JPS607686B2 - Manufacturing method for line pipe steel with excellent resistance to hydrogen-induced cracking - Google Patents

Manufacturing method for line pipe steel with excellent resistance to hydrogen-induced cracking

Info

Publication number
JPS607686B2
JPS607686B2 JP53017468A JP1746878A JPS607686B2 JP S607686 B2 JPS607686 B2 JP S607686B2 JP 53017468 A JP53017468 A JP 53017468A JP 1746878 A JP1746878 A JP 1746878A JP S607686 B2 JPS607686 B2 JP S607686B2
Authority
JP
Japan
Prior art keywords
hydrogen
induced cracking
steel
manufacturing
line pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53017468A
Other languages
Japanese (ja)
Other versions
JPS54110119A (en
Inventor
甫 梨和
勉 永幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP53017468A priority Critical patent/JPS607686B2/en
Publication of JPS54110119A publication Critical patent/JPS54110119A/en
Publication of JPS607686B2 publication Critical patent/JPS607686B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】 この発明は、日2S濃度を含む天然ガスのラインパイプ
材として用いる耐水素誘起割れ性のすぐれたラインパイ
プ用鋼の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing line pipe steel having excellent resistance to hydrogen-induced cracking and used as a line pipe material for natural gas containing 2S concentration.

一般に、鋼中に含まれるMnS系介在物を球状化すれば
、成品の衝撃特性値、水素譲起割れ、板厚方向絞り値等
に好成績が得られることは周知の通りである。
Generally, it is well known that if the MnS-based inclusions contained in steel are spheroidized, good results can be obtained in the impact properties, hydrogen-induced cracking, reduction of area in the plate thickness direction, etc. of the finished product.

MnS系介在物を球状化する方法としては、圧延方法の
改善又は希土類元素、Ca等の熔鋼内添加がある。しか
し、前者の方法では圧延能率の低下をもたらすと共に、
完全な球状化は難しい。そこで、後者の希±類元素、C
a等の溶鋼内添加が当目的のために採用されている。し
かし、希土類元素(Caを主体)を溶鋼内に添加した場
合、希土類元素並びにその硫化物、酸化物の比重が溶鋼
の比重よりも重いため、鋼塊内底部あるいは連続鋳造ス
ラブ内に凝集蓄積し、鋼の清浄度を悪化させ、結果的に
は製品の介在物欠陥となる。一方、Caを溶鋼内に添加
した場合は、Ca、カルシウム酸化物、カルシウム硫化
物の比重が溶鋼の比重よりも軽いため、希士類元素添加
物のような現象は認められず、理想的な添加元素といえ
る。
Methods for spheroidizing MnS-based inclusions include improving the rolling method or adding rare earth elements, Ca, etc. to the molten steel. However, the former method results in a decrease in rolling efficiency and
Perfect spheroidization is difficult. Therefore, the latter rare element, C
Additions such as a to the molten steel have been adopted for this purpose. However, when rare earth elements (mainly Ca) are added to molten steel, the specific gravity of the rare earth elements and their sulfides and oxides is higher than the specific gravity of molten steel, so they aggregate and accumulate at the bottom of the steel ingot or in the continuous casting slab. , which deteriorates the cleanliness of the steel and results in inclusion defects in the product. On the other hand, when Ca is added to molten steel, the specific gravity of Ca, calcium oxide, and calcium sulfide is lighter than the specific gravity of molten steel, so the phenomenon similar to rare element additives is not observed, and it is not ideal. It can be said to be an additive element.

