JPS6067623A - Preparation of high strength low carbon seamless steel pipe by direct hardening method - Google Patents

Preparation of high strength low carbon seamless steel pipe by direct hardening method

Info

Publication number
JPS6067623A
JPS6067623A JP17315983A JP17315983A JPS6067623A JP S6067623 A JPS6067623 A JP S6067623A JP 17315983 A JP17315983 A JP 17315983A JP 17315983 A JP17315983 A JP 17315983A JP S6067623 A JPS6067623 A JP S6067623A
Authority
JP
Japan
Prior art keywords
weight
steel pipe
seamless steel
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17315983A
Other languages
Japanese (ja)
Other versions
JPS6216250B2 (en
Inventor
Kunihiko Kobayashi
邦彦 小林
Takeo Ueno
上野 雄夫
Yoshimitsu Iwasaki
岩崎 義光
Yasue Koyama
小山 康衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17315983A priority Critical patent/JPS6067623A/en
Publication of JPS6067623A publication Critical patent/JPS6067623A/en
Priority to JP27523686A priority patent/JPS62149814A/en
Publication of JPS6216250B2 publication Critical patent/JPS6216250B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies

Abstract

PURPOSE:To prepare a low carbon seamless steel pipe having high strength and high toughness, by hot processing steel having a specific composition containing C, Si, Mn, Al, B, Ni, Cr, Mo, Cu, V, Nb, Ca, P, S, N and Ti before direct hardening. CONSTITUTION:Steel, which contains, on a wt. basis, 0.06-0.20% C, 0.10-0.50% Si, 0.5-2.0% Mn, 0.01-0.1% Al, 0.0005-0.0050% B, further, Tr-5% Ni, Tr- 1% Cr, Tr-1% Mo, Tr-0.5% Cu, Tr-0.1% V, Tr-0.1% Nb, Tr-0.0010% Ca, 0.03% or less P and 0.015% or less S and follows formula 3.42N-0.008<=Ti<= 3.42N+0.008, Ti>0 in 0.0010-0.0060% N and comprises the remainder of Fe and inevitable impruties, is heated to 1,200-1,300 deg.C and hot processed to mold a steel pipe having a predetermined shape. After this hot processing, the steel pipe is immediately hardened at 750 deg.C or more followed by tempering at a temp. of Ac1 or less to obtain a low carbon seamless steel pipe having excellent strength and toughness.

Description

【発明の詳細な説明】 (技術分野) 低炭素高強度継目無鋼管をいわゆる直接焼入で製造する
方法に関し、この明細書に述べる技術内容は、ラインパ
イプや、海洋ないし、陸上の借造物などの使途に供され
るこの種の継目無鋼管の製造段階に独自の成分挙動に着
目して、上記直接焼入との適合を成就させることに関連
し、この種の熱処理を経る低炭素高強度継目無鋼管の製
造に係わる技術の分野に位置している。
[Detailed Description of the Invention] (Technical Field) The technical content described in this specification regarding the method of manufacturing low-carbon high-strength seamless steel pipes by so-called direct quenching is applicable to line pipes, marine or land-based borrowed products, etc. In order to achieve compatibility with the above direct quenching, we focused on the unique component behavior in the manufacturing stage of this type of seamless steel pipe that is used for It is located in the field of technology related to the production of seamless steel pipes.

(問題点) 高強度継目無鋼管の製造には通常、焼入れ焼戻し処理が
施される。その際焼入性を向上させるために微量のボロ
ン(B)を添加しかつその焼入性を安定比するために適
f11のAlを添加するのが一般的である。
(Problem) In the production of high-strength seamless steel pipes, quenching and tempering treatments are usually performed. At that time, it is common to add a small amount of boron (B) to improve the hardenability, and to add a suitable amount of Al to stabilize the hardenability.

゛熱間圧延で、所定寸法の鋼管に成形後−たん冷却させ
てからACよ点以上まで再加熱し、焼入処理が行われる
従来法では、上記のBによる焼入効果が実現され得るけ
れども、熱間圧延後ただちに、焼入処理を施すいわゆる
直接焼入の場合には、実際上Bによる焼入性効果が安定
して得られない。
``The quenching effect described in B can be achieved by the conventional method in which hot rolling is used to form a steel pipe of a predetermined size, then allow it to cool down, then reheat to above the AC point and undergo quenching treatment. In the case of so-called direct quenching, in which quenching is performed immediately after hot rolling, the hardenability effect of B cannot be stably obtained in practice.

またここにBの効果を阻害するNを固定するためにTi
を添加することもすでに知られてはいるが直接焼入によ
る継目無fM管の製造においては、やはりその効果を安
定して得ることが困難である。
In addition, Ti is added here to fix N, which inhibits the effect of B.
Although it is already known to add fM, it is still difficult to stably obtain this effect in the production of seamless fM tubes by direct quenching.

