JPS6328964B2 - - Google Patents

Info

Publication number
JPS6328964B2
JPS6328964B2 JP16898483A JP16898483A JPS6328964B2 JP S6328964 B2 JPS6328964 B2 JP S6328964B2 JP 16898483 A JP16898483 A JP 16898483A JP 16898483 A JP16898483 A JP 16898483A JP S6328964 B2 JPS6328964 B2 JP S6328964B2
Authority
JP
Japan
Prior art keywords
transformation point
steel sheet
temperature range
cooled
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16898483A
Other languages
Japanese (ja)
Other versions
JPS6059023A (en
Inventor
Osamu Furukimi
Yoshifumi Nakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16898483A priority Critical patent/JPS6059023A/en
Publication of JPS6059023A publication Critical patent/JPS6059023A/en
Publication of JPS6328964B2 publication Critical patent/JPS6328964B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は低温靭性の優れた低降伏比ニツケル鋼
板の製造方法に係り、特にニツケル鋼板の2回焼
ならし焼もどし処理方法の改良に関する。 従来、9%Niを初めとするNi鋼板は液化天然
ガス関連用材料として低温における高靭性が要求
されており、その熱処理には焼入れ焼もどし処理
および2回焼ならし焼もどし処理(NNT処理)
が用いられている。焼入れ焼もどし処理鋼板は
P、Sなどの低減により非常に高靭性な鋼板を製
造できる。しかし2回焼ならし焼もどし処理ニツ
ケル鋼板は液化天然ガス貯蔵タンクの鏡板や外側
タンクのアニユラー部分に用いられることが多い
が、これは降伏比(YR)が低く安全設計上有利
であることなどに起因している。 従つて2回焼ならし焼もどしNi鋼板では単に
高靭性であるばかりでなく、降伏比の低いことも
要求されていたが、従来降伏比を低くすると十分
な高靭性が得られないという問題点があつた。 本発明の目的は上記従来技術の問題点を解決
し、低温靭性の優れた低降伏比ニツケル鋼板を得
ることができる2回焼ならし焼もどし処理方法を
提供するにある。 本発明者らはニツケル鋼板の2回焼ならし焼も
どし処理で製造されるニツケル鋼板の改善を鋭意
研究した結果、2回の焼ならし処理のうち第2次
の焼ならし処理における冷却速度を制御すること
により降伏比を上昇させることなく高靭性鋼板が
得られることを見いだした。本発明はこの知見に
基づいてなされたものである。 本発明の上記目的は下記要旨の2発明によつて
達成される。第1発明の要旨とするところは次の
とおりである。すなわち、重量比で C:0.01〜0.18%、Si:0.02〜0.80% Mn:0.40〜2.0%、Ni:6〜13.5% Al:0.010〜0.10%、N:0.010%以下 P:0.020%以下、S:0.010%以下 を含有し残部はFeおよび不可避的不純物より成
るニツケル鋼を通常の熱間圧延で所定の板厚に圧
延する工程と、前記熱延鋼板をAc3変態点〜Ac3
変態点+150℃の温度範囲に加熱後室温まで空冷
する1次焼ならし処理工程と、前記1次焼ならし
処理鋼板をAc3変態点〜Ac3変態点+150℃の温度
範囲に加熱後450〜550℃の温度範囲まで空冷した
後室温まで25℃/min以上の冷却速度で冷却する
2次焼ならし処理工程と、前記2次焼ならし処理
鋼板をAc1変態点〜Ac1変態点−150℃の温度範囲
に加熱後室温まで空冷する焼もどし処理工程と、
を有して成ることを特徴とする低温靭性の優れた
低降伏比ニツケル鋼板の製造方法である。 第2発明の要旨とするところは、第1発明と同
一の基本成分のほかに、更にMo:0.05〜0.30%
を含有し残部はFeおよび不可避的不純物より成
るニツケル鋼を第1発明と同一の製造工程によつ
て製造する低温靭性の優れた低降伏比ニツケル鋼
板の製造方法である。 本発明におけるニツケル鋼の成分限定理由につ
いて説明する。 C: Cは十分な高張力を得るために0.01%以上の含
有が必要であるが、0.18%を越えると靭性を損う
ので0.01〜0.18%の範囲とした。 Si: Siは製鋼における脱酸のため0.02%以上必要で
あるが、0.80%を越えると靭性および溶接性を害
するので0.02〜0.80%の範囲とした。 Mn: Mnは十分な高張力と靭性を確保するため有効
であり、0.40%未満ではその効果が不十分なので
0.40%を下限とし、2.0%を越えると溶接性を損
うので上限を2.0%とした。 Ni: Niは本発明のニツケル鋼には必須の元素で、
低温において高靭性を与える効果を有するが、6
%未満ではその効果がなく、13.5%を越してもそ
の効果が飽和し不経済なので6〜13.5%の範囲に
限定した。 Al: Alは脱酸上必要な元素で、0.010%未満ではそ
の効果がなく、0.10%を越えると清浄性を損うの
で、0.010〜0.10%の範囲とした。 N、P、S: N、P、Sはいずれも多すぎると母材および溶
接部の靭性を害するので、それぞれ0.010%、
0.020%、0.010%以下に限定した。 上記C、Si、Mn、Ni、Al、N、P、Sの各限
定量をもつて本発明によるニツケル鋼の基本成分
とするが、更にMo0.05〜0.30%を同時に含有す
るニツケル鋼においても本発明の目的をより有効
に達することができる。Moは強度、靭性を改善
するのに有効であるが、0.05%未満ではその効果
が少ないので0.05%を下限とし、また、0.30%を
越すとかえつて靭性を損うので上限を0.30%と、
0.05〜0.30%の範囲に限定した。 次に上記の限定成分を有するニツケル鋼の熱処
理条件について説明する。上記限定成分のニツケ
ル鋼を通常の熱間圧延工程で所定の板厚にした
後、Ac3〜Ac3+150℃の温度範囲に加熱後室温ま
で空冷する1次焼ならし処理を行うのであるが、
この加熱温度がAc3未満では完全なオーステナイ
ト組織にならず、またAc3+150℃を越えるとオ
ーステナイトが粗大化し靭性を損うので、1次焼
ならし処理の温度をAc3〜Ac3+150℃の範囲に限
定した。 次に2次焼ならし処理を行うのであるが、1次
焼ならし処理と同様の理由でAc3〜Ac3+150℃の
温度範囲に加熱し、本発明のもつとも特徴とする
450〜550℃の温度範囲まで空冷し、ついで室温ま
で25℃/min以上の冷却速度で加速冷却を行う。
加速冷却開始温度が550℃を越える温度から行う
と組織がマルテンサイトとなり、高靭性は得られ
るが降伏比が高くなり当初の目的を達成できな
い。また450℃未満の温度から加速冷却を行つて
も高靭性が得られない。これらの理由から2次焼
ならし処理における加速冷却の開始温度を450〜
550℃の範囲に限定した。次に加速冷却の冷却速
度について本発明者らが行つた基礎実験について
説明する。第1表に示す化学組成と変態点を有す
るA、B2種の供試鋼を通常の工程で溶製し熱間
圧延により板厚14mmの9%Ni鋼板とした。この
熱延鋼板を890℃で40分間加熱し空冷する1次焼
ならし処理を行つた後、
The present invention relates to a method for producing a low yield ratio nickel steel sheet with excellent low-temperature toughness, and more particularly to an improvement in a double normalizing and tempering treatment method for a nickel steel sheet. Conventionally, Ni steel sheets including 9% Ni have been required to have high toughness at low temperatures as materials for liquefied natural gas, and their heat treatments include quenching and tempering treatment and double normalizing and tempering treatment (NNT treatment).
