JPS59205453A - Free cutting steel and preparation thereof - Google Patents

Free cutting steel and preparation thereof

Info

Publication number
JPS59205453A
JPS59205453A JP8054983A JP8054983A JPS59205453A JP S59205453 A JPS59205453 A JP S59205453A JP 8054983 A JP8054983 A JP 8054983A JP 8054983 A JP8054983 A JP 8054983A JP S59205453 A JPS59205453 A JP S59205453A
Authority
JP
Japan
Prior art keywords
less
steel
cutting steel
inclusions
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8054983A
Other languages
Japanese (ja)
Other versions
JPH0454735B2 (en
Inventor
Atsuyoshi Kimura
木村 篤良
Sadayuki Nakamura
中村 貞行
Makoto Saito
誠 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP8054983A priority Critical patent/JPS59205453A/en
Publication of JPS59205453A publication Critical patent/JPS59205453A/en
Priority to US06/744,907 priority patent/US4806304A/en
Publication of JPH0454735B2 publication Critical patent/JPH0454735B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:A free cutting steel secured in good cut property by making sulfide impurities macro-spherical, obtained by compositely adding Te, Pb and Bi to S while reducing Al in oxide impurities by lowering Al-content. CONSTITUTION:A steel ingot containing 0.2% or less C, 0.2% or less Si, 2.0% or less Mn, 10% or less P, 0.02% or less N, 0.002% or less Al, 0.4-0.50% S, 0.02-0.50% Te, 0.01-0.40% Pb and 0.01-0.40% Bi so as to adjust Te+Pb+Bi to 0.20% or more and further containing 0.0040-0.030% O and comprising the remainder of substantially Fe is prepared. In the next step, this steel is melted and continuously cast to obtain free cutting steel with high quality wherein MnS impurities with a long diameter of 5mum or more, a short diameter of 2mum or more and a long diameter/short diameter ratio of 5 or less occupies 50% or more of total MnS impurities and the average Al2O3-content in oxide impurities is 15% or less.

Description

【発明の詳細な説明】 本発明は、改良された快削鋼とその製造方法に関する。[Detailed description of the invention] The present invention relates to an improved free-cutting steel and a method for manufacturing the same.

「超々快削鋼」とよばれる低炭素のイオウ快削鋼の製造
に当って、従来は硫化物形状がなるべく球形になるよう
、酸素含有量を高めることが一般に行なわれてきた。 
しかし、酸素量が高いことは多量の酸化物系介在物の存
在を意味し、鋼材中の地キズなどの欠陥を増し、強度が
低下したり外観が悪くなったりするという問題を招く。
In the production of low-carbon, sulfur free-cutting steel known as "ultra-super free-cutting steel," the conventional practice has been to increase the oxygen content so that the sulfide shape becomes as spherical as possible.
However, a high amount of oxygen means the presence of a large amount of oxide-based inclusions, which increases defects such as scratches in the steel material, leading to problems such as reduced strength and poor appearance.

 脱酸材を用いて酸素量を低下させると、硫化物系介在
物が展伸し、被剛性を低下させることになる。
When the amount of oxygen is reduced using a deoxidizing material, sulfide-based inclusions are expanded and the rigidity is reduced.

本発明者らは、低炭素イオウ快削鋼にJ5いて、硫化物
系介在物を巨人球状にして良好な被剛性を確保するとと
もに、欠陥のないものを提供することを目的として研究
を重ねた結果、SにTe1PbおよびB1を複合添加し
、AI含有率を下げて酸化物系介在物中のA1系のもの
を少なくすれば、ある範囲の酸素含有量においても、被
削性よく、しかも欠陥の少ない鋼が得られることを見出
して本発明に至った。
The present inventors have conducted extensive research on low carbon sulfur free-cutting steel J5 with the aim of making sulfide inclusions into giant spheres to ensure good rigidity and to provide a product free of defects. As a result, if Te1Pb and B1 are added in combination to S, and the AI content is lowered to reduce the amount of A1 in the oxide inclusions, machinability is good even within a certain range of oxygen content, and there are no defects. The present invention was achieved by discovering that it is possible to obtain steel with a small amount of carbon.

