JPH09157791A - Free cutting steel excellent in hot workability - Google Patents

Free cutting steel excellent in hot workability

Info

Publication number
JPH09157791A
JPH09157791A JP34703495A JP34703495A JPH09157791A JP H09157791 A JPH09157791 A JP H09157791A JP 34703495 A JP34703495 A JP 34703495A JP 34703495 A JP34703495 A JP 34703495A JP H09157791 A JPH09157791 A JP H09157791A
Authority
JP
Japan
Prior art keywords
less
steel
content
cutting
ductility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34703495A
Other languages
Japanese (ja)
Inventor
Tomonori Haniyuda
智紀 羽生田
Sadayuki Nakamura
貞行 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP34703495A priority Critical patent/JPH09157791A/en
Publication of JPH09157791A publication Critical patent/JPH09157791A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a free cutting steel excellent in hot workability and machinability. SOLUTION: This low carbon sulfur-lead incorporated free cutting steel excellent in high temp. ductility is the one contg., as alloy elements, by weight, 0.02 to 0.15% C, 0.6 to 1.5% Mn, 0.10 to 0.40% S, 0.10 to 0.40% Pb, 0.010 to 0.020% O and 0.007 to 0.020% N and furthermore contg., at need, one or >=two kinds selected from 0.005 to 0.15% Te, 0.02 to 0.30% Se, 0.03 to 0.20% Bi and 0.0030 to 0.0200% Sn, and in which the content of P is limited to <=0.050%, Ti+Zr+Nb to <=0.020%, Si to <=0.005% and Al to <=0.0010%, and the balance substantial Fe, and in which the average area of sulfide inclusions in the surface layer part in the cross section vertical to the rolling direction of the steel is regulated to 5 to 20μm<2> .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は被削性を向上する添加元
素であるところのSおよびPbを含有した快削鋼に関
し,さらに詳しくは熱間加工性および被削性に優れる低
炭素硫黄鉛複合快削鋼に関する.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a free-cutting steel containing S and Pb, which are additive elements for improving machinability, and more particularly to a low carbon sulfur lead having excellent hot workability and machinability. Regarding composite free-cutting steel.

【0002】[0002]

【従来の技術】低炭素硫黄鉛複合快削鋼は機械構造用炭
素鋼などに比べて熱間加工性が劣る.特に,インゴット
や連続鋳造鋳片を素材とする熱間圧延の後期において温
度の低下した部分の表面の延性低下による割れが発生し
やすい.したがって,低炭素硫黄鉛複合快削鋼の製造に
おいては熱間圧延の中間素材であるビレットの表面欠陥
をグラインダーなどにより除去する必要がある.
2. Description of the Related Art Low-carbon sulfur-lead composite free-cutting steel is inferior in hot workability to carbon steel for machine structures. In particular, in the latter stage of hot rolling using ingots and continuously cast slabs as raw materials, cracks are likely to occur due to the decrease in ductility of the surface where the temperature has decreased. Therefore, in the production of low-carbon sulfur-lead composite free-cutting steel, it is necessary to remove the surface defects of the billet, which is an intermediate material for hot rolling, with a grinder or the like.

【0003】[0003]

【発明が解決しようとする問題点】低炭素硫黄鉛快削鋼
の熱間圧延の中間素材における鋼片整備作業を軽減する
ことは製造コストを低減するために有効である.このた
めには,熱間圧延前の加熱温度を極力高め,熱間圧延後
期の温度を高く保つことが有効であるが,圧延前の加熱
温度を高くし過ぎても圧延初期に大規模な割れが発生す
る場合があるため限界がある.この圧延初期における大
規模な割れの原因は粒界の局部的な溶融によるものであ
り,SやPbなどの被削性を改善する介在物を形成する
元素を低減することが改善に有効であるが,同時に被削
性が劣化する.したがって,低炭素硫黄鉛複合快削鋼の
最も重要な特性である被削性を劣化させずに圧延前の加
熱温度を高くすることは困難であるという問題があっ
た、
[Problems to be Solved by the Invention] It is effective to reduce the manufacturing cost to reduce the billet maintenance work in the intermediate material of the hot rolling of the low carbon sulfur lead free-cutting steel. For this purpose, it is effective to raise the heating temperature before hot rolling as much as possible and keep the temperature at the latter stage of hot rolling high. However, even if the heating temperature before rolling is too high, large-scale cracking occurs at the beginning of rolling. There is a limit because it may occur. The cause of the large-scale cracks at the initial stage of rolling is due to the local melting of grain boundaries, and it is effective to reduce the elements forming the inclusions such as S and Pb that improve the machinability. However, at the same time, machinability deteriorates. Therefore, it is difficult to raise the heating temperature before rolling without degrading the machinability, which is the most important characteristic of low carbon sulfur lead composite free cutting steel,

