, in the steel pipe of the present invention, in order to obtain a fine ferrite structure after heat treatment, the C and 1vln contents are lowered and the formation of bainite and martensite is suppressed, thereby compensating for the decrease in strength due to this.1. It also has the effect of improving toughness, so it is an element that needs to be added in one or more types.

しかし、CUの含有量がユ○O%をNiの含有量が0.
70%、そしてその両者の合計が1.00を越えると焼
入れ時にベーナイト組織の析出が認められ鋼管の靭性の
劣化につながり、一方Cuの含有量が0、10%をN1
の含有量が○05係を、それぞれの両者の合計が0.1
5%を下回ると所望の効果が得られなくなることから、
Cuを0.10〜1.00%。
However, the content of CU is 0% and the content of Ni is 0%.
70%, and when the sum of both exceeds 1.00, precipitation of bainite structure is observed during quenching, leading to deterioration of the toughness of the steel pipe.On the other hand, when the Cu content is 0 and 10%, N1
The content of ○05 is 0.1, and the total of both is 0.1.
If it is less than 5%, the desired effect cannot be obtained, so
0.10 to 1.00% Cu.

N1を005〜070%そしてその両者の和の値を0、
’15〜1.00とした。
N1 is 005-070% and the sum of both is 0,
'15 to 1.00.

T1およびNbは、炭化物形成元素で焼入時の微細フェ
ライトの析出サイトを形成させ、鋼の強度および靭性を
付与するためには重要な役割をはだす元素であるが、そ
の量は、 Tiは0.01%Nb(は002%未満では
効果がなく、即ち、Ti(%)/C(%)およびNb(
%)/C(%)の値をそれぞれ0.10以上とする必要
がち9、一方、T1の含有量が005%を、NI)の含
有量がO,O’7%をそれぞれ越えた場合には、強度向
上効果やフェライト微細化効果が飽和してしまう上、ベ
ーナイトが析出しやすぐ靭性劣化を招くから、T1含有
量を0.01〜005%、Nb含有量を0.02〜00
7%とそれぞれ限定した。
T1 and Nb are carbide-forming elements that play an important role in forming fine ferrite precipitation sites during quenching and imparting strength and toughness to steel. 0.01%Nb( is ineffective below 0.02%, i.e. Ti(%)/C(%) and Nb(
%)/C(%) must each be 0.10 or more.9 On the other hand, if the T1 content exceeds 005% and the NI) content exceeds O and O'7%, In this case, the strength improvement effect and ferrite refinement effect become saturated, and bainite precipitates and toughness deteriorates immediately.
Each was limited to 7%.

また、この発明で、継目無鋼管を7−0.’O℃以上で
製管を終了させるという意味は、製管の最終工程である
外径矯正機(サイザーミル)の出側温度を700℃以上
とすることをさし、700’C未満では製管終了前にフ
ェライトが析出し、矯正圧加による歪が生じ熱処理時に
細粒組織が得られず局部的に強度、靭性が大巾に低下す
る。
In addition, with this invention, a seamless steel pipe of 7-0. 'Finishing pipe making at 0°C or above' means that the temperature at the outlet of the outer diameter straightening machine (sizer mill), which is the final process of pipe making, is 700°C or above; Ferrite precipitates before the completion of the heat treatment, distortion occurs due to corrective pressing, and a fine grain structure cannot be obtained during heat treatment, resulting in a significant local decrease in strength and toughness.

製管後の冷却は急冷放冷いずれでもよいが、冷却後ベー
ナイト組織が出ると再カロ熱時オーステナイト結晶粒が
大きく彦り製品の靭性が若干劣化するため300℃以下
まで放冷して、フェライト、パーライト組織とすること
が望ましい。
Cooling after pipe production can be done by either rapid cooling or cooling, but if a bainite structure appears after cooling, the austenite crystal grains will become larger during reheating and the toughness of the product will deteriorate slightly. , it is desirable to have a pearlite structure.

圧延後の再加熱はオーステナイト化するためAC3点以
上であればよいが高いとオーステナイトが粒大化するた
めAc3+’l OO℃程度にすること□が望ましい。
Reheating after rolling may be performed at an AC point of 3 or above to form austenite, but if it is too high, the austenite will become grain-sized, so it is desirable to keep the temperature at about AC3+'l OO°C□.