本発明の快削鋼は、C:0.2%以下、si :0.2
%以下およびMn:2.0%以下を含有し、P : 0
.10%以下、N : 0.0296以下、A1 :0
.002%以下rあっT、さらIcs:0,04〜0.
50%、Te :0.002〜0.50%、PI): 
0.01〜0.40%tJJ:びBi  : 0.01
〜0.40%を、Te +Pb +Bi  : 0.2
0%以上となるように含有し、o:o、0040〜0.
030%をも含有し、残余が実質的にFeがらなり、か
つ長径が5μ以上、短径が2μ以上で長径/短径の比が
5以下であるM11S系介在物が全MIIS系介在物の
50%以上を占め、酸化物系介在物中のAI 203の
含有率が平均15%以下であることを特徴とする。
The free-cutting steel of the present invention has C: 0.2% or less, si: 0.2
% or less and Mn: 2.0% or less, P: 0
.. 10% or less, N: 0.0296 or less, A1: 0
.. 002% or less r at T, further Ics: 0.04~0.
50%, Te: 0.002-0.50%, PI):
0.01-0.40%tJJ: Bi: 0.01
~0.40%, Te +Pb +Bi: 0.2
Contained in an amount of 0% or more, o:o, 0040-0.
030%, the remainder is essentially Fe, the major axis is 5μ or more, the minor axis is 2μ or more, and the ratio of major axis / minor axis is 5 or less. 50% or more, and the content of AI 203 in the oxide inclusions is 15% or less on average.

各合金元素の組成の限定理由は、っぎのとおりである。The reasons for limiting the composition of each alloying element are as follows.

C:0.2%以下 Cは材料に適度の硬度を与えると同時に、脱酸元系とし
ての作用もある。 この種の快削鋼においては、高い被
剛性を得るために0.2%が上限となる。 好ましい範
囲は0.05〜0゜1%である。
C: 0.2% or less C not only gives appropriate hardness to the material, but also acts as a deoxidizing element. In this type of free-cutting steel, the upper limit is 0.2% in order to obtain high stiffness. The preferred range is 0.05 to 0.1%.

Si  :0.2%以下 Siは脱酸剤であるが、その量が0.2%を超、すると
5k−Te +Pb +Biを複合添加する効果を減殺
する。
Si: 0.2% or less Si is a deoxidizing agent, but if its amount exceeds 0.2%, the effect of adding 5k-Te + Pb + Bi in combination is diminished.

Mn:2.0%以下 被削性にとってはMn含有量は低いほどよいが、熱間加
工性を改善することを望むならば、2゜0%までは添加
してもよい。
Mn: 2.0% or less The lower the Mn content, the better for machinability, but if it is desired to improve hot workability, it may be added up to 2.0%.

P:0.10%以下 被削性にとってはプラスの存在であるが、多量に存在す
るとマトリクスを硬化させるとともに熱間加工性が低下
づるので、上記限度内とする。
P: 0.10% or less P has a positive effect on machinability, but if present in a large amount, it hardens the matrix and reduces hot workability, so it should be within the above limit.

N:<)、02%以下 Pど同様にマトリクスを硬化させるので、上記限度を超
えないようにする。
N:<), 02% or less Since the matrix is hardened in the same way as P, the above limit should not be exceeded.

Al  :0.002%以下 前記したように、AIを微量におさえるのが本発明の鋼
のひとつの特徴であって、0.002%を超えないよう
にすることにより、工具寿命を低下させる酸化物系介在
物中のAI 203を後記する限度内になるよう、極力
少なくする。
Al: 0.002% or less As mentioned above, one of the characteristics of the steel of the present invention is to suppress the amount of AI to a very small amount. The amount of AI 203 in the physical inclusions is reduced as much as possible within the limits described below.

S:0.04〜0.50% 被削性改善の中心どなる元素で、0.04%以上必要で
ある。 熱間加工性への影響から上限を0.5%とした
S: 0.04 to 0.50% This element is central to improving machinability, and 0.04% or more is required. The upper limit was set at 0.5% due to the influence on hot workability.

