JPS6315983B2 - - Google Patents

Info

Publication number
JPS6315983B2
JPS6315983B2 JP56156093A JP15609381A JPS6315983B2 JP S6315983 B2 JPS6315983 B2 JP S6315983B2 JP 56156093 A JP56156093 A JP 56156093A JP 15609381 A JP15609381 A JP 15609381A JP S6315983 B2 JPS6315983 B2 JP S6315983B2
Authority
JP
Japan
Prior art keywords
steel
steel pipes
strength
corrosion cracking
stress corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56156093A
Other languages
Japanese (ja)
Other versions
JPS5858252A (en
Inventor
Sadao Hasuno
Keiichiro Takitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP15609381A priority Critical patent/JPS5858252A/en
Publication of JPS5858252A publication Critical patent/JPS5858252A/en
Publication of JPS6315983B2 publication Critical patent/JPS6315983B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、油井向け鋼管用鋼に関するものであ
り、特に本発明は熱処理を施さないか、もしくは
焼きならしのような容易な熱処理を施すだけで使
用することのできる高強度を有しかつ耐硫化物応
力腐食割れ性の良好な油井向け鋼管用鋼に関する
ものである。 (従来の技術) 近年の油井あるいはガス井の深層化とともに高
強度油井用鋼管に対する需要はますます増加の傾
向を示している。こうした高強度油井用鋼管とし
ては焼入れ、焼もどしされた鋼管が最も優れた材
質を有することは広く知られている。しかし、熱
処理を施すためには焼入れ加熱炉、焼入れ装置、
焼もどし均熱炉などの多くの設備を必要とする
上、高度な熱処理技術をも要求されるため、こう
した高級油井用鋼管は限られた工場でしか製造す
ることができない。 一方、熱処理を施さない鋼管あるいは焼ならし
のような容易な熱処理だけ施される鋼管は上述の
焼入れ、焼もどしで製造される鋼管にくらべ品質
面では極めて劣つているが、反面こうした鋼管は
多量にかつ迅速に供給出来るメリツトを有し現在
なお広く使用されている。 (発明が解決しようとする問題点) 本発明は、熱処理を施さないか、もしくは焼な
らしのような、いわゆる簡単な熱処理を施すだけ
で、高強度を有しかつ近年とくに油井用鋼管の使
用に際し問題とされる耐硫化物応力腐食割れ性の
良好な油井向け鋼管用鋼を提供出来ないという従
来技術の抱えている問題点を克服することを目的
とするものである。 (問題点を解決するための手段) 上掲の目的は、次のような成分組成の鋼によつ
て達成できる。すなわち、本発明は、 C:0.25超〜0.5%,Si:0.1〜0.5%,Mn:0.5
〜2%,V:0.10超〜0.5%,Al:0.01〜0.1%,
N:0.005〜0.02%を含み、さらにNb:0.1%以
下、Ti:0.1%以下、Zr:0.1%以下のなかから選
ばれるいずれか1種又は2種以上を含有し、残部
Feおよび不可避的不純物からなる高強度を有し
かつ耐硫化物応力腐食割れ性の良好な油井向け鋼
管用鋼、 である。 (作 用) 次に本発明を詳細に説明する。 さて、油井向け高強度鋼管用鋼に属するAPI
5A N−80についてみると、この鋼管は造管のま
まか、造管後焼ならしを施すか、造管後焼ならし
てさらに必要により焼もどしを施すかあるいは造
管後焼入れ、焼もどしを施すかなど種々の処理が
施されて製造されている。このように異なつた処
理を施して製造された鋼は降伏応力のみは同等で
あるが、材質面からみるとそれぞれ全く異なつて
いる。 一般に、成分組成あるいは金属組織に差がある
と、低温靭性、耐硫化物応力腐食割れ性などの特
性が異なることは周知であるが、さらに造管のま
まのものあるいは焼ならし(必要によりさらに焼
もどしを加える)処理が施されたものは、焼入
れ、焼もどしが施されたものに比べ上記特性は非
常に劣ることが知られている。特に、造管のまま
の継目無し鋼管は、強度を確保するためC,Mn
を多く含み、かつオーステナイト粒が粗大でフエ
ライト・パーライト組織も粗く、ベーナイト組織
の混入が大であつて、材質特性は最も劣つてい
る。この現象は電縫溶接鋼管にあつても全く同じ
である。 上記の規格(API)には低温靭性あるいは耐硫
化物応力腐食割れ性に関する規定はないが、油
(ガス)井の探査・掘削の活発化と酸性油井等の
開発などの情勢から油井用鋼管の高品質化の傾向
は今後更に増大すると考えられる。 そこで本発明者らは、造管のままあるいは焼な
らし(必要によりさらに焼もどしを加える)を施
して製造されている低品質の高強度油井用鋼管に
ついても上記の情勢を加味し、低温靭性と耐硫化
物応力腐食割れ性を向上した高強度を有しつつ、
熱処理を必要としない、もしくは焼ならしのよう
な比較的容易に実施出来る熱処理のみで製造する
ことのできる油井用鋼管の研究開発を行つた。 その結果、VとNを共に含有させることによ
り、強度を従来の水準に確保するとともに低温靭
性、耐硫化物応力腐食割れ性を著しく改善するこ
とができることを見い出し、焼入れ、焼もどしを
必要としない高品質高強度油井用鋼管の開発に成
功した。 次に本発明において成分組成を限定する理由を
説明する。 Cは強度上昇に著しい効果を有する元素であ
り、0.2%より少ないと強度が向上せず、一方0.5
%より多いと靭性が劣化するので、Cは0.25超〜
0.5%の範囲内にする必要がある。 Siは脱酸元素であり、0.1%より少ないと脱酸
効果が少なく、一方0.5%より多いと靭性が劣化
するので、Siは0.1〜0.5%の範囲内にする必要が
ある。 Mnは強度を上昇させる元素であり、0.5%より
少ないと強度が上昇せず、一方2%より多いと耐
硫化物応力腐食割れ性が低下するのでMnは0.5〜
2%の範囲内にする必要がある。 VとNはオーステナイト中でVNを形成しオー
ステナイト粒の成長を抑え、かつフエライト、パ
ーライト変態を短時間側に移動させるためオース
テナイト域の温度から冷却したとき、微細なフエ
ライト+パーライト組織を得るのに効果がある。
またVとNはフエライト中で容易に微細な析出物
を形成するため焼もどしを施すことなく析出強化
に寄与する。V,Nがそれぞれ0.1%超、0.005%
より少ないと析出強化の効果が少なく、一方、
V,Nがそれぞれ0.5%,0.02%より多いとかえ
つて靭性を低下させるので、Vは0.10超〜0.5%、
Nは0.005〜0.02%の範囲内にそれぞれする必要
がある。 Nb,Ti,Zrは強固な窒化物を形成しオーステ
ナイトの微細化に寄与するため高温の焼ならしを
行なう場合、フエライト・パーライト変態をさら
に安定させることができるために必要により添加
されるが何れも0.1%より多いと靭性を低下させ
るので、0.1%以下にする必要がある。 (実施例) 次に本発明を実施例について比較例と比較して