また、冷却速度は70℃/seeを越えるとベーナイト
が発生し、逆に20℃/sec未満では結晶粒が犬きぐ
なり、所望の強度、靭性が得られないためである。
Furthermore, if the cooling rate exceeds 70° C./sec, bainite will be generated, whereas if the cooling rate is less than 20° C./sec, the crystal grains will become coarse, making it impossible to obtain the desired strength and toughness.

冷却停止の庶度域が300℃を越えると残留オーステナ
イトからベーナイト変態をおこす。
When the cooling stop temperature range exceeds 300°C, bainite transformation occurs from retained austenite.

焼もどしは、その温度がAc1を越えると変態を生じ、
また550℃以下では靭性の改善が望めないのでAC1
〜550℃の範囲とした。
Tempering causes transformation when the temperature exceeds Ac1,
Furthermore, since no improvement in toughness can be expected below 550°C, AC1
The temperature range was 550°C.

ついでこの発明を実施例により比紋例と対比しながら説
明する。
Next, the present invention will be explained with reference to examples and in comparison with comparative examples.

第1表に示す成分組成の鋼を通常法でビレットとし次に
これらのビレットを1200℃に加熱した後、マンネス
マンプラグミル方式の各製管工程を通し、800〜70
0℃で製管を終了し、該鋼管を200℃以下に放冷した
後再加熱熱処理を行った。
Steel having the composition shown in Table 1 is made into billets using a conventional method. After heating these billets to 1200°C, they are passed through each pipe-making process using the Mannesmann plug mill system to
Pipe manufacturing was completed at 0°C, and the steel pipe was allowed to cool down to 200°C or less, and then reheated and heat treated.

第1表に示すA 、 Pの各種成分組成を有する継目無
鋼管を第2表の条件で熱処理を行った。
Seamless steel pipes having various compositions of A and P shown in Table 1 were heat treated under the conditions shown in Table 2.

このようにして得られた各鋼管の引張状1験結果。The results of the first tensile test of each steel pipe obtained in this way.

ンヤルピー衝撃試験結果および落雷試験結果をそれぞれ
第2表に併せて示した。
The results of the Nyarupee impact test and the lightning test are also shown in Table 2.

第2表に示された結果からも本発明法によって製造され
た鋼管は、イ夏れた靭性と高強度を有していることがわ
かり、C、MnおよびN1が少ないことから、良好な溶
接性を示すことは当然であって、現に実際の溶接試、験
においても、溶接施工時の予熱、後熱を行わないのに熱
影響部の組織変化が少なく管周方向の破面遷移温度およ
び脆性伝播特性の改善がなされ、低温靭性を十分満足す
る結果が得られている。
From the results shown in Table 2, it is clear that the steel pipes manufactured by the method of the present invention have excellent toughness and high strength. In actual welding tests, even though no preheating or postheating is performed during welding, there is little structural change in the heat-affected zone, and the fracture surface transition temperature in the pipe circumferential direction is low. The brittle propagation characteristics have been improved, and results have been obtained that fully satisfy low-temperature toughness.

これに対し、製造条件が本発明の範囲から外れた比較法
のベーナイト組織では、ンヤルピーの破面遷移温度およ
び靭性が本発明法より劣っていることが明らかである。
On the other hand, it is clear that the bainite structure produced by the comparative method, in which the manufacturing conditions are outside the scope of the present invention, is inferior to the method of the present invention in terms of fracture surface transition temperature and toughness.

なお、第」。図は本発明法で製造した継目無鋼管10の
顕微鏡組織図を示すものであり、第2図は比較法14の
同様状態の顕微鏡組織図であるが、本発明法10は微細
フェライトであるのに対し、比較法]4はベーナイト、
マルテンサイトであることがわかる。
In addition, No. The figure shows a microscopic structure diagram of a seamless steel pipe 10 produced by the method of the present invention, and Figure 2 shows a microscopic structure diagram of a similar state of comparative method 14, but the method 10 of the present invention has fine ferrite. Comparative method] 4 is bainite,
It can be seen that it is martensite.