【0004】[0004]

【問題点を解決するための手段】本発明者は低炭素硫黄
鉛複合快削鋼の化学成分と高温における延性および被削
性の関係を調査した結果,以下のようなことを見出し
た.
[Means for Solving the Problems] As a result of investigating the relationship between the chemical composition of the low carbon sulfur lead composite free cutting steel and the ductility and machinability at high temperature, the present inventors have found the following.

【0005】1250℃以上の昇温における延性の急激
な劣化はS,Te,Pb,Biなどの快削性介在物形成
元素やPの増加によって顕著になる.これらの含有量の
低下に伴い,延性が向上する傾向があるが,特にPの影
響が著しい.したがって,Pの含有量の低減により延性
が急激に劣化する温度(延性低下温度)が上昇し,熱間
加工における加熱温度を高くすることが可能になる.た
だし,Pが0.050%未満ではその効果は飽和する.
また,一般的に被削性として論じられる切削工具寿命は
S,Pb,Te,Biなどの快削性介在物形成元素の低
減により著しく劣化するが,Pの低減による影響は比較
的少なく,低炭素硫黄鉛複合快削鋼の熱間加工性の改善
の手段として最適である.ただし,Pの低減によって構
成刃先が生成しやすくなり,旋削加工における仕上げ面
粗さを増大させる.
The rapid deterioration of ductility at a temperature rise of 1250 ° C. or more becomes remarkable due to the increase of P and free-cutting inclusion forming elements such as S, Te, Pb and Bi. Ductility tends to improve as the content of these decreases, but the effect of P is particularly remarkable. Therefore, the temperature at which ductility sharply deteriorates (ductility lowering temperature) rises due to the decrease in the P content, and it becomes possible to raise the heating temperature in hot working. However, the effect is saturated when P is less than 0.050%.
Also, the cutting tool life, which is generally discussed as machinability, is significantly deteriorated by the reduction of free-cutting inclusion forming elements such as S, Pb, Te, and Bi, but the reduction of P has a relatively small effect and is low. It is optimal as a means for improving the hot workability of carbon-sulfur-lead composite free-cutting steel. However, the reduction of P facilitates the formation of the built-up cutting edge and increases the finished surface roughness in turning.