is used. Quenched and tempered steel sheets can produce steel sheets with extremely high toughness due to the reduction of P, S, etc. However, twice-normalized and tempered nickel steel sheets are often used for the head plates of liquefied natural gas storage tanks and the annular parts of outer tanks, but this is because it has a low yield ratio (YR) and is advantageous in terms of safety design. This is due to Therefore, twice-normalized and tempered Ni steel sheets are required not only to have high toughness but also to have a low yield ratio, but the conventional problem is that if the yield ratio is low, sufficient high toughness cannot be obtained. It was hot. An object of the present invention is to solve the problems of the prior art described above and to provide a double normalizing and tempering treatment method capable of obtaining a low yield ratio nickel steel sheet with excellent low-temperature toughness. As a result of intensive research into improving nickel steel sheets produced by two-time normalizing and tempering treatments, the present inventors found that the cooling rate in the second normalizing treatment of the two normalizing treatments It was discovered that high toughness steel sheets can be obtained by controlling the yield ratio without increasing the yield ratio. The present invention has been made based on this knowledge. The above objects of the present invention are achieved by the following two inventions. The gist of the first invention is as follows. That is, in weight ratio: C: 0.01-0.18%, Si: 0.02-0.80% Mn: 0.40-2.0%, Ni: 6-13.5% Al: 0.010-0.10%, N: 0.010% or less, P: 0.020% or less, S : 0.010% or less, the balance being Fe and unavoidable impurities. A step of rolling a nickel steel to a predetermined thickness by normal hot rolling, and then rolling the hot rolled steel sheet to an Ac 3 transformation point ~ Ac 3 transformation point.
A primary normalizing treatment step in which the steel sheet is heated to a temperature range of transformation point +150°C and then air cooled to room temperature, and the first normalized steel sheet is heated to a temperature range of Ac 3 transformation point to Ac 3 transformation point + 150°C and then heated to a temperature range of 450°C. A secondary normalizing treatment process in which the steel sheet is air-cooled to a temperature range of ~550°C and then cooled to room temperature at a cooling rate of 25°C/min or more, and the secondary normalized steel sheet is heated to an Ac 1 transformation point ~ an Ac 1 transformation point. a tempering process of heating to a temperature range of -150°C and then air cooling to room temperature;
This is a method for producing a low yield ratio nickel steel sheet having excellent low temperature toughness. The gist of the second invention is that in addition to the same basic components as the first invention, Mo: 0.05 to 0.30%
This is a method for producing a low yield ratio nickel steel sheet with excellent low-temperature toughness, in which a nickel steel containing Fe and unavoidable impurities is produced by the same production process as in the first invention. The reason for limiting the composition of nickel steel in the present invention will be explained. C: C must be contained in an amount of 0.01% or more in order to obtain a sufficiently high tensile strength, but if it exceeds 0.18%, toughness will be impaired, so the content is set in the range of 0.01 to 0.18%. Si: 0.02% or more of Si is required for deoxidation in steel manufacturing, but if it exceeds 0.80%, toughness and weldability will be impaired, so it is set in the range of 0.02 to 0.80%. Mn: Mn is effective in ensuring sufficient high tensile strength and toughness, and if it is less than 0.40%, its effect is insufficient.