しかし、鋼塊法の場合には、Caの比重が溶鋼の比重よ
り軽いため、鋼塊内軸心部では浮上によりCa含有量は
低くなること、並びに鋼塊内軸心部では、本来Sの濃化
偏析があることにより、軸心部でのS濃化偏析帯のサル
フアィド系介在物のCa単独添加による完全球状化は難
しい。そこで、この発明の発明者等は、鋼塊法において
はCaを最大限に溶鋼内へ添加し、さらに、上記理由に
より鋼塊内軸心部のS濃化偏折部の介在物球状化に不足
する分を、少量のCaを補って添加することにより、M
nS系介在物の完全球状化と共に清浄性をそこなわない
耐水素誘起割れ性のすぐれたラインパイプ用鋼の製造法
を見出した。一方、連続鋳造法ではCaの浮上促進が鋼
塊内軸○部ほど顕著ではないため、連続鋳造法において
はCaの単独添加でMnS系介在物の完全球状化が十分
に行える。以下この発明の一実施例について説明する。
However, in the case of the steel ingot method, since the specific gravity of Ca is lower than that of molten steel, the Ca content becomes low in the axial center of the steel ingot due to flotation. Due to the concentration segregation, it is difficult to completely spheroidize the sulfide inclusions in the S concentration segregation zone at the axial center by adding Ca alone. Therefore, the inventors of this invention added Ca to the molten steel as much as possible in the steel ingot method, and furthermore, for the above-mentioned reasons, the inventors of the present invention added Ca to the molten steel as much as possible, and furthermore, for the above-mentioned reasons, the inventors of the present invention By supplementing and adding a small amount of Ca to make up for the shortage, M
We have discovered a method for manufacturing line pipe steel that has excellent hydrogen-induced cracking resistance and does not impair cleanliness while making nS-based inclusions perfectly spherical. On the other hand, in the continuous casting method, the promotion of levitation of Ca is not as pronounced as in the ○ part of the steel ingot, so in the continuous casting method, the MnS-based inclusions can be fully spheroidized by adding Ca alone. An embodiment of this invention will be described below.

鋼塊法においては、得られる成品全域のMnS系介在物
を球状化させるため、溶鋼内へCaを最大限添加し、さ
らに鋼塊内軸心部のS濃化橋折部の介在物球状化に不足
する分を少量のCeを補って添加し、MnS系介在物の
完全球状化処理を行った鋼である。この場合下記(1}
式及び■式の範囲内でCa及びCeを添加する。ただし
、Ca,Ce,Sは成品各位暦での濃度(M%)である
。5.0ミ(3.にa+Ce)/S ……mC
eミ0.025 ・・・・・・
{2lすなわち、第1図に示す図表は、鋼塊材でのCa
及びCeを複合添加した場合の実積値であるが、ここで
斜線で示された成分範囲(A)にコントロールされた鋼
は、鋼塊内全域でMnS系介在物は完全に球状化され、
Ca−Ce−○−S−A夕−Mn系介在物に転換され、
第3図に示すごとく鋼塊底部での介在物富化現象は認め
られない。
In the steel ingot method, in order to spheroidize MnS-based inclusions throughout the entire product, Ca is added to the molten steel as much as possible, and the inclusions at the S-concentrated bridge bend in the axial center of the steel ingot are spheroidized. This is a steel in which a small amount of Ce is added to compensate for the deficiency in MnS-based inclusions, and the MnS-based inclusions are completely spheroidized. In this case, the following (1)
Ca and Ce are added within the range of formula and formula (2). However, Ca, Ce, and S are concentrations (M%) in each finished product. 5.0mi (a+Ce in 3.)/S...mC
e Mi 0.025 ・・・・・・
{2l In other words, the diagram shown in Figure 1 shows Ca in steel ingots.
This is the actual value when combined addition of
Converted to Ca-Ce-○-S-A-Mn-based inclusions,
As shown in Figure 3, no inclusion enrichment phenomenon was observed at the bottom of the steel ingot.

一方、第1図中成分範囲(B)城では、鋼塊ボトム部で
介在物富化現象が生じ、これによるUST欠陥あるいは
この巨大介在物を起点とする水素誘起割れを生じる。ま
た、第1図中成分範囲(C)城では、MnS系介在物の
完全球状化が不十分であり、水素誘起割れを起こすが、
鋼塊ボトム部での介在物富化現象はない。また、連続鋳
造法においては、得られる成品全域のMnS系介在物を
球状化させるため、溶鋼内へCaを添加し、MnS系介
在物の完全球状化処理を行った鋼である。
On the other hand, in the composition range (B) in FIG. 1, an inclusion enrichment phenomenon occurs at the bottom of the steel ingot, resulting in UST defects or hydrogen-induced cracking starting from these giant inclusions. In addition, in the component range (C) in Figure 1, the complete spheroidization of MnS-based inclusions is insufficient, causing hydrogen-induced cracking.
There is no inclusion enrichment phenomenon at the bottom of the steel ingot. In addition, in the continuous casting method, in order to spheroidize the MnS-based inclusions throughout the resulting product, Ca is added to the molten steel to completely spheroidize the MnS-based inclusions.