説明する。 (実施例 1)
(Field of Industrial Application) The present invention relates to steel for steel pipes for oil wells, and in particular, the present invention can be used without heat treatment or with simple heat treatment such as normalizing. The present invention relates to a steel for oil well pipes that has high strength and good resistance to sulfide stress corrosion cracking. (Prior Art) With the deepening of oil and gas wells in recent years, the demand for high-strength steel pipes for oil wells is showing an increasing trend. It is widely known that quenched and tempered steel pipes have the best quality as high-strength oil well steel pipes. However, in order to perform heat treatment, a quenching heating furnace, quenching equipment,
These high-grade steel pipes for oil wells can only be manufactured in a limited number of factories because they require a lot of equipment, such as a tempering and soaking furnace, and require advanced heat treatment technology. On the other hand, steel pipes that are not heat-treated or that are only subjected to simple heat treatments such as normalizing are extremely inferior in quality to steel pipes that are manufactured through quenching and tempering as described above, but on the other hand, such steel pipes are produced in large quantities. It has the advantage of being able to be supplied quickly and is still widely used today. (Problems to be Solved by the Invention) The present invention provides high strength with no heat treatment or only with so-called simple heat treatment such as normalizing. The purpose of this invention is to overcome the problem of the conventional technology that it is not possible to provide steel for oil well pipes with good resistance to sulfide stress corrosion cracking. (Means for solving the problem) The above objective can be achieved by using steel having the following composition. That is, in the present invention, C: more than 0.25 to 0.5%, Si: 0.1 to 0.5%, Mn: 0.5
~2%, V: over 0.10~0.5%, Al: 0.01~0.1%,
Contains N: 0.005 to 0.02%, and further contains one or more selected from Nb: 0.1% or less, Ti: 0.1% or less, Zr: 0.1% or less, and the remainder
A steel for oil well pipes that has high strength and good resistance to sulfide stress corrosion cracking, consisting of Fe and unavoidable impurities. (Function) Next, the present invention will be explained in detail. Now, API, which belongs to steel for high-strength steel pipes for oil wells.
Looking at 5A N-80, this steel pipe is either made as is, normalized after pipe production, normalized after pipe production and then tempered if necessary, or quenched and tempered after pipe production. They are manufactured using various treatments such as Although steels manufactured using these different treatments have the same yield stress, they are completely different from each other in terms of material quality. Generally, it is well known that differences in composition or metal structure lead to differences in properties such as low-temperature toughness and sulfide stress corrosion cracking resistance. It is known that the above-mentioned properties of materials that have been subjected to quenching and tempering are much inferior to those that have been subjected to quenching and tempering. In particular, in order to ensure strength, seamless steel pipes that have been manufactured as they are are made of C, Mn,