Te :0.002〜0.50%、Pb :0.01〜
0.40%、Bi:0.01〜0.40%、Te +P
b +Bi  : 0.20%以上これらの元素は低融
点介在物を形成して硫化物系介在物を球状化するはたら
きを覆るが、複合添加にj;りその効果が顕著になる。
Te: 0.002~0.50%, Pb: 0.01~
0.40%, Bi: 0.01-0.40%, Te +P
b + Bi: 0.20% or more These elements form low-melting inclusions and override the function of spheroidizing sulfide-based inclusions, but their effect becomes more pronounced when combined.

 そのためには、それぞれにつき上記した下限以上であ
って、全体として0.20%以上の含有量を必要とする
。 上限は、Sと同様に熱間加工性から定めた。
For this purpose, the content must be at least the above-mentioned lower limit for each and at least 0.20% as a whole. As with S, the upper limit was determined based on hot workability.

硫化物系介在物の形態、大きさについていえば、球状に
近いほど、また大きいほどよい。 全硫化物系介在物の
うち、長径5μ以上、短径2μ以上であって長径/短径
の比が5以下の巨人球状硫化物の割合(体積率)が50
%以上であれば、被剛性改善効果が満足すべきレベルに
達する。
Regarding the shape and size of the sulfide-based inclusions, the closer to a spherical shape and the larger the size, the better. Among all sulfide-based inclusions, the proportion (volume fraction) of giant spherical sulfides with a major axis of 5 μ or more, a minor axis of 2 μ or more, and a ratio of major axis / minor axis of 5 or less is 50
% or more, the stiffness improvement effect reaches a satisfactory level.

酸化物系介在物は、一般にMn01Si 02およびF
eOが主体であって、AI 203の量が多くなると、
その硬度が高いため切削工具を著しく損耗させる。 前
記した限度内でなるべくAI含有量を低くし、酸化物系
介在物中の割合を15%以下にする。
Oxide-based inclusions are generally Mn01Si02 and F
When eO is the main ingredient and the amount of AI 203 increases,
Its high hardness causes significant wear on cutting tools. The AI content should be kept as low as possible within the above-mentioned limits, and its proportion in oxide inclusions should be 15% or less.

上述した本発明の快削鋼の製造方法は任意であるが、そ
の生産性の高さから広く行なわれるようになった連続鋳
造法によ−っても高品質の製品が得られることが、本発
明の鋼のひとつの利点である。
Although the above-mentioned method for producing the free-cutting steel of the present invention is arbitrary, high-quality products can also be obtained by the continuous casting method, which has become widely used due to its high productivity. This is one advantage of the steel of the invention.

一般に連続鋳造法は在来のインゴット鋳造法にくらべて
冷却速度が速いため、鋼中の硫化物が微細化しやすく、
被剛性の向上が望み難かったが、本発明によるときは硫
化物が巨大球状化するから、連続鋳造法が採用できる。
In general, the continuous casting method has a faster cooling rate than the conventional ingot casting method, so the sulfides in the steel are more likely to become fine.
Although it was difficult to expect an improvement in rigidity, since the sulfide becomes gigantic spheres according to the present invention, a continuous casting method can be adopted.

連続鋳造法により製造するときは、前記した被削性改善
元素S、Te、Pb、13iをタンディツシュ内で溶鋼
に添加することが、これらの歩留りを高く得る上で好ま
しく、それとともに、Al2O3クラスターの浮上を促
進できるという効果が得られる。
When manufacturing by the continuous casting method, it is preferable to add the machinability-improving elements S, Te, Pb, and 13i to the molten steel in the tundish in order to obtain a high yield. This has the effect of promoting levitation.

以下に実例を示して、本発明の効果を実証する。Examples are shown below to demonstrate the effects of the present invention.

実 」および比 」 70トンアーク炉で、第1表に示す組成の鋼を溶解した
。 被削性改善元素は、表につぎのように記した方法で
それぞれ添加した。
Steel having the composition shown in Table 1 was melted in a 70 ton electric arc furnace. The machinability-improving elements were added by the methods shown in the table below.