この場合下記湖式及び【4ー式の範囲内でCaを添加す
る。ただし、Ca,Sは成品各位層での濃度(M%)で
ある。Ca×Sミ4×10‐5 ・・
・・・・【311.4ミCa/S
……【4}すなわち、第2図に示す図表は、連続鋳造材
でのCaを単独添加した場合の実績値であるが、第2図
中斜線で示された成分範囲(A)城では、水素誘起割れ
を発生しない。
In this case, Ca is added within the range of the Lake formula and [4- Formula] below. However, Ca and S are concentrations (M%) in each layer of the product. Ca x S Mi 4 x 10-5...
...[311.4miCa/S
...[4] In other words, the chart shown in Figure 2 shows actual values when Ca is added alone in continuous casting materials, but in the component range (A) shown by diagonal lines in Figure 2, No hydrogen-induced cracking occurs.

すなわちMmS系介在物が完全球状化された領域であり
、第2図中成分範囲(C)域では、完全球状化が不十分
で水素誘起割れが発生する。また、Caは鋼中への溶解
度に限界を有し、Ca溶解濃度max、値は約0.01
%であり、それ故に第2図中成分範囲(B)域での実測
値はない。次に、鋼塊材におけるCa及びCeの複合添
加を上記範囲に限定した理由は、MnS系介在物球状化
指数=(3.にa+Ce)/Sが5以下になるとNmS
系介在物は完全球状化する限界値であり、またCe濃度
が0.025%以上になると鋼塊ボトム部での介在物富
化現象が生じるため、これが限界値となる。
That is, this is a region where MmS-based inclusions are completely spheroidized, and in the component range (C) in FIG. 2, complete spheroidization is insufficient and hydrogen-induced cracking occurs. In addition, Ca has a limit to its solubility in steel, and the maximum dissolved Ca concentration is approximately 0.01.
%, therefore, there are no actual measured values in the component range (B) in FIG. Next, the reason why the combined addition of Ca and Ce in the steel ingot was limited to the above range is that when the MnS-based inclusion spheroidization index = (3. a + Ce) / S is 5 or less, NmS
System inclusions are the limit value for complete spheroidization, and when the Ce concentration exceeds 0.025%, inclusion enrichment phenomenon occurs at the bottom of the steel ingot, so this is the limit value.

なお、MnS系介在物球状化指数の中で係数3.5はC
eとCaの原子量比を示す。また、連続鋳造法における
Caの単独添加を上記範囲に限定した理由は、MnS系
介在物球状化指数=Ca/Sが1.4〆下になると、M
nS系介在物は完全球状化する限界値であり、Ca×S
の濃度積が4×10‐5(%)を越えると、清浄度が悪
化し、これによる水素誘起割れを起こす限界値となる。
また、Caの鋼中へのmax、溶解濃度は0.01%の
ため「 これ以上のCa濃度のプロットはない。なお、
第1図における各領域でのMnS系介在物の形態状況は
第4図に示すごとくである。すなわち、第4図Aは成分
範囲(A)の、第4図は成分範囲(B)の、第4図Cは
成分範囲に)のMnS系介在物形態をそれぞれ示す。次
に、水素誘起割れ試験結果について述べる。
In addition, the coefficient 3.5 in the MnS-based inclusion spheroidization index is C
The atomic weight ratio of e and Ca is shown. In addition, the reason why the individual addition of Ca in the continuous casting method was limited to the above range is that when the MnS-based inclusion spheroidization index = Ca/S is below 1.4, M
nS-based inclusions are at the limit value to become completely spherical, and Ca×S
When the concentration product exceeds 4 x 10-5 (%), the cleanliness deteriorates and this becomes a critical value that causes hydrogen-induced cracking.
In addition, since the maximum dissolved concentration of Ca in steel is 0.01%, there is no plot of Ca concentration higher than this.
The morphology of MnS-based inclusions in each region in FIG. 1 is as shown in FIG. 4. That is, FIG. 4A shows the morphology of MnS-based inclusions in the component range (A), FIG. 4 in the component range (B), and FIG. 4C in the component range. Next, we will discuss the hydrogen-induced cracking test results.