上述のごとく、この発明は圧延のままでパーライト占有
面積率が10%以下に形成したフェライトおよびパーラ
イト組織を有する継目無鋼管を焼入腕もどし熱処理を施
して組織を微細フェライトにすることにより、強度と低
温靭性を具備し、しかも溶接工程の簡略化、溶接性の向
」−、コスト低減などに極めて有効な技術である。
As mentioned above, this invention improves strength by subjecting a seamless steel pipe having a ferrite and pearlite structure formed with a pearlite occupation area ratio of 10% or less as-rolled to a quenching arm-returning heat treatment to change the structure to fine ferrite. This technology is extremely effective in simplifying the welding process, improving weldability, and reducing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明法の継目無鋼管の顕微鏡組織図の1例
であり、第2図は比較継目無鋼管の顕微鏡組織図である
。 出願人  住友金属工業株式会社
FIG. 1 is an example of a microscopic structure diagram of a seamless steel pipe produced by the method of the present invention, and FIG. 2 is a microscopic structure diagram of a comparative seamless steel pipe. Applicant: Sumitomo Metal Industries, Ltd.

Claims (1)

【特許請求の範囲】 C:0.02〜010%、 Si:0.02〜050楚、 Mn:070〜180楚 を含有するとともに、式、 Mn(%)+100(%)<20 を満足し、かつ、 Cu: 0.10〜1.00%、 Ni:0.05〜O,’70% のうぢの1種または2種を、式、 0、15 <Ni(%)+Cu(%)<1.o。 の範囲で含有し、さらに、 Ti:0.010〜O○50%、 Nb:0.020〜0070% のうちの1種または2種をも含み、 Feおよび不可避不純物 残り、 から成る成分組成(以上重量%)の鋼を、マンネスマン
プラグミル熱間継目無鋼管製管方式にて終了温度:’7
00’C以上で製管し、冷却した後、再度AC3点以上
に加熱してから、300℃場下の温度域にまで冷却速度
、20〜b ついで、さらに550〜Ac、変態点の温度域に加熱し
て焼もどし処理を施すことを特徴とする、微細フェライ
ト組織を有する高靭性継目無鋼管の製造法。
[Claims] Contains C: 0.02-010%, Si: 0.02-050 So, Mn: 070-180 So, and satisfies the formula: Mn (%) + 100 (%) < 20. , and Cu: 0.10~1.00%, Ni: 0.05~O,'70%, and one or two of them are represented by the formula: 0,15 <Ni (%) + Cu (%) <1. o. Component composition ( % by weight) was processed using the Mannesmann plug mill hot seamless steel pipe manufacturing method at a finishing temperature of '7.
After making the pipe at 00'C or higher and cooling it, heat it again to AC3 or higher, then cool it down to a temperature range below 300°C, at a cooling rate of 20~B, then further to 550~Ac, in the transformation point temperature range. A method for manufacturing a high-toughness seamless steel pipe having a fine ferrite structure, which is characterized by subjecting it to heating and tempering.
JP2257983A 1983-02-14 1983-02-14 Production of seamless steel pipe having high toughness Pending JPS59150019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2257983A JPS59150019A (en) 1983-02-14 1983-02-14 Production of seamless steel pipe having high toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2257983A JPS59150019A (en) 1983-02-14 1983-02-14 Production of seamless steel pipe having high toughness

Publications (1)

Publication Number Publication Date
JPS59150019A true JPS59150019A (en) 1984-08-28

Family

ID=12086765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2257983A Pending JPS59150019A (en) 1983-02-14 1983-02-14 Production of seamless steel pipe having high toughness

Country Status (1)