(発想の端緒) 発明者らは、種々検討を重ねた結果、上記した問題の原
因がTi含含有色N含有値の不適正にあることを究明し
、Ti1Nを適正量に制御して直接焼入を実行すること
により、強度並びに切欠靭性の優れた低炭素高強度継目
無鋼管が次のように安定して製造できることを見い出し
たわけである。
(Start of the idea) As a result of various studies, the inventors discovered that the cause of the above-mentioned problem was an inappropriate Ti-containing color N content value. By carrying out this process, we discovered that low-carbon, high-strength seamless steel pipes with excellent strength and notch toughness can be stably manufactured as follows.

さて継目無鋼管の製造に当ってはビレットを1200〜
1300℃に加熱するが、この温度域では、まずAlが
Nを固定する効果はない。
Now, when manufacturing seamless steel pipes, billets are
Although it is heated to 1300° C., in this temperature range, Al has no effect of fixing N.

すなわち継目無鋼管を製造する場合には、芽孔機による
穿孔を可能とするためにビレットを1200〜1300
℃の温度で加熱することが必要なところ、このような高
い温度ではもはやNがAlと結合しlfNとして存在す
ることはできないからであり、かくして鋼中に固溶して
存在するNは、熱間圧延時に温度が低下すると、それに
応じBと結合してBNとなり、オーステナイト粒界に偏
析して焼入性を向上させるべき固溶B爪を減じてその効
果を失わせる。
In other words, when manufacturing seamless steel pipes, the billet has a diameter of 1,200 to 1,300 to enable perforation using a perforation machine.
It is necessary to heat the steel at a temperature of When the temperature decreases during inter-rolling, B is combined with B to form BN, which segregates at austenite grain boundaries and reduces the solid solution B claws that should improve hardenability, thereby losing its effect.

熱間加工後700℃程度以下の低温まで冷却し、再びA
c8点以上まで加熱して焼入れする通常の再加熱焼入れ
の場合には、この再加熱時にAlがNをAlNとして固
定することにより固溶Bを増して焼入性を向上させるこ
とはよく知られているとおりであるが、直接焼入れの場
合には上記のようにAINの析出が阻害されるため、B
による焼入向上の効果が期待できない0 したがって熱間圧延前の加熱温度が1200〜1300
℃と高温の場合には、この温度領域で安定してNと結合
するTiを添加することが直接焼入れの場合には、有効
であり、その効果の例を第1図に示す。
After hot working, it is cooled to a low temperature of about 700℃ or less, and then A
It is well known that in the case of normal reheating and quenching, in which the material is heated to the c8 point or higher, Al fixes N as AlN during reheating, thereby increasing solid solution B and improving hardenability. However, in the case of direct quenching, the precipitation of AIN is inhibited as described above, so B
Therefore, the heating temperature before hot rolling is 1200 to 1300.
In the case of direct hardening, it is effective to add Ti, which stably combines with N in this temperature range, and an example of this effect is shown in FIG. 1.

このようにTiはNの固定効果があるものの過剰なTi
は、焼入れ後の焼戻し処理においてTiOとして析出し
、切欠靭性を著しく劣化させるのでTi量の厳密な規制
が必要である。
In this way, although Ti has a fixed effect of N, excessive Ti
is precipitated as TiO in the tempering treatment after quenching and significantly deteriorates the notch toughness, so the amount of Ti must be strictly regulated.

すなわちTiは、NをTiNという形で固定するので、
鋼中に含まれるNをすべて固定するために必要なTi量
は、比学黛論的にはTi量3.42Nである。
In other words, since Ti fixes N in the form of TiN,
The amount of Ti required to fix all of the N contained in the steel is 3.42N, based on the theory of mathematics.

しかし工業的には、鋼中のTi、l(の量を常にこの割
合に保つのは不可能である。
However, industrially, it is impossible to always maintain the amount of Ti, l(in steel) at this ratio.

(実験的事実) 発明者らは、Ti、Hの割合を種々変tしさびた屑を用
いて強度および衝撃試験での破m1遷移話A度を調査し
た結果、第2図に示す成績を得た。
(Experimental Facts) The inventors investigated the degree of fracture in the strength and impact tests using rusted scraps with various Ti and H ratios, and obtained the results shown in Figure 2. Ta.

第2図において横軸にとったΔTi−=Ti−8.42
Nは理論上Nを固定するに必要なTi量に対する過不足
を示す。
ΔTi-=Ti-8.42 taken on the horizontal axis in Figure 2
N indicates excess or deficiency with respect to the amount of Ti theoretically required to fix N.

ΔT1が−o、oos%よりも低いと、Tiの不足のた
めに、固溶Nが多くなりすぎ、Bの焼入性向上効果を減
じ、強度、靭性が劣ることを示している。
When ΔT1 is lower than -o, oos%, there is too much solid solution N due to the lack of Ti, which reduces the hardenability improvement effect of B and indicates poor strength and toughness.

一方ΔTiが+0.008%をこえるとTiによるNの
固定にてBの焼入性向上効果が十分に発揮されるものの
余剰Tiが焼入後の焼もどしの際、 Tieとして析出
するために、強度は高くなるものの、靭性を著しく劣化
させる。
On the other hand, when ΔTi exceeds +0.008%, although the effect of improving the hardenability of B is fully exerted by fixing N with Ti, surplus Ti precipitates as Tie during tempering after quenching. Although strength increases, toughness deteriorates significantly.