Δ:炉内またはとりべ内で添加 Bニガゾール処理すなわち不活性ガスのバブリングによ
り露出した湯面に投入 C:注入管内で添加 D:タンディツシュ内で添加 溶鋼を、下記の方法で鋳造し、 実施例1.2.3および比較例A、81G・・・インゴ
ット(6,5t−ン) 実施例4.5および比較例D ・・・連続鋳造法 分塊圧延、線材圧延、引抜きおよび矯正を行なって、直
径11mmの丸棒とした。
Δ: Added B in the furnace or ladle into the exposed hot water surface by Nigazol treatment, that is, bubbling with inert gas C: Added in the injection pipe D: Added molten steel in the tundish was cast by the following method, Example 1.2.3 and Comparative Examples A, 81G... Ingot (6,5 tons) Example 4.5 and Comparative Example D... Continuous casting method, blooming rolling, wire rod rolling, drawing and straightening. , a round bar with a diameter of 11 mm.

この製品について、硫化物の形態、酸化物中のAI 2
03を分析した結果を第2表に示す。 硫化物形態はミ
クロ試料をイメージアナライザーを用いて解析し、また
酸化物はEPMAで分析して決定した。 巨大球状硫化
物と(よ、前記したように、長径5μ以上、短径2μ以
上で、長径/短径の比が5以下のものをいう。 その割
合は、やはり前記のように体積率であられすが、これは
解析により直接得られる面積率の値に対応することがわ
かっているので、面積率のデータを直接記載し1こ 。
About this product, sulfide form, AI2 in oxide
Table 2 shows the results of analyzing 03. The morphology of sulfides was determined by analyzing micro samples using an image analyzer, and the morphology of oxides was determined by analyzing them with EPMA. Giant spherical sulfides (as mentioned above, refers to those with a major axis of 5 μ or more, a minor axis of 2 μ or more, and a ratio of major axis / minor axis of 5 or less. As mentioned above, the ratio is also a volume fraction. However, it is known that this corresponds to the area ratio value obtained directly through analysis, so we will directly record the area ratio data.