【0006】このPの低減による仕上げ面粗さの増大は
N(窒素)含有量を増加することで回復が可能である
が,Nの増量により融点の高い炭窒化物が凝固時に晶出
し,これらの炭窒化物が硫化物の晶出核として作用して
共晶反応を促進し,硫化物を微細化するとともに熱間圧
延により圧延方向に長く伸長しやすい組成にする.特
に,脱酸能力の大きいSiやAlなどの元素を添加しな
い低炭素硫黄快削鋼においては,酸化物の生成温度が硫
化物の晶出温度より低く,硫化物の晶出核となり得ない
が,生成温度の高い炭窒化物が存在すると,炭窒化物が
晶出核として作用し,硫化物を顕著に微細化かつ細長く
する.硫化物の大きさや形状は切削工具の寿命に大きく
影響し,硫化物が大きく,球状に近いほど工具寿命を延
長する効果が大きい.したがって,Pの低減による仕上
げ面粗さの増大をNの増量により補うと,硫化物が微細
化かつ細長くなって切削工具寿命を劣化させる.本発明
者は,以上のようなNの増量に伴う弊害を効果的かつ経
済的に防止する方法を鋭意研究した結果,生成温度の高
い炭窒化物を形成するTi,Zr,Nbを極力低減する
ことで炭窒化物の晶出量を低減し,硫化物の微細化を最
小限に抑え,切削工具寿命の劣化を実用上無視できる程
度に抑えることが可能であることを発見した.
The increase in the finished surface roughness due to the reduction of P can be recovered by increasing the N (nitrogen) content, but due to the increase of N, carbonitrides having a high melting point crystallize during solidification, and The carbonitride of No. 2 acts as a crystallization nucleus of sulfide to promote the eutectic reaction, refine the sulfide, and make the composition easy to elongate in the rolling direction by hot rolling. In particular, in low carbon sulfur free-cutting steel that does not add elements such as Si and Al, which have a high deoxidizing ability, the formation temperature of oxides is lower than the crystallization temperature of sulfides, and it cannot form crystallization nuclei of sulfides. In the presence of carbonitrides with a high formation temperature, carbonitrides act as crystallization nuclei, making sulfides extremely fine and elongated. The size and shape of sulfides have a great influence on the life of the cutting tool, and the larger the sulfides and the closer they are spherical, the greater the effect of extending the tool life. Therefore, if the increase in the finished surface roughness due to the reduction of P is compensated for by the increase of N, the sulfides become fine and elongated and the cutting tool life is deteriorated. The present inventor has earnestly studied a method for effectively and economically preventing the above-mentioned harmful effects caused by the increase of N, and as a result, Ti, Zr, and Nb forming carbonitride having a high generation temperature are reduced as much as possible. By doing so, it was discovered that it is possible to reduce the amount of carbonitride crystallization, minimize the refinement of sulfides, and suppress the deterioration of the cutting tool life to a practically negligible level.

【0007】すなわち,本発明にかかわる快削鋼は,重
量で,C:0.02〜0.15%,Mn:0.6〜1.
5%,S:0.10〜0.40%,Pb:0.10〜
0.40%,O:0.010〜0.020%,N:0.
007〜0.020%を基本成分とし,さらに,P:
0.050%以下,Ti+Zr+Nb:0.020%以
下,Si:0.005%以下,Al:0.0010%以
下に制限し,残部実質的にFeからなり,かつ,鋼材の
圧延方向に垂直な断面の表層部における硫化物系介在物
の平均面積が5〜20μmであることを特徴とする高
温延性に優れた低炭素硫黄鉛複合快削鋼であり,これに
さらに,必要に応じて,Te:0.005〜0.15
%,Se:0.02〜0.30%,Bi:0.03〜
0.20%,Sn:0.0030〜0.0200%のう
ちから選んだ1種または2種以上を含有する低炭素快削
鋼とすることもできる.
That is, the free-cutting steel according to the present invention has a weight ratio of C: 0.02 to 0.15% and Mn: 0.6 to 1.
5%, S: 0.10 to 0.40%, Pb: 0.10
0.40%, O: 0.010 to 0.020%, N: 0.
007 to 0.020% as a basic component, and further P:
0.050% or less, Ti + Zr + Nb: 0.020% or less, Si: 0.005% or less, Al: 0.0010% or less, the balance consisting essentially of Fe, and perpendicular to the rolling direction of the steel material. A low-carbon sulfur-lead composite free-cutting steel excellent in high-temperature ductility, characterized by having an average area of sulfide-based inclusions in the surface portion of the cross section of 5 to 20 μm 2 , and further, if necessary, Te: 0.005-0.15
%, Se: 0.02 to 0.30%, Bi: 0.03 to
It is also possible to use low-carbon free-cutting steel containing one or more selected from 0.20% and Sn: 0.0030 to 0.0200%.

【0008】本発明の快削鋼の請求範囲の限定理由につ
いて以下に説明する.
The reasons for limiting the claims of the free-cutting steel of the present invention will be described below.