ΔTiが−o、oosチと+o、oosチの間にある場
合には、Nの大部分が固定されてBによる焼入性向上効
果で筒い強度が得られるとともに、過剰なTiCの析出
も抑えられ優れた靭性が確保される0 (発明の目的) TiとNの含有iTkを適当な範囲に規制することによ
って強度・靭性ともに優れた高強度継目無鋼管を直接焼
入法で製造することがこの発明の目的である。
When ΔTi is between -o, oos and +o, oos, most of the N is fixed and the hardenability improvement effect of B provides cylindrical strength, while also preventing excessive TiC precipitation. (Objective of the invention) To manufacture high-strength seamless steel pipes with excellent strength and toughness by direct quenching by regulating the content of Ti and N within an appropriate range. is the purpose of this invention.

(発明の構成) 上掲した発明の目的は、次の事項を骨子とする手順で有
利に実現されるO Q:0.06〜0.20重量%(以下単にチで示す)、
Si : 0,10〜0.50 %、Mn : 0.5
〜2.0 %、Al:o、ox〜0.1%、B:0.0
005〜0.0050係と、ざらにNi:Tr〜5%、
Cjr : Tr 〜1 ’%、Mo:Tr 〜1%、
Ou : Tr 〜0.5 %、V:Tr〜0.1%、
Hb : Tr 〜0.1 %およびOa : Tr 
〜0.010チを含み、p:o、o3%以下、S:0.
O15チ以下を含みかつN:0.0010〜0.006
0係において、N含有量に応じて次式0式 に従うT1を含有し、残部がFeと不可避的不純物より
成る鋼を1200℃以上1300℃以下の温度に加熱し
て熱間加工により、所定形状の鋼管に成形すること、こ
の熱間加工後750℃以上の温度にてただちに焼入れす
ること、次いでAC工以下の温度で焼戻すこと、の結合
からなる直接焼入法による低炭素高強度継目無鋼管の製
造方法。
(Structure of the Invention) The above-mentioned object of the invention can be advantageously realized by a procedure based on the following matters.
Si: 0.10-0.50%, Mn: 0.5
~2.0%, Al: o, ox ~0.1%, B: 0.0
005 to 0.0050 and roughly Ni: Tr to 5%,
Cjr: Tr ~1'%, Mo:Tr ~1%,
Ou: Tr ~0.5%, V: Tr ~0.1%,
Hb: Tr ~0.1% and Oa: Tr
Contains ~0.010 chi, p: o, o 3% or less, S: 0.
Contains O15 or less and N: 0.0010 to 0.006
In the 0 part, steel containing T1 according to the following formula 0 according to the N content, and the remainder consisting of Fe and unavoidable impurities is heated to a temperature of 1200°C or more and 1300°C or less and hot worked to form a predetermined shape. A low-carbon, high-strength, seamless steel pipe created by the direct quenching method, which consists of forming a steel pipe into a steel pipe, immediately quenching it at a temperature of 750°C or higher after this hot working, and then tempering it at a temperature below AC processing. Method of manufacturing steel pipes.

またこの場合熱間加工による所定形状の継目無鋼管に成
形する過程が、その最終加工に際して、850℃以上の
温度に保持された加熱炉に装入して被加工材を再加熱す
る場合も実施態様に含まれる0 次にこの発明で成分組成および工程段階について規定し
た理由を以下に述べる0 まず化学成分を制限した理由は以下の通りであるO G:0.06〜0.20条 Cは焼入性を高め、高強度を得る上で不可欠であって、
o、oe%未満ではその効果がなく、また0、20%を
こえると炭素当量が過大となり、溶接割れ感受性を高め
るのでこの発明の対象としているラインパイプや構造物
用鋼管として適しないので0.06〜0120チに制限
した0 Si:o、10〜0.50係 Siは鋼の脱酸に必要であって、0.10%未満ではそ
の効果がなく、また0゜50チをこえると鋼片の割れを
生じたり、溶接性を損うので、0.10〜0.50チに
限定したO In : 0.5〜2.0 % Mnは焼入性を高め、強度をあげるのGこ有効であるが
、0.5%未満では効果がなく、2.0%をこえると溶
接性、加工性を損うので0.5〜2.0チに限定した。
In addition, in this case, the process of forming a seamless steel pipe into a predetermined shape by hot working is also carried out when the workpiece is reheated by charging it into a heating furnace maintained at a temperature of 850°C or higher during final processing. Included in the aspect 0 Next, the reason for specifying the component composition and process steps in this invention will be described below. 0 First, the reason for restricting the chemical components is as follows. It is essential for improving hardenability and obtaining high strength.
If it is less than 0.0%, there is no effect, and if it exceeds 0.20%, the carbon equivalent becomes excessive and increases the susceptibility to weld cracking, making it unsuitable for line pipes and structural steel pipes, which are the subject of this invention. 0 Si limited to 0.06~0.50%, 10~0.50% Si is necessary for deoxidizing steel, less than 0.10% has no effect, and over 0.50% it deoxidizes steel. O In: 0.10 to 0.50% since it may cause cracks in the pieces and impair weldability. Mn improves hardenability and increases strength. Although it is effective, if it is less than 0.5%, it is not effective, and if it exceeds 2.0%, weldability and workability are impaired, so it is limited to 0.5 to 2.0%.