The lower limit was set at 0.40%, and if it exceeded 2.0%, weldability would be impaired, so the upper limit was set at 2.0%. Ni: Ni is an essential element for the nickel steel of the present invention.
It has the effect of providing high toughness at low temperatures, but 6
If it is less than 13.5%, there is no effect, and if it exceeds 13.5%, the effect will be saturated and uneconomical, so it was limited to a range of 6 to 13.5%. Al: Al is an element necessary for deoxidation, and if it is less than 0.010%, it has no effect, and if it exceeds 0.10%, cleanliness is impaired, so it was set in the range of 0.010 to 0.10%. N, P, S: Too much N, P, and S will damage the toughness of the base metal and weld, so 0.010% each.
Limited to 0.020%, 0.010% or less. Although the above-mentioned limited amounts of C, Si, Mn, Ni, Al, N, P, and S are the basic components of the nickel steel according to the present invention, nickel steel containing 0.05 to 0.30% of Mo at the same time may also be used. The purpose of the present invention can be achieved more effectively. Mo is effective in improving strength and toughness, but if it is less than 0.05%, the effect is small, so the lower limit is set at 0.05%, and if it exceeds 0.30%, the toughness is impaired, so the upper limit is set at 0.30%.
It was limited to the range of 0.05-0.30%. Next, heat treatment conditions for nickel steel having the above-mentioned limited components will be explained. After the nickel steel with the above-mentioned limited components is made into a predetermined thickness through a normal hot rolling process, it is subjected to a primary normalizing treatment in which it is heated to a temperature range of Ac 3 to Ac 3 +150°C and then air cooled to room temperature. ,
If this heating temperature is less than Ac 3 , a complete austenite structure will not be obtained, and if it exceeds Ac 3 +150°C, the austenite will become coarse and lose toughness, so the temperature of the primary normalizing treatment should be adjusted to between Ac 3 and Ac 3 +150°C. limited to the range of Next, a secondary normalizing treatment is performed, and for the same reason as the primary normalizing treatment, heating is performed to a temperature range of Ac 3 to Ac 3 +150°C, which is also a feature of the present invention.
Air cooling is performed to a temperature range of 450 to 550°C, and then accelerated cooling is performed to room temperature at a cooling rate of 25°C/min or more.
If the accelerated cooling start temperature exceeds 550°C, the structure becomes martensite, and although high toughness can be obtained, the yield ratio becomes high and the original purpose cannot be achieved. Furthermore, even if accelerated cooling is performed from a temperature below 450°C, high toughness cannot be obtained. For these reasons, the starting temperature of accelerated cooling in the secondary normalizing treatment is set to 450~
The temperature was limited to 550℃. Next, basic experiments conducted by the present inventors regarding the cooling rate of accelerated cooling will be explained. Two types of test steels, A and B, having the chemical compositions and transformation points shown in Table 1 were melted in a normal process and hot rolled into 9% Ni steel plates with a thickness of 14 mm. After performing a primary normalizing treatment of heating this hot-rolled steel plate at 890°C for 40 minutes and cooling it in air,