【0009】C:0.02〜0.15% Cは鋼の強度を向上するが,同時に延性を低下させる元
素であり,その含有量が極めて低い領域においては鋼の
適度な延性の低下により被削性を向上する効果がある.
このためには含有量を重量で0.02%以上とする必要
があるが,含有量が0.15%を越えると被削材の硬度
が高くなり,被削性が劣化する.よって,Cの含有量は
0.02〜0.15%とする.
C: 0.02 to 0.15% C is an element that improves the strength of the steel, but at the same time reduces the ductility. In the region where the content is extremely low, the ductility of the steel decreases to an appropriate degree. It has the effect of improving machinability.
For this purpose, the content must be 0.02% or more by weight, but if the content exceeds 0.15%, the hardness of the work material becomes high and the machinability deteriorates. Therefore, the content of C is set to 0.02 to 0.15%.

【0010】Mn:0.6〜1.5% Mnは硫化物を形成する元素であり,含有量が0.6%
未満では熱間加工性が劣化し,また,1.5%を越える
と被削材の加工硬化が顕著になり被削性が劣化する.よ
って,Mnの含有量は0.6〜1.5%とする.
Mn: 0.6 to 1.5% Mn is an element that forms a sulfide and its content is 0.6%.
If it is less than 1.5%, the hot workability deteriorates, and if it exceeds 1.5%, the work hardening of the work material becomes remarkable and the machinability deteriorates. Therefore, the Mn content is set to 0.6 to 1.5%.

【0011】S:0.10〜0.40% Sは被削性の向上に有効な(Mn,Cr)Sを形成する
元素であるが,含有量が0.10%未満では効果が小さ
く,また,0.40%を越えると熱間加工性の低下が著
しい.よって,Sの含有量は0.10〜0.40%とす
る.
S: 0.10 to 0.40% S is an element that forms (Mn, Cr) S which is effective in improving machinability, but if the content is less than 0.10%, the effect is small. On the other hand, if it exceeds 0.40%, the hot workability is significantly deteriorated. Therefore, the S content is 0.10 to 0.40%.

【0012】Pb:0.10〜0.40% Pbは被削性の向上に有効な元素であり,含有量が0.
10%未満では効果が小さく,また,0.40%を越え
ると熱間加工性および延性の低下が著しい.よって,P
bの含有量は0.10〜0.40%とする.
Pb: 0.10 to 0.40% Pb is an element effective for improving the machinability, and the content thereof is 0.
If it is less than 10%, the effect is small, and if it exceeds 0.40%, the hot workability and ductility are remarkably deteriorated. Therefore, P
The content of b is 0.10 to 0.40%.

【0013】O:0.010〜0.020% O(酸素)は硫化物の晶出形態を左右する元素であり,
0.010%未満の場合硫化物が微細になり,超硬切削
工具の寿命が劣化する.一方,0.020%を越えると
酸化物が増加し,ハイス工具の寿命が劣化する.したが
って,Oの含有量は0.010〜0.020%とする.
O: 0.010 to 0.020% O (oxygen) is an element that influences the crystallization form of sulfide,
If it is less than 0.010%, the sulfide becomes fine and the life of the carbide cutting tool deteriorates. On the other hand, if it exceeds 0.020%, the amount of oxides increases and the life of the HSS tool deteriorates. Therefore, the content of O is set to 0.010 to 0.020%.

【0014】P:0.050%以下 Pは切削加工時の仕上げ面粗さを低減する元素である
が,0.050%を越えて含有されるとインゴットや連
続鋳造鋳片の熱間加工の初期段階における高温延性が低
下し,熱間加工可能な最高温度が低下する.したがっ
て,Pの含有量は0.050%以下とする.なお,熱間
加工性と仕上げ面粗さから好ましい範囲は0.040〜
0.050%である.
P: 0.050% or less P is an element that reduces the finished surface roughness during cutting, but if it is contained in excess of 0.050%, it may cause hot working of ingots and continuously cast slabs. The hot ductility in the initial stage decreases, and the maximum temperature that can be hot-worked decreases. Therefore, the P content is 0.050% or less. From the viewpoint of hot workability and finished surface roughness, the preferable range is 0.040-
It is 0.050%.