Al:o、ol〜0.1チ AIは脱酸に必要な元素であるが、0.01%未満では
効果がなく、またo、z%をこえるとアルミナ系介在物
として鋼中に残存して靭性を劣(ヒさせるので0.01
〜0.1チに限定したOB:0.0005〜0.005
0% Bは鋼の焼入性を向上させるのに微h(で非常に有効な
元素であるが0.0005%未満では効果がなく、一方
o、ooso%をこえると析出物を形成して靭性を劣化
させるので0.00(15〜0. f) O50係の範
囲に限定した。
Al: o, ol ~ 0.1% Al is a necessary element for deoxidation, but if it is less than 0.01% it is ineffective, and if it exceeds o, z% it remains in the steel as alumina inclusions. 0.01 because it deteriorates the toughness.
OB limited to ~0.1 inch: 0.0005~0.005
0% B is a very effective element in improving the hardenability of steel, but if it is less than 0.0005% it is ineffective, while if it exceeds o or ooso%, it may form precipitates. Since it deteriorates toughness, it is limited to a range of 0.00 (15 to 0.f) O50.

Ni:Tr S−5% N1は、母材、溶接部の靭性を改善するのに好ましくは
0.2チ以上でとく有効であるが非常に高価な元素でも
あるので下限を’l”r s上限を5チとした。
Ni: Tr S-5% N1 is particularly effective in improving the toughness of the base metal and weld zone, preferably at 0.2 mm or more, but it is also a very expensive element, so the lower limit has to be set. The upper limit was set at 5 inches.

Or : Tr〜1チ Orは焼入性向上に好ましくは0.1%にて有効である
が1%をこえると溶接性を損うので、下限をTr1上限
をlチとした。
Or: Tr~1% Or is effective for improving hardenability, preferably at 0.1%, but if it exceeds 1%, it impairs weldability, so the lower limit was set to Tr1, and the upper limit was set to 1%.

Mo : Tr〜lチ MOもNiと同様な効果があり、特に0.05%以上に
て焼入性向上、焼戻し脆性の抑止に有効であるが、非常
に高価な上に、炭素当量も−りける元素なので下限をT
r、上限を1%とした。
Mo: Tr-1 MO also has the same effect as Ni, and is particularly effective at improving hardenability and suppressing temper brittleness at 0.05% or more, but is very expensive and has a carbon equivalent of - Since it is an element that can be dissolved, the lower limit is T
r, the upper limit was set to 1%.

(!u : Tr−0,5% Ouは耐食性を増すのに0.1%以上で有効であるが、
0.5チをこえると鋼片の割れ感受性を増し、溶接性も
損うので下限をTr1上限を0.5%とした0 V : Tr〜0.1 チ ■は析出強化元素としてのぞましくは0.01%以上で
焼戻し後の強度−を上げるのに有効であるが、o、in
をこえると鋼片の割れの原因となり、又靭性を阻害する
ので下限をTr、上限を0.1係とした。
(!u: Tr-0.5% Ou is effective at 0.1% or more to increase corrosion resistance, but
If it exceeds 0.5%, the cracking susceptibility of the steel slab increases and weldability is impaired, so the lower limit is set to 0.5% from the upper limit of Tr1. It is effective to increase the strength after tempering at 0.01% or more;
If it exceeds this, it will cause cracking of the steel piece and impair the toughness, so the lower limit was set to Tr and the upper limit was set to 0.1.

Nb:Tr〜0.1% Nbはオーステナイト粒の細粒子ヒに寄与し、析出強化
による強度増加にも0.01%以上で著しく寄与するが
、0.1係をこえると鋼片の割れの原因となり、溶接性
も損うので下限をTr、上限を0.1チとした。
Nb: Tr ~ 0.1% Nb contributes to the fine grain strength of austenite grains, and significantly contributes to increasing the strength due to precipitation strengthening at 0.01% or more, but when it exceeds 0.1%, it causes cracking in steel pieces. Since this causes a loss of weldability, the lower limit is set to Tr and the upper limit is set to 0.1 inch.

Ca : Tr 〜0.010 T。Ca: Tr ~ 0.010T.

Oaは硫化物の形体を球状比させ、とくに管長手に直角
方向の靭性を改善し、さらに水素Rfj起割れを防止す
るのに好ましくは0.0010%以上で有効であるが0
.010係をこえると却って介在物を形成して靭性を阻
害するので下限をTr1上限を0.010チと限定した
Oa is effective at preferably 0.0010% or more to make the shape of the sulfide spherical, improve the toughness especially in the direction perpendicular to the pipe length, and furthermore prevent hydrogen Rfj cracking.
.. If the tensile strength exceeds 0.010, inclusions will form and the toughness will be impaired, so the lower limit and upper limit of Tr1 were set to 0.010.