第  1  表 □□□□□□A1□ (本発明) 1  0.06  0.012 1.00  0.0G
5 0.311 0.0010  0.009(A) 2  0.11  0.005 1.25  0.04
4 0.250 0.0007  0.011(A) 3  0.15  0.008 1.14.  0.0
55 0.273 0.0015  0.008(A) 4  0.08  0.152 1.30  0.07
5 0.350 0.0005  0.006(A) 5  0.09  0.010 1.21  0.06
8 0.314 0.008  0.007(D) (比較例) A   O,080,0351,100,0G5 0.
305 0.0041  0.008(A) B   O,090,0121,080,0720,3
020,02050,008<A) C’   0.10  0.052 1.15  0.
052 0.29G  0.0015  0.005<
A) D   O,080,0261,050,0680,3
330,00920,009(A) 〇   −玉肌 −2匠 一旦i  Te +Pb +
[3i0.0152  0.042 0.252 0.
092    0.386(C)   (B)   (
C) 0.0211  0.015 0.200 0.124
   0.339(B)    (B)    (B) 0、0060  0.053 0.340 0.050
    0.44.3(C)   (B)   (C) 0、009:多  0.040 0.280 0.12
0   0.440(D)   <D)   <8) 0.010!i   0.045 0.295 0.0
86    0.42G(D)   (D)   (D
) 0、0350  −   0.250−0.250(B
) 0.0030   −   0.150 0.100 
   0.250(B)   (B) 0.0420  0.030  −   0.050 
   0.080(C)       (C) 0.0380   −    −−    −    
   −1−」二」L No   巨大球状 硫化物  長径/短径 酸化物中
硫化物  平均粒径 比の平均  AI 203工笈り
一 ±LL−(%) (本発明) 1    72    5     3.5    3
.02    81    6     3.2   
 2.13    78    6     3.8 
   0.94    84    4    2.9
    1.55    77    5     3
、 0     ’1. 8(比較例) A    24   1.5  6.0  15B  
  32   1.2  5.9  58G    3
5   1.6  5.3   30    5   
0.813    25各試料について被削性を評価し
た。 試験は自動盤加工における加工能率、すなわち一
定の工具寿命において加工できる量で評価し、最も加工
能率が低い比較例りの鋼を基準にした指数であられした
。 そのデータを第3表に示す。 第3表は、本発明の
鋼のすぐれた被削性を明らかにしている。
Table 1 □□□□□□A1□ (present invention) 1 0.06 0.012 1.00 0.0G
5 0.311 0.0010 0.009(A) 2 0.11 0.005 1.25 0.04
4 0.250 0.0007 0.011(A) 3 0.15 0.008 1.14. 0.0
55 0.273 0.0015 0.008(A) 4 0.08 0.152 1.30 0.07
5 0.350 0.0005 0.006(A) 5 0.09 0.010 1.21 0.06
8 0.314 0.008 0.007 (D) (Comparative example) A O,080,0351,100,0G5 0.
305 0.0041 0.008(A) B O,090,0121,080,0720,3
020,02050,008<A) C' 0.10 0.052 1.15 0.
052 0.29G 0.0015 0.005<
A) DO,080,0261,050,0680,3
330,00920,009(A) 〇 -Tamahada -2 Takumi Once i Te +Pb +
[3i0.0152 0.042 0.252 0.
092 0.386(C) (B) (
C) 0.0211 0.015 0.200 0.124
0.339(B) (B) (B) 0,0060 0.053 0.340 0.050
0.44.3(C) (B) (C) 0,009: Multi 0.040 0.280 0.12
0 0.440(D) <D) <8) 0.010! i 0.045 0.295 0.0
86 0.42G (D) (D) (D
) 0, 0350 - 0.250 - 0.250 (B
) 0.0030 - 0.150 0.100
0.250(B) (B) 0.0420 0.030 - 0.050
0.080(C) (C) 0.0380 − -- −
-1-"2"L No Giant spherical sulfide Major axis/minor axis Sulfide in oxide Average particle size Average ratio AI 203 engineering 1 ±LL- (%) (Invention) 1 72 5 3.5 3
.. 02 81 6 3.2
2.13 78 6 3.8
0.94 84 4 2.9
1.55 77 5 3
, 0 '1. 8 (Comparative example) A 24 1.5 6.0 15B
32 1.2 5.9 58G 3
5 1.6 5.3 30 5
0.813 The machinability of each of the 25 samples was evaluated. The test evaluated the machining efficiency in automatic lathe machining, that is, the amount that could be machined within a certain tool life, and the index was determined based on a comparative example steel, which has the lowest machining efficiency. The data are shown in Table 3. Table 3 reveals the excellent machinability of the steels of the invention.

(本発明) 1    200 2    200 3    220 4    195 5    197 (比較例) A      130 B      140 C135 D      100(Present invention) 1 200 2 200 3 220 4 195 5 197 (Comparative example) A 130 B 140 C135 D 100

Claims (3)