It has coarse austenite grains, a coarse ferrite/pearlite structure, and a large amount of bainite structure, and has the poorest material properties. This phenomenon is exactly the same for electric resistance welded steel pipes. Although the above standards (API) do not have regulations regarding low-temperature toughness or sulfide stress corrosion cracking resistance, steel pipes for oil wells are being It is thought that the trend towards higher quality will further increase in the future. Therefore, the present inventors took into account the above situation and determined that low-temperature toughness of low-quality high-strength oil well steel pipes manufactured as they are or after normalization (further tempering is added if necessary) is improved. While having high strength with improved sulfide stress corrosion cracking resistance,
We conducted research and development on steel pipes for oil wells that do not require heat treatment or can be manufactured using only relatively easy heat treatments such as normalizing. As a result, it was discovered that by containing both V and N, it was possible to maintain strength at the conventional level and significantly improve low-temperature toughness and sulfide stress corrosion cracking resistance, eliminating the need for quenching and tempering. Successfully developed high-quality, high-strength steel pipes for oil wells. Next, the reason for limiting the component composition in the present invention will be explained. C is an element that has a remarkable effect on increasing strength; if it is less than 0.2%, the strength will not improve;
%, the toughness deteriorates, so C exceeds 0.25~
Must be within 0.5%. Si is a deoxidizing element, and if it is less than 0.1%, the deoxidizing effect will be small, while if it is more than 0.5%, the toughness will deteriorate, so Si needs to be in the range of 0.1 to 0.5%. Mn is an element that increases strength, and if it is less than 0.5%, the strength will not increase, while if it is more than 2%, the sulfide stress corrosion cracking resistance will decrease, so Mn should be 0.5~
It is necessary to keep it within 2%. V and N form VN in austenite, suppress the growth of austenite grains, and move the ferrite/pearlite transformation to the short time side, so when cooled from the austenite region temperature, a fine ferrite + pearlite structure is obtained. effective.
Further, since V and N easily form fine precipitates in ferrite, they contribute to precipitation strengthening without tempering. V and N are over 0.1% and 0.005% respectively
If it is less, the effect of precipitation strengthening will be small; on the other hand,
If V and N are more than 0.5% and 0.02%, respectively, the toughness will be reduced, so V is more than 0.10 to 0.5%,
N must be within the range of 0.005 to 0.02%. Nb, Ti, and Zr form strong nitrides and contribute to the refinement of austenite, so they are added as necessary to further stabilize the ferrite-pearlite transformation when normalizing at high temperatures. If it exceeds 0.1%, the toughness will decrease, so it is necessary to keep it below 0.1%. (Example) Next, the present invention will be explained by comparing examples with comparative examples. (Example 1)