P≦ 0.08 チ Pは鋼中に含まれる不純物で、低い程好ましい。P≦0.08 P is an impurity contained in steel, and the lower the P content, the better.

0.03%をこえると靭性を著しく劣化させ、また焼戻
し脆性を引起すので上限を0.08%としたO8≦0.
015係 Sも鋼中に含まれる不純物で、低い程好ましい。
If it exceeds 0.03%, the toughness will be significantly deteriorated and tempering brittleness will occur, so the upper limit was set to 0.08% and O8≦0.
015 S is also an impurity contained in steel, and the lower the S content, the better.

o、o15%をこえると靭性を損うので上限を0、01
5チとした。
If o, o exceeds 15%, toughness will be impaired, so set the upper limit to 0,01
It was set as 5.

N:0.0010〜0.0060% Nは、鋼中に含まれる不純物でo、ooio%未満にす
ることは工業的に困難であるので下限をo、oolo%
とした。また0、0060チをこえると溶接部の靭性を
損い、さらに所要量のTiを添加した場合に巨大なTi
N析出物を形成して母材の靭性を損うので上限をo、o
oeo%とじたOTiは、既に記述した如くこの発明で
不可欠の元素であり、Bの焼入性効果を確保し、かつ過
剰T1による靭性劣化を防ぐために次式 で定める範囲に限定した。
N: 0.0010 to 0.0060% N is an impurity contained in steel and it is industrially difficult to reduce it to less than o, ooio%, so the lower limit is set to o, ooio%.
And so. Moreover, if it exceeds 0.0060 mm, the toughness of the weld will be impaired, and if the required amount of Ti is added, a huge Ti
Since N precipitates are formed and the toughness of the base metal is impaired, the upper limit is set to o, o.
As already described, OTi with oeo% is an essential element in this invention, and in order to ensure the hardenability effect of B and to prevent toughness deterioration due to excess T1, it was limited to the range defined by the following formula.

次に製造条件を限定した理由を述べる。Next, the reason for limiting the manufacturing conditions will be explained.

継目無鋼管の製造においては、ビレットを1200〜1
800℃の範囲で加熱することは穿孔機での加工上必要
な条件であり、またこの発明で、T11Nの割合を適正
範囲に収めるためのl)U提条件ともなるものなので、
加熱温度は1200〜1300℃に限定した。
In the production of seamless steel pipes, billets are
Heating in the range of 800°C is a necessary condition for processing with a drilling machine, and also serves as a prerequisite for keeping the T11N ratio within an appropriate range in this invention.
The heating temperature was limited to 1200-1300°C.

次に熱間加工後直接焼入れを行なうことは、たとえば厚
板の分野などにおいては、広く行われており、熱エネル
ギー節減による経済的効果、焼もし抵抗性増大による高
強度化などの効果が知られ、一方鋼管製造分野において
も直接焼入法は公知の事実ではあるが、低炭素鋼の如く
焼入性の低い鋼管では実用1ヒされていなかった。
Next, direct quenching after hot working is widely practiced, for example in the field of thick plates, and is known to have economical effects due to thermal energy savings and higher strength due to increased burn resistance. On the other hand, although direct quenching is a well-known fact in the field of steel pipe manufacturing, it has not been put into practical use for steel pipes with low hardenability such as low carbon steel.

それというのは、継目無鋼管の場合には厚板に比べてl
oo’c程度も高い温度にビレットが加熱され、Bの効
果を有効に利用できないことに原因があった0 この発明は、成分の適正比により、低炭素継目無鋼管に
おいても重接焼入れによる製造を可能とし、経済的およ
び高強度化の効果を充分に発揮させることを実現したも
のであり、従って直接焼入れを行なうことがこの発明に
おいて前提である。
That is, in the case of seamless steel pipes, compared to thick plates,
The cause was that the billet was heated to a temperature as high as oo'c, making it impossible to effectively utilize the effect of B. This invention enables manufacturing of low-carbon seamless steel pipes by double quenching by using an appropriate ratio of components. This invention makes it possible to fully exhibit the economical and high-strength effects.Therefore, direct quenching is a prerequisite for this invention.

直接焼入れにおいては、焼入温度が重要である。In direct quenching, the quenching temperature is important.

その温度を750℃以上と限定したのは、750°Cよ
り低い温度では、焼入れ後の組織中にかなりの量のフェ
ライトが生成している場合があり、そのような条件では
強度も低いからである。
The temperature was limited to 750°C or higher because at temperatures lower than 750°C, a considerable amount of ferrite may be formed in the structure after quenching, and the strength is low under such conditions. be.

焼入れは、本来Ar8変態点以上から行われるべきであ
り、Ar8の温度は成分によってそれぞれめられるべき
であるが、直接焼入れ工程に対応したAr8点をめるこ
とは技術的にも困難である。
Hardening should originally be performed from the Ar8 transformation point or above, and the temperature of Ar8 should be determined depending on the components, but it is technically difficult to set the Ar8 point corresponding to the direct hardening process.