Country Link
JP (1) JPS59150019A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787541A1 (en) * 1994-10-20 1997-08-06 Sumitomo Metal Industries, Ltd. Method of manufacturing seamless steel pipes and manufacturing equipment therefor
WO2007111131A1 (en) * 2006-03-28 2007-10-04 Sumitomo Metal Industries, Ltd. Process for production of seamless pipes
JP2018534417A (en) * 2015-09-24 2018-11-22 バオシャン アイアン アンド スティール カンパニー リミテッド On-line controlled cooling method and manufacturing method for seamless steel pipes for effective grain refinement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438573A (en) * 1977-08-31 1979-03-23 Matsushita Electric Works Ltd Terminal device in circuit breaker
JPS54127821A (en) * 1978-03-28 1979-10-04 Sumitomo Metal Ind Ltd Line pipe steel resistant to hydrogen induced cracking and production thereof
JPS5573849A (en) * 1978-11-22 1980-06-03 Kawasaki Steel Corp Refined high strength steel of low surface hardness
JPS5747827A (en) * 1980-09-05 1982-03-18 Nippon Steel Corp Production of steel material for electric welded steel tube of superior sour resistance characteristics
JPS57134517A (en) * 1981-02-12 1982-08-19 Nippon Steel Corp Production of high-toughness fine-grain ferrite steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438573A (en) * 1977-08-31 1979-03-23 Matsushita Electric Works Ltd Terminal device in circuit breaker
JPS54127821A (en) * 1978-03-28 1979-10-04 Sumitomo Metal Ind Ltd Line pipe steel resistant to hydrogen induced cracking and production thereof
JPS5573849A (en) * 1978-11-22 1980-06-03 Kawasaki Steel Corp Refined high strength steel of low surface hardness
JPS5747827A (en) * 1980-09-05 1982-03-18 Nippon Steel Corp Production of steel material for electric welded steel tube of superior sour resistance characteristics
JPS57134517A (en) * 1981-02-12 1982-08-19 Nippon Steel Corp Production of high-toughness fine-grain ferrite steel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787541A1 (en) * 1994-10-20 1997-08-06 Sumitomo Metal Industries, Ltd. Method of manufacturing seamless steel pipes and manufacturing equipment therefor
EP0787541A4 (en) * 1994-10-20 1999-02-10 Sumitomo Metal Ind Method of manufacturing seamless steel pipes and manufacturing equipment therefor
WO2007111131A1 (en) * 2006-03-28 2007-10-04 Sumitomo Metal Industries, Ltd. Process for production of seamless pipes
EP2006396A2 (en) * 2006-03-28 2008-12-24 Sumitomo Metal Industries Limited Process for production of seamless pipes
JP4894855B2 (en) * 2006-03-28 2012-03-14 住友金属工業株式会社 Seamless pipe manufacturing method
EP2006396A4 (en) * 2006-03-28 2012-03-28 Sumitomo Metal Ind Process for production of seamless pipes
US8601852B2 (en) 2006-03-28 2013-12-10 Nippon Steel & Sumitomo Metal Corporation Method of manufacturing seamless pipe and tube
JP2018534417A (en) * 2015-09-24 2018-11-22 バオシャン アイアン アンド スティール カンパニー リミテッド On-line controlled cooling method and manufacturing method for seamless steel pipes for effective grain refinement

Similar Documents

Publication Publication Date Title
US4572748A (en) Method of manufacturing high tensile strength steel plates
US20180073094A1 (en) X80 pipeline steel with good strain-aging performance, pipeline tube and method for producing same
JP3812168B2 (en) Manufacturing method of seamless steel pipe for line pipe with excellent strength uniformity and toughness
JPH0598350A (en) Production of line pipe material having high strength and low yield ratio for low temperature use
JP2000017389A (en) Cr-Mo SERIES LOW ALLOY SEAMLESS STEEL PIPE EXCELLENT IN TOUGHNESS AND ITS Cr-Mo SERIES LOW ALLOY STEEL
JP3873540B2 (en) Manufacturing method of high productivity and high strength rolled H-section steel
JP3965708B2 (en) Manufacturing method of high strength seamless steel pipe with excellent toughness
JPS59150019A (en) Production of seamless steel pipe having high toughness
JPS6067623A (en) Preparation of high strength low carbon seamless steel pipe by direct hardening method
JPH07150247A (en) Production of steel tube with high strength and low yield ratio for construction use
JPH07150245A (en) Production of thick-walled steel tube having high toughness and low yield ratio
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability
JP2898455B2 (en) Manufacturing method of high strength steel with excellent weldability
JPS5920423A (en) Production of 80kgf/mm2 class seamless steel pipe having excellent low temperature toughness
JPS602364B2 (en) Manufacturing method of non-thermal high tensile strength steel plate with excellent low-temperature toughness
JPS583012B2 (en) Manufacturing method of high toughness high tensile strength steel plate
JP2652538B2 (en) Method for producing high-strength steel with excellent weldability and low-temperature toughness
JPS5828327B2 (en) Method for producing ultra-low carbon high tensile strength steel with extremely excellent ductility
JPH03207814A (en) Manufacture of low yield ratio high tensile strength steel plate
JPS63213620A (en) Manufacture of high strength steel pipe joint
JPH0670249B2 (en) Manufacturing method of tempered high strength steel sheet with excellent toughness
JPH06145787A (en) Production of high tensile strength steel excellent in weldability
JPS62149814A (en) Production of low-carbon high-strength seamless steel pipe by direct hardening method
JPS63241117A (en) Manufacture of seamless stainless steel tube
JP2626421B2 (en) Manufacturing method of high strength steel with excellent weldability