【表】 800℃で40分間加熱し500℃まで空冷し、その後の
冷却速度を15℃/min〜約1800℃/minの範囲で
変化させ冷却し2次焼ならし処理を行い、最後に
585℃で35分間加熱し空冷する焼もどし処理を行
つた。得られた9%Ni鋼板に−196℃のシヤルピ
ー衝撃試験および引張試験を実施し、その結果を
第1図および第2図に示した。また、比較例とし
て第1表に示したのと同一の9%Ni鋼板に対し
通常の焼ならし、焼入れ、焼もどし処理を行い、
同様にシヤルピー衝撃試験および引張試験を実施
その結果を第2表に示した。なお、焼ならし、焼
入れ、焼もどし処理条件は次のとおりである。す
なわち、焼ならし処理は890℃で40分加熱後空冷、
焼入れ処理は800℃で40分加熱後水冷、焼もどし
処理は585℃で35分間加熱後空冷である。
[Table] Heated at 800℃ for 40 minutes, air cooled to 500℃, then cooled by changing the cooling rate in the range of 15℃/min to about 1800℃/min, performed secondary normalizing treatment, and finally
Tempering treatment was performed by heating at 585°C for 35 minutes and cooling in air. The obtained 9% Ni steel plate was subjected to a Charpy impact test and a tensile test at -196°C, and the results are shown in FIGS. 1 and 2. In addition, as a comparative example, the same 9% Ni steel plate shown in Table 1 was subjected to normalizing, quenching, and tempering treatments.
Similarly, a Charpy impact test and a tensile test were conducted and the results are shown in Table 2. The conditions for normalizing, hardening, and tempering are as follows. In other words, the normalizing treatment involves heating at 890℃ for 40 minutes, followed by air cooling.
Quenching treatment involves heating at 800°C for 40 minutes followed by water cooling, and tempering treatment involves heating at 585°C for 35 minutes followed by air cooling.