この発明に含まれる最も焼入性の低い成分系においても
、750℃以上の温度から直接焼入れを行えば、焼入後
の組織は、マルテンーサイト、ベントナイトなどにより
構成されることが認められたので焼入下限温度を750
℃とした。
Even in the component system with the lowest hardenability included in this invention, it was recognized that if direct quenching is performed at a temperature of 750°C or higher, the structure after quenching will be composed of martensite, bentonite, etc. Therefore, the minimum quenching temperature is set to 750.
℃.

継目無@管では、一般に熱間のl(シ終加−1ニにつき
、サイザーやストレッチレデューサ−による加工が行な
われることも多いところ、@H’Fの肉11)の薄いと
きには、これら最終加工時に温度が低下して、直接焼入
れに必要な750℃以上の温度を維持できない場合があ
り得る。
Seamless @ pipes are generally processed using a sizer or stretch reducer during hot processing (for each final addition, @H'F 11) is thin. Sometimes the temperature decreases and it may not be possible to maintain the temperature of 750° C. or higher required for direct quenching.

このような場合には最終加工前に再加熱炉に装入して管
全体の温度を高めることが必要で、通常の場合850℃
以上に加熱ずれば焼入前に750℃以上の温度を確保で
きるので、この場合に再加熱炉温度の下限は、850℃
とすることが実施態様として推奨される。
In such cases, it is necessary to raise the temperature of the entire tube by charging it into a reheating furnace before final processing, which is usually 850℃.
If the temperature is shifted to 750°C or higher before quenching, the lower limit of the reheating furnace temperature in this case is 850°C.
It is recommended as an implementation.

なお鋼管の焼入装置については、リングスプレー、浸漬
型、軸流型など種々の方式のものが考案され、いずれも
直接焼入時の焼入法として用いることができる0これら
のうぢでもm管の内・外周にて、鋼管の軸線方向に沿う
冷却水流を与える方式の焼入装置(特開昭57−859
30号、同114616号公報)では高い焼入能を有し
、低炭素高強度継目無鋼管の直接焼入れによく適合する
Various types of hardening equipment for steel pipes have been devised, including ring spray, immersion, and axial flow types, all of which can be used as a hardening method during direct hardening. A quenching device that provides a cooling water flow along the axial direction of the steel pipe at the inner and outer circumferences of the pipe (Japanese Patent Laid-Open No. 57-859)
No. 30, No. 114616) has a high hardenability and is well suited for direct hardening of low-carbon, high-strength seamless steel pipes.

(実施例) 次にこの発明の効果を実施例をあげて説明する。(Example) Next, the effects of this invention will be explained by giving examples.

表1は、この発明による鋼および比較鋼のfヒ学成分を
示し、表2は製造条件、得られた機械的特性の例である
Table 1 shows the chemical components of the steel according to the invention and the comparative steel, and Table 2 is an example of the manufacturing conditions and mechanical properties obtained.

表2において直接焼入れ一焼もどし後の破面遷移温度v
Trsは、比較@G、H,I、Jの場合、TixNの含
有範囲が適切でないため非常に劣るのに対し、供試鋼A
、B、0.D、E、FではvTrsが低く、極めて優れ
た靭性を示すことが理解されよう。
In Table 2, the fracture surface transition temperature v after direct quenching and tempering
Trs is very poor in the case of comparison @G, H, I, and J because the content range of TixN is not appropriate, whereas in the case of test steel A
, B, 0. It will be understood that D, E, and F have low vTrs and exhibit extremely excellent toughness.

また各供試鋼を用いても通常の再加熱焼入れを行なう場
合には、直接焼入法に比べて強度が若干低くなることが
わかる。
Furthermore, it can be seen that even if each sample steel is used, when normal reheating and quenching is performed, the strength is slightly lower than when using the direct quenching method.

なお/l615は、この発明による成分を有する鋼であ
っても焼入温度が740°Cと低下すると十分な強度お
よび靭性が得られないことを示す例であるO (発明の効果) これらの実゛施例に示されるように、この発明によれば
強度・靭性がともに優れた低炭素継目無鋼管を直接焼入
法により製造できることが自明であり、その経済的、技
術的効果は極めて大である0
Note that /1615 is an example showing that sufficient strength and toughness cannot be obtained when the quenching temperature is lowered to 740°C even with steel having the composition according to the present invention.゛As shown in the examples, it is obvious that according to the present invention, a low carbon seamless steel pipe with excellent strength and toughness can be manufactured by the direct quenching method, and its economic and technical effects are extremely large. Some 0

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は直接焼入れ後の硬さ分墳jを示し、A11−B
系では焼入性が不十分であ7るのに対し、Ti−B系で
は、十分に焼きの入ることを7Fすり゛ラフ、第2図は
ΔTにTi −3,42N ′IJiある;@ jE範
囲(−Q、QO8チ〜+Q、QO8嗟)にある場合にイ
氏い遷移温度、すなわち高靭mEカタ?トロすることを
示すグラフであるQ 第1図 巧if)イ叱面η゛うカメ巨M tmmt第2図
Figure 1 shows the hardness part j after direct quenching, A11-B
In the Ti-B system, the hardenability is insufficient at 7F, whereas in the Ti-B system, sufficient hardening is achieved with a 7F roughness. When the transition temperature is in the jE range (-Q, QO8chi~+Q, QO8tsu), that is, the high toughness mEkata? This is a graph showing that the turtle is falling.