【表】 第1表に化学成分を示すAPI 5A N−80に相
当する従来の高強度油井用鋼管と本発明鋼管につ
いて継目無圧延のままと圧延後焼ならし、もしく
は焼ならし+焼もどし後の低温靭性と耐硫化物応
力腐食割れ性をその他の特性と共に第2表に示
す。 供試鋼管材は外径139.7mm、肉厚7.72mmを用い
た。 低温靭性としては2mmVノツチL方向ハーフサ
イズシヤルピー試験による脆性−延性破面遷移温
度(vTrs)と0℃における吸収エネルギー
(vEo)で示した。
[Table] Table 1 shows the chemical composition of conventional high-strength oil well steel pipes equivalent to API 5A N-80 and steel pipes of the present invention, whether seamlessly rolled, normalized after rolling, or normalized and tempered. The subsequent low temperature toughness and sulfide stress corrosion cracking resistance are shown in Table 2 along with other properties. The steel pipe material used was an outer diameter of 139.7 mm and a wall thickness of 7.72 mm. Low-temperature toughness is shown by the brittle-ductile fracture transition temperature (vTrs) and absorbed energy (vEo) at 0°C by a 2 mm V-notch L-direction half-size shear pie test.

【表】【table】

【表】 ***) 造管後焼ならし+焼もどし
本発明鋼はVとN添加のためオーステナイトが
細粒化され、同時にフエライト・パーライト変態
が促進されるためいずれの熱処理でも微細なフエ
ライト・パーライト組織を呈し、従来鋼に見られ
る粗大なベイナイトは観察されなかつた。そのた
め本発明鋼ではいずれの熱処理状態であつても従
来鋼より優れた低温靭性を得られている。 耐硫化物応力腐食割れ性試験(この試験を以下
SSCC試験と称す)としては、上記供試鋼管材よ
り2.54mmφ丸棒試験片を製作し80Ksi(56.2Kg/
mm2)の30%から80%の荷重をかけたままPH3〜4
の0.5%酢酸と5%塩化ナトリウムを含有する飽
和H2S水溶液中に30日間浸漬し破断しない最大荷
重をもつて臨界応力(σth)とした。 本発明鋼は造管のまま(AR)、焼ならし(N)
および焼ならし+焼もどし(NT)のいずれの状
態にあつても従来鋼にくらべσthが高く耐硫化物
応力腐食割れ性が良好であることが判る。 本発明鋼の有する良好な低温靭性、耐硫化物応
力腐食割れ性はいずれも組織の微細化と微細なバ
ナジウム炭窒化物の析出によるものと考えられ、
Moが過剰に添加されたNo.8の従来鋼ではベイナ
イト組織が混入し、これらの特性が著しく低下し
ている。 実施例 2 第3表に成分組成を示す従来鋼と本発明鋼をも
つて外径73.0mm、肉厚5.51mmの電縫溶接鋼管を製
作した。これらの鋼管の引張特性、低温靭性、耐
硫化物応力腐食割れ性の結果を第4表に示す。
[Table] ***) Normalizing + tempering after pipe making In the steel of the present invention, the austenite becomes fine grained due to the addition of V and N, and at the same time, the ferrite-pearlite transformation is promoted, so any heat treatment results in fine ferrite.・It exhibits a pearlite structure, and the coarse bainite found in conventional steels was not observed. Therefore, the steel of the present invention has better low-temperature toughness than the conventional steel in any heat treatment state. Sulfide stress corrosion cracking resistance test (this test is referred to below)
For the SSCC test), a 2.54mmφ round bar test piece was made from the above sample steel pipe material and 80Ksi (56.2Kg/
mm 2 ) while applying a load of 30% to 80%.
The critical stress (σth) was determined by immersing the specimen in a saturated H 2 S aqueous solution containing 0.5% acetic acid and 5% sodium chloride for 30 days without breaking the specimen. The steel of the present invention is as pipe-made (AR) and normalized (N).
It can be seen that in both the normalized and tempered (NT) states, the σth is higher than that of conventional steel, and the sulfide stress corrosion cracking resistance is good. The good low-temperature toughness and sulfide stress corrosion cracking resistance of the steel of the present invention are both thought to be due to the refinement of the structure and the precipitation of fine vanadium carbonitrides.
In conventional steel No. 8 in which Mo was added excessively, bainite structure was mixed in, and these properties were significantly deteriorated. Example 2 An electric resistance welded steel pipe with an outer diameter of 73.0 mm and a wall thickness of 5.51 mm was manufactured using conventional steel and steel of the present invention whose compositions are shown in Table 3. Table 4 shows the results of the tensile properties, low temperature toughness, and sulfide stress corrosion cracking resistance of these steel pipes.