【表】 第1図および第2図から明らかな如く、2次焼
ならし処理の500℃以後の冷却速度が25℃/min
以上においては、降伏比をあまり上昇させること
なく低温靭性の優れたNi鋼板が得られる。これ
に対し比較例においては第2表に示す如く高い吸
収エネルギーが得られるが、降伏比が97,96と高
くなり所期の目的が達成されない。上記の基礎実
験の結果から本発明においては2次焼ならし処理
の450〜500℃に空冷後の冷却速度を25℃/min以
上に限定した。 次に2次焼ならし処理後、Ac1〜Ac1−150℃の
温度範囲に加熱後室温まで空冷する焼もどし処理
を行うが、Ac1を越える温度の加熱ではオーステ
ナイトが生成され靭性が劣化し、またAc1−150
℃未満の加熱では焼もどしの効果がないので、焼
もどし処理の加熱温度をAc1〜Ac1−150℃の温度
範囲に限定した。 本発明はニツケル鋼板の成分を限定し、熱延鋼
板をAc3〜Ac3+150℃の温度範囲に加熱後冷却す
る焼ならし処理を2回行い、特に2次焼ならし処
理においては、加熱後450〜550℃の温度範囲まで
空冷した後室温まで25℃/min以上の冷却速度で
冷却し、引続いてAc1〜Ac1−150℃の温度範囲に
加熱後室温まで空冷する焼もどし処理を行うもの
で、低温靭性が優れかつ降伏比の低いニツケル鋼
板を製造することができた。
[Table] As is clear from Figures 1 and 2, the cooling rate after 500℃ in the secondary normalizing treatment is 25℃/min.
In the above manner, a Ni steel sheet with excellent low-temperature toughness can be obtained without increasing the yield ratio too much. On the other hand, in the comparative examples, high absorbed energy is obtained as shown in Table 2, but the yield ratios are as high as 97 and 96, so that the intended purpose cannot be achieved. Based on the results of the above basic experiments, in the present invention, the cooling rate after air cooling to 450 to 500°C during the secondary normalizing treatment was limited to 25°C/min or more. Next, after the secondary normalizing treatment, a tempering treatment is performed in which the material is heated to a temperature range of Ac 1 to Ac 1 -150°C and then air cooled to room temperature, but heating at temperatures exceeding Ac 1 produces austenite and deteriorates toughness. and also Ac 1 −150
Since heating at temperatures below 0.degree. C. has no effect on tempering, the heating temperature for tempering treatment was limited to a temperature range of Ac 1 to Ac 1 -150°C. In the present invention, the components of the nickel steel sheet are limited, and the hot-rolled steel sheet is heated twice to a temperature range of Ac 3 to Ac 3 +150°C and then cooled. Tempering treatment in which the material is air cooled to a temperature range of 450 to 550°C, then cooled to room temperature at a cooling rate of 25°C/min or more, and then heated to a temperature range of Ac 1 to Ac 1 -150°C and then air cooled to room temperature. By doing this, we were able to produce nickel steel sheets with excellent low-temperature toughness and low yield ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面はいずれも9%Ni鋼板の2次焼なら
し処理における500℃から室温までの冷却速度の
影響を示す線図であり、第1図は−196℃のシヤ
ルピー吸収エネルギーとの関係、第2図は下降伏
点、引張強さおよび降伏比との関係を示してい
る。
The attached drawings are all diagrams showing the influence of the cooling rate from 500℃ to room temperature in the secondary normalizing treatment of 9% Ni steel sheets, and Figure 1 shows the relationship with the Charpy absorbed energy at -196℃, Figure 2 shows the relationship between lower yield point, tensile strength, and yield ratio.