Claims (1)

【特許請求の範囲】 L a:o。06〜0.20重量%、 Si:0.10〜0.50重量%、 Mn : 0.5〜2.0重量%、 Al:0,01〜0.1重量%1 B:0.0005〜0.0050重散チと、さらに Ni : Tr〜5重量%、 Or + Tr〜1重量%、 MO: Tr〜1重量%、 Ou:Tr 〜0.5重量%、 V : Tr〜0.1重量%、 Nb:Tr 〜o、i重量% および(a : Tr 〜0,010重量%を含み、P
:0.03重量%以下、 S:0.015重量%以下を含有しかつ、N:0.00
10〜0.0060重量%においてN含有量に応じて下
記の式に従うTiを含有し、残部がyeと不可避的不純
物より成る鋼を1200℃以上1800℃以下の温度に
加熱して熱間加工により、所定形状の鋼管に成形するこ
と、 この熱間加工後750℃以上の温度にてただちに焼入れ
すること、次いでAC□以下の湿度で焼戻すこと、 の結合を特徴とする直接焼入法による低炭素高強度継目
無鋼管の製造方法。 記 λ 熱間加工による所定形状の継目無鋼管に成形する過
程が、その最終加工に際して、850℃以上の温度に保
持された加熱炉に装入して被加工材を再加熱する工程を
含む、1記載の方法。
[Claims] L a:o. 06-0.20% by weight, Si: 0.10-0.50% by weight, Mn: 0.5-2.0% by weight, Al: 0.01-0.1% by weight1 B: 0.0005- 0.0050 polydisperse, and further Ni: Tr ~ 5% by weight, Or + Tr ~ 1% by weight, MO: Tr ~ 1% by weight, Ou: Tr ~ 0.5% by weight, V: Tr ~ 0.1 wt%, Nb:Tr ~o,i wt% and (a:Tr ~0,010 wt%, P
: 0.03% by weight or less, S: 0.015% by weight or less, and N: 0.00
A steel containing 10 to 0.0060% by weight of Ti according to the following formula according to the N content, and the remainder consisting of ye and unavoidable impurities is heated to a temperature of 1200°C or more and 1800°C or less and hot worked. , formed into a steel pipe of a predetermined shape, immediately quenched at a temperature of 750°C or higher after this hot working, and then tempered at a humidity of AC□ or lower. A method for manufacturing carbon high-strength seamless steel pipes. λ The process of forming a seamless steel pipe of a predetermined shape by hot working includes the step of reheating the workpiece by charging it into a heating furnace maintained at a temperature of 850 ° C or higher during the final processing, The method described in 1.
JP17315983A 1983-09-21 1983-09-21 Preparation of high strength low carbon seamless steel pipe by direct hardening method Granted JPS6067623A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17315983A JPS6067623A (en) 1983-09-21 1983-09-21 Preparation of high strength low carbon seamless steel pipe by direct hardening method
JP27523686A JPS62149814A (en) 1983-09-21 1986-11-20 Production of low-carbon high-strength seamless steel pipe by direct hardening method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17315983A JPS6067623A (en) 1983-09-21 1983-09-21 Preparation of high strength low carbon seamless steel pipe by direct hardening method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP27523686A Division JPS62149814A (en) 1983-09-21 1986-11-20 Production of low-carbon high-strength seamless steel pipe by direct hardening method

Publications (2)

Publication Number Publication Date
JPS6067623A true JPS6067623A (en) 1985-04-18
JPS6216250B2 JPS6216250B2 (en) 1987-04-11

Family

ID=15955189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17315983A Granted JPS6067623A (en) 1983-09-21 1983-09-21 Preparation of high strength low carbon seamless steel pipe by direct hardening method

Country Status (1)