【表】【table】

【表】 上記第4表に示す結果から、冷間成形で造管を
行なう電縫溶接鋼管ではAPI 5A N−80のよう
な高強度鋼管の造管は一般に困難であるが、本発
明鋼では電縫溶接も従来鋼にくらべ容易に行なう
ことが出来る上、低温靭性、耐硫化物応力腐食割
れ性とも非常に優れていることが判り、また本発
明鋼は造管方法の異なる電縫溶接鋼管の場合でも
継目無鋼管の場合と同様に有効に使用することが
できることが判る。なお上記試験はいずれもシー
ムから180゜の位置について実施したものである。 (発明の効果) 従来の油井向け鋼管用鋼は、熱処理を施さない
かあるいは焼ならし等の比較的容易な熱処理のみ
を施して製造した場合、焼入れ、焼もどし処理を
施して製造される高強度油井向け鋼管用鋼に比べ
て低温靭性、耐硫化物応力腐食割れ性ともに悪
く、油井に使用された場合に破損事故を起こすこ
とも少なくなかつた。 これに対し、上記実施例からも判るように本発
明によれば、少なくとも焼ならしの如き比較的容
易な熱処理を施すだけでも高強度油井用鋼管の材
質特性を改良することができることから、安価で
品質の良い高強度油井用鋼管を大量に供給するこ
とができる。
[Table] From the results shown in Table 4 above, it is generally difficult to produce high-strength steel pipes such as API 5A N-80 with electric resistance welded steel pipes that are produced by cold forming, but with the steel of the present invention. It was found that electric resistance welding can be performed more easily than conventional steel, and it also has excellent low-temperature toughness and sulfide stress corrosion cracking resistance. It can be seen that it can be used effectively in the same way as in the case of seamless steel pipes. The above tests were all conducted at a position 180° from the seam. (Effects of the invention) Conventional steel for oil well pipes has been manufactured without heat treatment or with only relatively easy heat treatment such as normalizing, whereas with conventional steel for steel pipes for oil wells, high Compared to steel for steel pipes for oil wells, it has poor low-temperature toughness and resistance to sulfide stress corrosion cracking, and often causes breakage when used in oil wells. On the other hand, as can be seen from the above embodiments, according to the present invention, the material properties of high-strength oil well steel pipes can be improved by at least a relatively easy heat treatment such as normalizing, which makes it possible to improve the material properties of high-strength oil well steel pipes. We can supply large quantities of high-quality, high-strength steel pipes for oil wells.

Claims (1)

【特許請求の範囲】[Claims] 1 C:0.25超〜0.5%,Si:0.1〜0.5%,Mn:
0.5〜2%,V:0.10超〜0.5%,Al:0.01〜0.1%,
N:0.005〜0.02%を含み、さらにNb:0.1%以
下、Ti:0.1%以下、Zr:0.1%以下のなかから選
ばれるいずれか1種又は2種以上を含有し、残部
Feおよび不可避的不純物からなる高強度を有し
かつ耐硫化物応力腐食割れ性の良好な油井向け鋼
管用鋼。
1 C: more than 0.25 to 0.5%, Si: 0.1 to 0.5%, Mn:
0.5~2%, V: over 0.10~0.5%, Al: 0.01~0.1%,
Contains N: 0.005 to 0.02%, and further contains one or more selected from Nb: 0.1% or less, Ti: 0.1% or less, Zr: 0.1% or less, and the remainder
Steel for oil well pipes with high strength and good resistance to sulfide stress corrosion cracking, consisting of Fe and unavoidable impurities.
JP15609381A 1981-10-02 1981-10-02 Steel for steel pipe for oil well Granted JPS5858252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15609381A JPS5858252A (en) 1981-10-02 1981-10-02 Steel for steel pipe for oil well

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15609381A JPS5858252A (en) 1981-10-02 1981-10-02 Steel for steel pipe for oil well

Publications (2)