【0015】N:0.007〜0.020% NはPの含有量を低減した場合に生じる切削加工におけ
る仕上げ面粗さの増大を防止する効果を有する元素であ
り,0.007%未満ではその効果が小さく,0.02
0%を越えるとブローホールなどの鋳造欠陥が発生しや
すくなる.したがって,Nの含有量は0.007〜0.
020%とする.
N: 0.007 to 0.020% N is an element having the effect of preventing an increase in the finished surface roughness in cutting that occurs when the P content is reduced, and if less than 0.007%. The effect is small, 0.02
If it exceeds 0%, casting defects such as blowholes are likely to occur. Therefore, the N content is 0.007 to 0.
020%.

【0016】Ti+Zr+Nb:0.020%以下 Ti,ZrおよびNbはNと結合して,凝固時に炭窒化
物を生成させ,この炭窒化物が硫化物の晶出核として作
用し,共晶硫化物の晶出を促進し硫化物を微細化する.
その影響はTi,ZrおよびNbの含有量の合計が0.
020%を越えると顕著になり,切削工具寿命を劣化さ
せる.したがって,Ti,ZrおよびNbの含有量の合
計を0.020%以下とする.
Ti + Zr + Nb: 0.020% or less Ti, Zr and Nb combine with N to form carbonitrides during solidification, and these carbonitrides act as crystallization nuclei of sulfides, and eutectic sulfides It promotes the crystallization of and refines sulfides.
The effect is that the total content of Ti, Zr and Nb is 0.
When it exceeds 020%, it becomes remarkable and the life of the cutting tool is deteriorated. Therefore, the total content of Ti, Zr and Nb is set to 0.020% or less.

【0017】Si:0.005%以下 Siは脱酸元素であり,極微量の混入でも硫化物の晶出
核となる酸化物を晶出せしめることで硫化物の晶出形態
に影響を与え,これを微細化し,切削工具寿命を劣化さ
せる.その影響は0.005%を越えると顕著になる.
したがって,Siの含有量を0.005%以下とする.
Si: 0.005% or less Si is a deoxidizing element and affects the crystallization morphology of sulfide by crystallizing an oxide that becomes a crystallization nucleus of sulfide even if an extremely small amount is mixed, This is refined and the cutting tool life is deteriorated. The effect becomes remarkable when it exceeds 0.005%.
Therefore, the Si content is set to 0.005% or less.

【0018】Al:0.0010%以下 AlもSiと全く同様の影響を与えるものであり,Si
の場合よりもその影響が大きく,0.0010%を越え
ると切削工具寿命を劣化させる.したがってAlの含有
量は0.0010%以下とする.
Al: 0.0010% or less Al has the same effect as Si, and Si
The effect is greater than in the case of, and if it exceeds 0.0010%, the cutting tool life is deteriorated. Therefore, the Al content is 0.0010% or less.

【0019】Te:0.005〜0.15% Teは被削性を改善する元素であり,第2の発明におい
て必要に応じて添加されるが,0.005%未満では効
果が小さく,0.15%を越えると熱間加工性を害す
る.よってTeの含有量は0.005〜0.15%とす
る.
Te: 0.005 to 0.15% Te is an element that improves machinability and is added as necessary in the second invention, but if it is less than 0.005%, the effect is small, and If it exceeds 15%, the hot workability is impaired. Therefore, the content of Te is set to 0.005 to 0.15%.

【0020】Se:0.02〜0.30% Seは一般にはMnおよびSと化合し,MnSに比べて
熱間性に対する悪影響の小さいMn(S,Se)を形成
する元素であり,第2の発明において被削性を向上する
目的で必要に応じて添加される.0.02%未満では被
削性を改善する効果が小さく,0.30%を越えると熱
間加工性を著しく害するとともに,添加費用が高くな
る.よって,Seの含有量は0.02〜0.30%とす
る.
Se: 0.02 to 0.30% Se is an element that generally combines with Mn and S to form Mn (S, Se), which has a smaller adverse effect on hot workability than MnS. In the invention of 1), it is added as necessary for the purpose of improving machinability. If it is less than 0.02%, the effect of improving the machinability is small, and if it exceeds 0.30%, the hot workability is significantly impaired and the addition cost becomes high. Therefore, the content of Se is set to 0.02 to 0.30%.