Country Link
JP (1) JPS6067623A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151523A (en) * 1985-12-25 1987-07-06 Kawasaki Steel Corp Manufacture of refined seamless line pipe having low yield ratio
JPH0364415A (en) * 1989-07-31 1991-03-19 Nippon Steel Corp Production of high-toughness seamless low alloy steel tube
WO1996036742A1 (en) * 1995-05-15 1996-11-21 Sumitomo Metal Industries, Ltd. Process for producing high-strength seamless steel pipe having excellent sulfide stress cracking resistance
JP2006307245A (en) * 2005-04-26 2006-11-09 Jfe Steel Kk METHOD FOR HEAT-TREATING SEAMLESS STEEL PIPE MADE FROM Ti-ADDED LOW CARBON STEEL
CN103866185A (en) * 2014-03-14 2014-06-18 莱芜钢铁集团有限公司 Preparation method for manufacturing low-cost ultrafine grain transformation-induced plastic steel seamless tube online
WO2017050227A1 (en) * 2015-09-24 2017-03-30 宝山钢铁股份有限公司 Seamless steel tube with high strength and toughness and manufacturing method therefor
CN106555113A (en) * 2015-09-24 2017-04-05 宝山钢铁股份有限公司 A kind of high-strength tenacity seamless steel pipe and its manufacture method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5097517A (en) * 1973-12-28 1975-08-02
JPS54132421A (en) * 1978-04-05 1979-10-15 Nippon Steel Corp Manufacture of high toughness bainite high tensile steel plate with superior weldability
JPS5543051A (en) * 1978-09-22 1980-03-26 Chisso Corp Preparation of dialkyldichlorosilane
JPS5619373A (en) * 1979-07-25 1981-02-24 Mitsubishi Electric Corp Electromagnetic coupling device
JPS589918A (en) * 1981-07-11 1983-01-20 Kawasaki Steel Corp Production of sulfide stress corrosion cracking resistant steel material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5097517A (en) * 1973-12-28 1975-08-02
JPS54132421A (en) * 1978-04-05 1979-10-15 Nippon Steel Corp Manufacture of high toughness bainite high tensile steel plate with superior weldability
JPS5543051A (en) * 1978-09-22 1980-03-26 Chisso Corp Preparation of dialkyldichlorosilane
JPS5619373A (en) * 1979-07-25 1981-02-24 Mitsubishi Electric Corp Electromagnetic coupling device
JPS589918A (en) * 1981-07-11 1983-01-20 Kawasaki Steel Corp Production of sulfide stress corrosion cracking resistant steel material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151523A (en) * 1985-12-25 1987-07-06 Kawasaki Steel Corp Manufacture of refined seamless line pipe having low yield ratio
JPH0364415A (en) * 1989-07-31 1991-03-19 Nippon Steel Corp Production of high-toughness seamless low alloy steel tube
WO1996036742A1 (en) * 1995-05-15 1996-11-21 Sumitomo Metal Industries, Ltd. Process for producing high-strength seamless steel pipe having excellent sulfide stress cracking resistance
US5938865A (en) * 1995-05-15 1999-08-17 Sumitomo Metal Industries, Ltc. Process for producing high-strength seamless steel pipe having excellent sulfide stress cracking resistance
JP2006307245A (en) * 2005-04-26 2006-11-09 Jfe Steel Kk METHOD FOR HEAT-TREATING SEAMLESS STEEL PIPE MADE FROM Ti-ADDED LOW CARBON STEEL
CN103866185A (en) * 2014-03-14 2014-06-18 莱芜钢铁集团有限公司 Preparation method for manufacturing low-cost ultrafine grain transformation-induced plastic steel seamless tube online
WO2017050227A1 (en) * 2015-09-24 2017-03-30 宝山钢铁股份有限公司 Seamless steel tube with high strength and toughness and manufacturing method therefor
CN106555113A (en) * 2015-09-24 2017-04-05 宝山钢铁股份有限公司 A kind of high-strength tenacity seamless steel pipe and its manufacture method
US11015232B2 (en) 2015-09-24 2021-05-25 Baoshan Iron & Steel Co., Ltd. Seamless steel tube with high strength and toughness and manufacturing method therefor

Also Published As

Publication number Publication date
JPS6216250B2 (en) 1987-04-11

Similar Documents

Publication Publication Date Title
WO2006100891A1 (en) Steel for oil well pipe having excellent sulfide stress cracking resistance and method for manufacturing seamless steel pipe for oil well
JPH0741856A (en) Production of high strength steel pipe excellent in sulfide stress corrosion cracking resistance
JPS59211528A (en) Production of non-tempered steel having low yield ratio
JPH03229839A (en) Manufacture of duplex stainless steel and its steel material
JPH0421718A (en) Production of high strength steel excellent in sulfide stress cracking resistance
JPS6067623A (en) Preparation of high strength low carbon seamless steel pipe by direct hardening method
JPS61165207A (en) Manufacture of unrefined steel plate excellent in sour-resistant property
JPH02250941A (en) Low carbon chromium-molybdenum steel and its manufacture
JPH0250916A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JPS6059018A (en) Production of cu-added steel having excellent weldability and low-temperature toughness
JPS62149814A (en) Production of low-carbon high-strength seamless steel pipe by direct hardening method
JPH0718326A (en) Production of highly strong and tough rail by on-line heat treatment
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
JP2002348610A (en) Method for manufacturing martensitic stainless steel tube
CN115433870B (en) Low-cost quenched and tempered steel for continuous oil pipe, hot rolled steel strip, steel pipe and manufacturing method thereof
JPS62164823A (en) Production of reinforcing steel bar having excellent low temperature toughness
JPS6028885B2 (en) UOE steel pipe heat treatment method that yields high toughness weld metal
JP3804087B2 (en) Manufacturing method of hot-bending steel pipe
JP4010017B2 (en) Method for producing martensitic stainless steel pipe with excellent SSC resistance
JPH04210453A (en) Martensitic stainless steel pipe excellent in low temperature toughness and its manufacture
JPH0250915A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JPS6315983B2 (en)
JPS59150019A (en) Production of seamless steel pipe having high toughness
JPH01129953A (en) High strength non-heat treated steel and its manufacture
JPS63241117A (en) Manufacture of seamless stainless steel tube