Publication Number Publication Date
JPS5858252A JPS5858252A (en) 1983-04-06
JPS6315983B2 true JPS6315983B2 (en) 1988-04-07

Family

ID=15620151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15609381A Granted JPS5858252A (en) 1981-10-02 1981-10-02 Steel for steel pipe for oil well

Country Status (1)

Country Link
JP (1) JPS5858252A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230849A (en) * 1985-08-01 1987-02-09 Nippon Kokan Kk <Nkk> Directly quenched and tempered steel having superior sscc resistance characteristic
US5869195A (en) * 1997-01-03 1999-02-09 Exxon Research And Engineering Company Corrosion resistant carbon steel
CN106011662A (en) * 2016-07-11 2016-10-12 吴舒晨 Corrosion-resistant molybdenum-rhodium alloy steel and application of corrosion-resistant molybdenum-rhodium alloy steel in drilling rod

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831117A (en) * 1971-08-30 1973-04-24
JPS5179627A (en) * 1974-03-04 1976-07-12 Towmotor Corp KOKYODOKO
JPS54157718A (en) * 1978-06-02 1979-12-12 Kobe Steel Ltd Steel for line pipe excellent in hydrogen- induced embrittlement resistance
JPS5573848A (en) * 1978-11-22 1980-06-03 Kawasaki Steel Corp High strength steel for welded structure with superior sulfide stress corrosion cracking resistance
JPS5638448A (en) * 1979-09-03 1981-04-13 Nippon Steel Corp Nonrefined tough steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831117A (en) * 1971-08-30 1973-04-24
JPS5179627A (en) * 1974-03-04 1976-07-12 Towmotor Corp KOKYODOKO
JPS54157718A (en) * 1978-06-02 1979-12-12 Kobe Steel Ltd Steel for line pipe excellent in hydrogen- induced embrittlement resistance
JPS5573848A (en) * 1978-11-22 1980-06-03 Kawasaki Steel Corp High strength steel for welded structure with superior sulfide stress corrosion cracking resistance
JPS5638448A (en) * 1979-09-03 1981-04-13 Nippon Steel Corp Nonrefined tough steel

Also Published As

Publication number Publication date
JPS5858252A (en) 1983-04-06

Similar Documents

Publication Publication Date Title
JP6479527B2 (en) Bolt wire with excellent pickling property and delayed fracture resistance after quenching and tempering, and bolt
JPH05105957A (en) Production of heat resistant high strength bolt
JP2000219914A (en) Seamless steel pipe having fine grain structure and little unevenness of strength
JPS5914535B2 (en) Non-heat treated high tensile strength steel line pipe thick plate with unstable ductility and good fracture resistance
JPS6315983B2 (en)
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
JPS6067623A (en) Preparation of high strength low carbon seamless steel pipe by direct hardening method
JPS58120719A (en) Manufacture of case hardening b steel
JPS5920423A (en) Production of 80kgf/mm2 class seamless steel pipe having excellent low temperature toughness
JPH03207814A (en) Manufacture of low yield ratio high tensile strength steel plate
JPH0387317A (en) Production of steel tube or square steel tube having low yield ratio
JPS594487B2 (en) Manufacturing method for strong steel with excellent SR embrittlement resistance
JPH0121849B2 (en)
JPS6286122A (en) Production of structural steel having high strength and high weldability
JPS62149814A (en) Production of low-carbon high-strength seamless steel pipe by direct hardening method
KR890002612B1 (en) Process for manufacturing steel of structure having a good tungsten
JPH0116283B2 (en)
JPS6230849A (en) Directly quenched and tempered steel having superior sscc resistance characteristic
JPS582244B2 (en) Method for manufacturing thick-walled non-tempered high-strength steel with excellent toughness
JPS63241117A (en) Manufacture of seamless stainless steel tube
JPS63293110A (en) Production of thick steel plate having high strength, high toughness and low yield ratio
JPH01162724A (en) Manufacture of high strength cr-mo steel pipe having superior corrosion resistance and weldability
JPS61213344A (en) High toughness seamless steel pipe
JPS6240313A (en) Production of extra-thick tempered steel material
JPS63195222A (en) Production of zinc hot dipped steel sheet for deep drawing having excellent longitudinal crack resistance