【0021】Bi:0.03〜0.20% BiはPbと同様に金属介在物を形成し,被削性を改善
する元素であるが,特にPbと複合添加すると低速切削
における構成刃先の付着を抑制する効果があり,第2の
発明において必要に応じて添加される.0.03%未満
ではその効果が小さく,0.20%を越えると熱間加工
性を著しく害する.よって,Biの含有量は0.03〜
0.20%とする.
Bi: 0.03 to 0.20% Bi is an element that forms metal inclusions like Pb and improves machinability. Especially, when Pb and Pb are added in combination, the adhesion of the constituent cutting edge in low speed cutting. And has the effect of suppressing the above, and is added as necessary in the second invention. If it is less than 0.03%, its effect is small, and if it exceeds 0.20%, the hot workability is significantly impaired. Therefore, the Bi content is 0.03 to
0.20%.

【0022】Sn:0.0030〜0.0200% SnはPbと複合添加すると低速切削における構成刃先
の付着を抑制する効果があり,第2の発明において必要
に応じて添加される.0.0030%未満ではその効果
が小さく,0.0200%を越えると熱間加工性を著し
く害する.よって,Snの含有量は0.0030〜0.
0200%とする.
Sn: 0.0030 to 0.0200% Sn has the effect of suppressing the adhesion of the constituent cutting edges in low speed cutting when added in combination with Pb, and is added as necessary in the second invention. If it is less than 0.0030%, its effect is small, and if it exceeds 0.0200%, the hot workability is significantly impaired. Therefore, the Sn content is 0.0030 to 0.
It is set to 0200%.

【0023】硫化物系介在物の平均面積:5〜20μm
鋼材の横断面における硫化物系介在物の大きさは硫化物
の晶出形態や熱間加工条件により変化し,その増大は仕
上げ面粗さの低減に有効である.特に外周旋削において
は,表層部の硫化物平均面積が仕上げ面粗さに顕著な影
響を与え,5μm未満では良好な仕上げ面が得られ
ず,20μmを越えると仕上げ面の光沢度が劣化す
る.したがろて硫化物系介在物の平均面積は5〜20μ
とする.
Average area of sulfide inclusions: 5 to 20 μm
The size of sulfide inclusions in the cross section of two steels changes depending on the crystallization morphology of sulfide and hot working conditions, and its increase is effective in reducing the surface roughness. Especially in the outer circumference turning, the average area of sulfides on the surface layer has a significant effect on the finished surface roughness, and if it is less than 5 μm 2 , a good finished surface cannot be obtained, and if it exceeds 20 μm 2 , the glossiness of the finished surface deteriorates. Do. Therefore, the average area of sulfide-based inclusions is 5 to 20μ.
m 2 .

【0024】[0024]

【実施例】以下に実施例を挙げて本発明を説明する.表
1に示す化学組成の圧延鋼材を製造したのち,冷間引抜
き加工により直径10mmの丸棒材とした.なおD1お
よびC1は7tonのインゴット鋳造材であり,他はす
べて連続鋳造材である.
EXAMPLES The present invention will be described below with reference to examples. After manufacturing rolled steel with the chemical composition shown in Table 1, a round bar with a diameter of 10 mm was formed by cold drawing. D1 and C1 are 7 ton ingot cast materials, and the others are all continuous cast materials.

【0025】[0025]

【表1】 [Table 1]