【特許請求の範囲】[Claims] (1)  C:0.2%以下、Si  :0.2%以下
およびMn:2.0%以下を含有し、P:0゜10%以
下、N:0.02%以下、Al  :Q。 002%以下であって、さらにS:0.04〜0.50
%、Te :0.002〜0.50%、Pb :Q、0
1〜0.40%およびBi  :0゜01〜0.40%
を、Te +Pb 十Bi  : 0゜20%以上とな
るように含有し、0:0.0040〜0.030%をも
含有し、残余が実質的にFeからなり、かつ長径が5μ
以上、短径が2μ以上で長径/短径の比が5以下である
M’nS系介在物が全MnS系介在物の50%以上を占
め、酸化物系介在物中のAI 203の含有率が平均1
5%以下であることを特徴とする快削鋼。
(1) Contains C: 0.2% or less, Si: 0.2% or less, Mn: 2.0% or less, P: 0° or less, N: 0.02% or less, Al: Q. 002% or less, and further S: 0.04 to 0.50
%, Te: 0.002-0.50%, Pb: Q, 0
1~0.40% and Bi: 0°01~0.40%
, containing Te + Pb + Bi: 0°20% or more, and also contains 0:0.0040 to 0.030%, the remainder substantially consists of Fe, and the major axis is 5μ
As mentioned above, M'nS inclusions with a short axis of 2μ or more and a ratio of major axis/breadth axis of 5 or less account for more than 50% of all MnS inclusions, and the content of AI 203 in the oxide inclusions. is an average of 1
Free-cutting steel characterized by a 5% or less content.
(2)  C:0.2%以下、Si  :0.2%以下
およびMn:2.0%以下を含有し、p:o。 10%以下、N:0.02%以下、AI:0゜002%
以下であって、さらにS:0.04〜0.50%、Te
 :0.002〜0.50%、Pb :0.01〜0.
40%およびBi:0゜01〜0.40%を、Te +
pb +Bi  : 0゜20%以上となるように含有
し、o:o、o。 40〜0.030%をも含有し、残余が実質的にFeか
らなる溶鋼を連続鋳造法で鋳造することにより、長径が
5μ以上、短径が2μ以上で長径/短径の比が5以下で
あるMnS系介在物が全MnS系介在物の50%以上を
占め、酸化物系介在物中のAI 203の含有率が平均
15%以下である鋼を得ることを特徴とする快削鋼の製
造方法。
(2) Contains C: 0.2% or less, Si: 0.2% or less, and Mn: 2.0% or less, p:o. 10% or less, N: 0.02% or less, AI: 0°002%
or less, and further includes S: 0.04 to 0.50%, Te
: 0.002-0.50%, Pb: 0.01-0.
40% and Bi: 0°01~0.40%, Te +
pb + Bi: Contained at 0°20% or more, o: o, o. By casting molten steel containing 40 to 0.030% Fe with the remainder substantially consisting of Fe using a continuous casting method, the major axis is 5 μ or more, the short axis is 2 μ or more, and the ratio of major axis / minor axis is 5 or less. A free-cutting steel characterized by obtaining a steel in which MnS-based inclusions account for 50% or more of the total MnS-based inclusions, and the content of AI 203 in the oxide-based inclusions is 15% or less on average. Production method.
(3)  S、Te 、PbおよびBiの一部または全
部を連続鋳造に使用するタンディツシュ内で溶鋼に添加
する特許請求の範囲第2項の快削鋼の製造方法。
(3) The method for producing free-cutting steel according to claim 2, wherein some or all of S, Te, Pb, and Bi are added to molten steel in a tundish used for continuous casting.
JP8054983A 1983-05-09 1983-05-09 Free cutting steel and preparation thereof Granted JPS59205453A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8054983A JPS59205453A (en) 1983-05-09 1983-05-09 Free cutting steel and preparation thereof
US06/744,907 US4806304A (en) 1983-05-09 1985-06-17 Free cutting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8054983A JPS59205453A (en) 1983-05-09 1983-05-09 Free cutting steel and preparation thereof

Publications (2)

Publication Number Publication Date
JPS59205453A true JPS59205453A (en) 1984-11-21
JPH0454735B2 JPH0454735B2 (en) 1992-09-01

Family

ID=13721420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8054983A Granted JPS59205453A (en) 1983-05-09 1983-05-09 Free cutting steel and preparation thereof

Country Status (1)

Country Link
JP (1) JPS59205453A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149854A (en) * 1985-12-23 1987-07-03 Kobe Steel Ltd Free-cutting steel
US4719079A (en) * 1985-07-24 1988-01-12 Nippon Steel Corporation Continuous-cast low-carbon resulfurized free-cutting steel
JPS63121642A (en) * 1986-11-10 1988-05-25 Daido Steel Co Ltd Free-cutting steel
EP1188846A1 (en) * 2000-08-30 2002-03-20 Kabushiki Kaisha Kobe Seiko Sho Machine structure steel superior in chip disposability and mechanical properties
US6579385B2 (en) 2000-08-31 2003-06-17 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Free machining steel for use in machine structure of excellent mechanical characteristics
JP2009062567A (en) * 2007-09-05 2009-03-26 Sumitomo Metal Ind Ltd Method for producing lead-containing steel
WO2013047739A1 (en) 2011-09-30 2013-04-04 新日鐵住金株式会社 High-strength hot-dip galvanized steel sheet with excellent mechanical cutting characteristics, high-strength alloyed hot-dip galvanized steel sheet, and method for producing said sheets