当試験に用いられた材料の基本組成は第1表に示したも
のであり、これにCa,Ceが添加される。水素誘起割
れの試験方法は、Casel(人工海水十日2Sガス)
液中 PH5.1Caseo( 純水 十比Sガス)
液中 PH4.5Casem(0.5%酢酸十日ぶガ
ス)液中 PH3.2の3種の条件の基で行い、個々
の試験結果は第2表に示した通りである。
The basic composition of the material used in this test is shown in Table 1, to which Ca and Ce are added. The test method for hydrogen-induced cracking is Casel (artificial seawater Toka 2S gas)
In liquid PH5.1 Caseo (pure water ten ratio S gas)
Tests were conducted under three conditions: pH 4.5 in liquid Casem (0.5% acetic acid gas) pH 3.2 in liquid, and the individual test results are shown in Table 2.

前記第1図及び第2図の図表は第2表をまとめたもので
ある。船 柵 ぶ」 灘 難 母 以上のごとく第1図及び第2図に示す成分範囲(A)に
コントロールされたこの発明の銅は、水素誘起割れを発
生しない。
The charts in FIGS. 1 and 2 are a compilation of Table 2. The copper of this invention, which is controlled within the component range (A) shown in Figures 1 and 2, does not generate hydrogen-induced cracking.

したがって、このような耐水素誘起割れにすぐれた鋼を
、日2S濃度を含む天然ガスのラインパイプ材に用いる
と極めてその効果を発揮するのである。
Therefore, when steel with excellent resistance to hydrogen-induced cracking is used for line pipe materials for natural gas containing 2S concentration, it is extremely effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋼塊材での水素誘起割れを発生しない適正成分
範囲を図す図表、第2図は連続鋳造材での水素譲起割れ
を発生しない適正成分範囲を示す図表、第3図は鋼塊高
さ位置と介在物集積度との関係を示す図表、第4図は第
1図のA,B,C各領域におけるMnS系介在物の形態
を示す図面である。 第1図 第2図 第3図 第4図
Figure 1 is a diagram showing the appropriate range of ingredients that does not cause hydrogen-induced cracking in steel ingots, Figure 2 is a diagram that shows the appropriate ingredient range that does not cause hydrogen-induced cracking in continuous casting materials, and Figure 3 is a diagram showing the appropriate ingredient range that does not cause hydrogen-induced cracking in continuous casting materials. FIG. 4 is a diagram showing the relationship between the height position of the steel ingot and the degree of inclusion accumulation. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1 ラインパイプ用鋼を溶製するにあたりCaの単独添
加又はCa,Ceの複合添加を下記式を満足するよう調
整することを特徴とする耐水素誘起割れ性のすぐれたラ
インパイプ用鋼の製造法。 Ca単独添加の場合▲数式、化学式、表等があります▼ Ca,Ce複合添加の場合 ▲数式、化学式、表等があります▼ ただし、Ca,Ce,Sは成品各位置での濃度(wt
%)
[Scope of Claims] 1. A line with excellent hydrogen-induced cracking resistance, characterized by adjusting the addition of Ca alone or the combined addition of Ca and Ce to satisfy the following formula when melting steel for line pipes: Manufacturing method of steel for pipes. In the case of adding Ca alone ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ In the case of combined addition of Ca and Ce ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ However, for Ca, Ce, and S, the concentration (wt
%)
JP53017468A 1978-02-16 1978-02-16 Manufacturing method for line pipe steel with excellent resistance to hydrogen-induced cracking Expired JPS607686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53017468A JPS607686B2 (en) 1978-02-16 1978-02-16 Manufacturing method for line pipe steel with excellent resistance to hydrogen-induced cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53017468A JPS607686B2 (en) 1978-02-16 1978-02-16 Manufacturing method for line pipe steel with excellent resistance to hydrogen-induced cracking

Publications (2)

Publication Number Publication Date
JPS54110119A JPS54110119A (en) 1979-08-29
JPS607686B2 true JPS607686B2 (en) 1985-02-26

Family

ID=11944842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53017468A Expired JPS607686B2 (en) 1978-02-16 1978-02-16 Manufacturing method for line pipe steel with excellent resistance to hydrogen-induced cracking

Country Status (1)