Claims (1)

【特許請求の範囲】 1 重量比で C:0.01〜0.18%、Si:0.02〜0.80% Mn:0.40〜2.0%、Ni:6〜13.5% Al:0.010〜0.10%、N:0.010%以下 P:0.020%以下、S:0.010%以下 を含有し、残部はFeおよび不可避的不純物より
成るニツケル鋼を通常の熱間圧延で所定の板厚に
圧延する工程と、前記熱延鋼板をAc3変態点〜
Ac3変態点+150℃の温度範囲に加熱後室温まで
空冷する1次焼ならし処理工程と、前記1次焼な
らし処理鋼板をAc3変態点〜Ac3変態点+150℃の
温度範囲に加熱後450〜550℃の温度範囲まで空冷
した後室温まで25℃/min以上の冷却速度で冷却
する2次焼ならし処理工程と、前記2次焼ならし
処理鋼板をAc1変態点〜Ac1変態点−150℃の温度
範囲に加熱後室温まで空冷する焼もどし処理工程
と、を有して成ることを特徴とする低温靭性の優
れた低降伏比ニツケル鋼板の製造方法。 2 重量比で C:0.01〜0.18%、Si:0.02〜0.80% Mn:0.40〜2.0%、Ni:6〜13.5% Al:0.010〜0.10%、N:0.010%以下 P:0.020%以下、S:0.010%以下 のほか更にMo:0.05〜0.30%を含有し残部はFe
および不可避的不純物より成るニツケル鋼を通常
の熱間圧延で所定の板厚に圧延する工程と、前記
熱延鋼板をAc3変態点〜Ac3変態点+150℃の温度
範囲に加熱後室温まで空冷する1次焼ならし処理
工程と、前記1次焼ならし処理鋼板をAc3変態点
〜Ac3変態点+150℃の温度範囲に加熱後450〜
550℃の温度範囲まで空冷した後室温まで25℃/
min以上の冷却速度で冷却する2次焼ならし処理
工程と、前記2次焼ならし処理鋼板をAc1変態点
〜Ac1変態点−150℃の温度範囲に加熱後室温ま
で空冷する焼もどし処理工程と、を有して成るこ
とを特徴とする低温靭性の優れた低降伏比ニツケ
ル鋼板の製造方法。
[Claims] 1. C: 0.01-0.18%, Si: 0.02-0.80% Mn: 0.40-2.0%, Ni: 6-13.5% Al: 0.010-0.10%, N: 0.010% or less P: 0.020% or less, S: 0.010% or less, and the remainder consists of Fe and unavoidable impurities. A process of rolling nickel steel to a predetermined thickness by normal hot rolling, and rolling the hot-rolled steel plate to an Ac 3 transformation point. ~
A primary annealing and normalizing process of heating to a temperature range of Ac 3 transformation point + 150°C and then air cooling to room temperature, and heating the primary annealing and normalizing treated steel sheet to a temperature range of Ac 3 transformation point to Ac 3 transformation point + 150°C A secondary normalizing treatment step in which the steel sheet is air cooled to a temperature range of 450 to 550°C and then cooled to room temperature at a cooling rate of 25°C/min or more, and the secondary normalizing steel sheet is cooled to Ac 1 transformation point ~ Ac 1 A method for producing a low yield ratio nickel steel sheet with excellent low-temperature toughness, comprising the steps of heating to a temperature range of -150°C, which is a transformation point, and then air-cooling to room temperature. 2 Weight ratio C: 0.01-0.18%, Si: 0.02-0.80% Mn: 0.40-2.0%, Ni: 6-13.5% Al: 0.010-0.10%, N: 0.010% or less P: 0.020% or less, S: In addition to 0.010% or less, it also contains Mo: 0.05 to 0.30%, and the balance is Fe.
and unavoidable impurities, to a predetermined thickness by normal hot rolling, and the hot-rolled steel sheet is heated to a temperature range of Ac 3 transformation point to Ac 3 transformation point + 150°C, and then air cooled to room temperature. 450°C to 450°C after heating the primary normalized steel sheet to a temperature range of Ac 3 transformation point to Ac 3 transformation point + 150°C.
Air cooled to a temperature range of 550℃ and then cooled to room temperature by 25℃/
A secondary annealing and normalizing process in which the steel sheet is cooled at a cooling rate of min or more, and a tempering process in which the secondary annealing-normalized steel sheet is heated to a temperature range of Ac 1 transformation point to Ac 1 transformation point - 150°C and then air cooled to room temperature. A method for producing a low yield ratio nickel steel sheet with excellent low-temperature toughness, comprising the steps of:
JP16898483A 1983-09-13 1983-09-13 Production of low-yield ratio nickel steel plate having excellent low-temperature toughness Granted JPS6059023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16898483A JPS6059023A (en) 1983-09-13 1983-09-13 Production of low-yield ratio nickel steel plate having excellent low-temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16898483A JPS6059023A (en) 1983-09-13 1983-09-13 Production of low-yield ratio nickel steel plate having excellent low-temperature toughness