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126718A (en) * 1983-01-07 1984-07-21 Daido Steel Co Ltd Manufacture of stel material with superior cold workability

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126718A (en) * 1983-01-07 1984-07-21 Daido Steel Co Ltd Manufacture of stel material with superior cold workability

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4719079A (en) * 1985-07-24 1988-01-12 Nippon Steel Corporation Continuous-cast low-carbon resulfurized free-cutting steel
JPS62149854A (en) * 1985-12-23 1987-07-03 Kobe Steel Ltd Free-cutting steel
JPH05345951A (en) * 1985-12-23 1993-12-27 Kobe Steel Ltd Free cutting steel
JPS63121642A (en) * 1986-11-10 1988-05-25 Daido Steel Co Ltd Free-cutting steel
EP1188846A1 (en) * 2000-08-30 2002-03-20 Kabushiki Kaisha Kobe Seiko Sho Machine structure steel superior in chip disposability and mechanical properties
US6596227B2 (en) 2000-08-30 2003-07-22 Kobe Steel, Ltd. Machine structure steel superior in chip disposability and mechanical properties and its method of making
US6579385B2 (en) 2000-08-31 2003-06-17 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Free machining steel for use in machine structure of excellent mechanical characteristics
JP2009062567A (en) * 2007-09-05 2009-03-26 Sumitomo Metal Ind Ltd Method for producing lead-containing steel
WO2013047739A1 (en) 2011-09-30 2013-04-04 新日鐵住金株式会社 High-strength hot-dip galvanized steel sheet with excellent mechanical cutting characteristics, high-strength alloyed hot-dip galvanized steel sheet, and method for producing said sheets
US9708679B2 (en) 2011-09-30 2017-07-18 Nippon Steel & Sumitomo Metal Corporation High-strength hot-dip galvanized steel sheet and high-strength alloyed hot-dip galvanized steel sheet excellent in mechanical cutting property, and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0454735B2 (en) 1992-09-01

Similar Documents

Publication Publication Date Title
JP2001355048A (en) Ferritic free-cutting stainless steel
US4806304A (en) Free cutting steel
JP3294245B2 (en) High carbon steel wire with excellent drawability and fatigue resistance after drawing
JP4041413B2 (en) Machine structural steel having excellent chip disposal and manufacturing method thereof
JPS59205453A (en) Free cutting steel and preparation thereof
KR100604119B1 (en) Free-cutting steel
US6355089B2 (en) Process for the manufacture of carbon or low-alloy steel with improved machinability
JPS59205454A (en) Free cutting steel and preparation thereof
KR101008130B1 (en) Medium carbon sulfur free cutting steel having excellent machinability and method for refining the melting iron of the same
JP2004068128A (en) Steel for machine structural use having excellent chip crushability
JPH07173573A (en) Free-cutting steel excellent in machinability by carbide tool and internal quality
CA2147614C (en) Continuous-cast and steel product having dispersed fine particles
JPH0545661B2 (en)
JPS62103340A (en) Ca free cutting steel for mechanical structure
JP4157958B2 (en) Sulfur and sulfur composite free-cutting steel with excellent machinability
JPS6120625B2 (en)
JP2001214240A (en) Free cutting steel excellent in machinability and producing method thererfor
JP3891558B2 (en) Low carbon free cutting steel
JPH09157791A (en) Free cutting steel excellent in hot workability
CN117344246A (en) Low-carbon high-sulfur bismuth-containing free-cutting steel and manufacturing method thereof
JPS5946301B2 (en) Steel for cold forging with excellent machinability and its manufacturing method
JP3537657B2 (en) Wire rod for steel wire and method of manufacturing the same
JP2614656B2 (en) Pb-Bi free-cutting steel and production method thereof
JP4295958B2 (en) Low carbon sulfur composite free cutting steel with excellent machinability
JPH0564229B2 (en)