Country Link
JP (1) JPS607686B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003006699A1 (en) * 2001-07-13 2003-01-23 Nkk Corporation High strength steel pipe having strength higher than that of api x65 grade
KR100584748B1 (en) * 2001-12-22 2006-05-30 주식회사 포스코 Continuous Cast Steel Slab for Linepipe with Superior Hydrogen Induced Crack Resistance
KR20040075971A (en) 2002-02-07 2004-08-30 제이에프이 스틸 가부시키가이샤 High Strength Steel Plate and Method for Production Thereof
WO2009061006A1 (en) 2007-11-07 2009-05-14 Jfe Steel Corporation Steel plate for line pipes and steel pipes
CA2810167C (en) 2010-09-03 2017-01-17 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet having improved resistance to fracture and to hic
WO2014024234A1 (en) 2012-08-10 2014-02-13 Nippon Steel & Sumitomo Metal Corporation Steel plate for high strength steel pipe and high strength steel pipe
JP6169025B2 (en) * 2013-03-29 2017-07-26 株式会社神戸製鋼所 Steel plates and line pipe steel pipes with excellent hydrogen-induced crack resistance and toughness
MX2015017740A (en) 2013-07-04 2016-06-21 Nippon Steel & Sumitomo Metal Corp Seamless steel tube for line pipe used in acidic environment.
BR112020005756B1 (en) 2017-09-28 2022-08-02 Jfe Steel Corporation HIGH STRENGTH STEEL SHEET FOR ACID RESISTANT PIPES, PRODUCTION METHOD AND HIGH STRENGTH STEEL PIPE USING HIGH STRENGTH STEEL SHEET FOR ACID RESISTANT PIPES

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114318A (en) * 1975-04-01 1976-10-08 Nippon Steel Corp Steel for pipe having improved step-crack nasistance
JPS5492511A (en) * 1977-12-29 1979-07-21 Kawasaki Steel Co Steel having good hydrogenninduced crack resistivity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114318A (en) * 1975-04-01 1976-10-08 Nippon Steel Corp Steel for pipe having improved step-crack nasistance
JPS5492511A (en) * 1977-12-29 1979-07-21 Kawasaki Steel Co Steel having good hydrogenninduced crack resistivity

Also Published As

Publication number Publication date
JPS54110119A (en) 1979-08-29

Similar Documents

Publication Publication Date Title
JPS56151149A (en) Assembling type roll for continuous casting of slab
JPS607686B2 (en) Manufacturing method for line pipe steel with excellent resistance to hydrogen-induced cracking
KR20090098912A (en) Steel material having excellent corrosion resistance
CN103509967B (en) A kind of gravitational casting special DZR environment-friendly yellow brass alloy ingot and manufacture craft thereof
CN108060324A (en) A kind of wear-resisting valve member copper alloy bar of high strength anti-corrosion and preparation method thereof
CN101006191A (en) Die cast magnesium alloy
JP3633515B2 (en) Hot-rolled steel sheet having excellent resistance to hydrogen-induced cracking and method for producing the same
JPS57155353A (en) Fe-ni alloy good in hot workability
JPS594943A (en) Production of continuous casting ingot having no semimacro segregation
JPS59205453A (en) Free cutting steel and preparation thereof
JPS62149854A (en) Free-cutting steel
JPS56102564A (en) Manufacture of cross-fin material
JPH02125839A (en) Coastal corrosion resistant steel material and its manufacture
JPS5677371A (en) Manufacture of aluminum sheet with high strength
JPS56123346A (en) Aluminum alloy for extrusion with superior hardenability
DE652593C (en) Covered welding electrode
JPH0676638B2 (en) High strength Ni-Cr alloy with excellent corrosion resistance and heat resistance
JPS56150149A (en) Phosphor bronz with good hot rolling property
JPS54107417A (en) Hot rolled steel welding with excellent surface layer breaking resistance
AT134253B (en) Zinc alloy, especially for injection molding.
JPS63128112A (en) Method for preventing development of mns in steel ingot
SU1121312A1 (en) Cast iron
JPS5854180B2 (en) High strength and conductive copper alloy
CN1456696A (en) Lead-based alloy deep deoxygenating process
JPS5920438A (en) Copper alloy for lead material of semiconductor apparatus