Publications (2)

Publication Number Publication Date
JPS6059023A JPS6059023A (en) 1985-04-05
JPS6328964B2 true JPS6328964B2 (en) 1988-06-10

Family

ID=15878193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16898483A Granted JPS6059023A (en) 1983-09-13 1983-09-13 Production of low-yield ratio nickel steel plate having excellent low-temperature toughness

Country Status (1)

Country Link
JP (1) JPS6059023A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2788673B2 (en) * 1990-08-28 1998-08-20 川崎製鉄株式会社 Method for producing low-temperature steel sheet having low yield ratio
JP6760056B2 (en) * 2016-12-28 2020-09-23 日本製鉄株式会社 Ni steel for liquid hydrogen
JP6760055B2 (en) * 2016-12-28 2020-09-23 日本製鉄株式会社 Ni steel for liquid hydrogen

Also Published As

Publication number Publication date
JPS6059023A (en) 1985-04-05

Similar Documents

Publication Publication Date Title
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
JPS6216892A (en) Manufacture of high strength stainless steel clad steel plate excellent in corrosion resistance and weldability
JPH04268016A (en) Production of high tensile strength steel sheet for door guide bar having excellent crushing characteristic
JPH0941088A (en) Production of high toughness steel plate for low temperature use
JPH0941036A (en) Production of high toughness steel sheet for low temperature use
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JPS6328964B2 (en)
JP4039268B2 (en) Method for producing Ni-containing steel with excellent strength and low temperature toughness
JPH0827517A (en) Heat treatment for 9%ni steel excellent in yield strength and toughness
JPS6144123B2 (en)
JPS6320414A (en) Production of high-toughness high-tensile steel plate
JPS63210234A (en) Manufacture of high-strength stainless steel stock excellent in workability and free from softening by welding
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
KR100435467B1 (en) A method for manufacturing high strength cold rolled steel sheet having superior ductility by continuous annealing
JPH01195242A (en) Manufacture of high tension steel plate having superior toughness at low temperature with uniformity in thickness direction
JPH08337815A (en) Production of chromium-molybdenum steel excellent in strength and toughness
JPH07316654A (en) Production of thick steel plate of high strength ni steel excellent in toughness at low temperature
JPH07188748A (en) Production of steel tube having high strength and low yield ratio for construction use
JP3620098B2 (en) Method for producing Cr-Mo steel excellent in strength and toughness
JPH0394020A (en) Production of cold rolled steel sheet for deep drawing excellent in resistance to secondary working brittleness
JPS63140034A (en) Production of low yield ratio high tensile steel having excellent low-temperature toughness
JPS63293110A (en) Production of thick steel plate having high strength, high toughness and low yield ratio
JPH0517286B2 (en)
JPH101737A (en) Low alloy heat resistant steel, excellent in high temperature strength and toughness, and its production