【0026】表1においてD1およびD2は本発明の請
求項第1項に該当する快削鋼であり,D3からD7は本
発明の請求項第2項に該当する快削鋼である.また,C
1からC4は発明鋼D1およびD2に対する比較鋼であ
り,C5およびC6はそれぞれ発明鋼D4およびD6に
対する比較鋼である.比較鋼C1およびC2は一般に広
く使用されている低炭素硫黄鉛複合快削鋼JIS−SU
M24Lである.C3からC6の比較鋼は本発明の効果
を明らかにするために試作した鋼種であり,対応する発
明鋼とほぼ同等の主要合金元素および快削性介在物形成
元素量を含有するものの,NまたはP,Ti+Zr+N
b量,硫化物平均面積のうちいずれかまたは複数が本発
明の請求範囲を逸脱している鋼種である.表1において
D*は横断面において表面から0.5mmの位置の硫化
物系介在物の平均面積である.また,T*は高速熱間引
張試験において,最も高い絞り値が得られる温度より高
温側で,絞り値が最高値の二分の一に低下する温度であ
る.さらに,R*は表2に示す条件で旋削加工した部品
の仕上げ面の十点平均粗さ(Rz)であり,L*は表2
に示す条件の切削加工において超硬工具の逃げ面摩耗の
最大値が0.3mmになる部品加工個数を工具寿命とし
て表したものである.
In Table 1, D1 and D2 are free-cutting steels corresponding to claim 1 of the present invention, and D3 to D7 are free-cutting steels of claim 2 of the present invention. Also, C
1 to C4 are comparative steels for the invention steels D1 and D2, and C5 and C6 are comparative steels for the invention steels D4 and D6, respectively. Comparative steels C1 and C2 are generally widely used low carbon sulfur lead composite free-cutting steel JIS-SU.
It is M24L. The comparative steels of C3 to C6 are steel grades prototyped for clarifying the effect of the present invention, and although they contain almost the same major alloying elements and free-cutting inclusion forming element amounts as the corresponding invention steels, N or P, Ti + Zr + N
One or more of the b amount and the average sulfide area is a steel type that deviates from the claims of the present invention. In Table 1, D * is the average area of the sulfide-based inclusions at a position 0.5 mm from the surface in the cross section. In addition, T * is the temperature at which the drawing value drops to one half of the maximum value on the higher temperature side than the temperature at which the highest drawing value is obtained in the high-speed hot tensile test. Furthermore, R * is the ten-point average roughness (Rz) of the finished surface of the part that has been turned under the conditions shown in Table 2, and L * is Table 2
The tool life is the number of machined parts for which the maximum flank wear of the cemented carbide tool is 0.3 mm in the cutting under the conditions shown in.

【0027】[0027]

【表2】 [Table 2]

【0028】発明鋼はいずれも比較鋼C1およびC2に
対して延性低下温度(T*)が高い.また,仕上げ面粗
さ(R*)は比較鋼C1およびC2と同等もしくは小さ
く,工具寿命(L*)は同等もしくは長い.C3からC
6比較鋼は延性低下温度,仕上げ面粗さおよび切削工具
寿命のいずれかまたは複数が発明鋼に対して劣ってい
る.
The invention steels have higher ductility lowering temperatures (T *) than the comparative steels C1 and C2. Further, the finished surface roughness (R *) is equal to or smaller than that of the comparative steels C1 and C2, and the tool life (L *) is equal or long. C3 to C
6 The comparative steels are inferior to the invention steels in ductility lowering temperature, finished surface roughness and / or cutting tool life.

【0029】さらに詳細に検証すると,インゴットによ
り製造した発明鋼D1および連続鋳造により製造した発
明鋼D2は,それぞれの比較鋼C1およびC2に比べて
延性低下温度が高く,仕上げ面粗さおよび工具寿命は同
等である.これに対し,比較鋼C3はP含有量が本発明
の請求範囲に包含されるため延性低下温度が高いもの
の,N含有量が低いため仕上げ面粗さが大きい.また,
比較鋼C4はPの含有量が本発明の請求範囲に包含され
るため延性低下温度が高いものの,Ti,ZrおよびN
bの含有量の合計(Ti+Zr÷Nb)が本発明の請求
範囲より高いため硫化物が小さい(すなわちD*が小さ
い)ことから,工具寿命が短く,さらにNが有効に作用
しないため仕上げ面粗さも大きい.発明鋼D3からD6
は本発明の請求項第2項に相当する鋼種であり,第1項
該当鋼種D2に対してTe,Se,BiおよびSnの1
種または2種以上を添加した被削性のさらに優れる鋼種
であるが,いずれも比較鋼C2に対して延性低下温度が
高く,仕上げ面粗さが小さく,工具寿命が長い.これに
対して,発明鋼D4に対応する比較鋼C5はPおよびT
i+Zr+Nbが本発明の請求範囲より高いため,延性
低下温度が低く,工具寿命も短い.また,発明鋼D6に
対応する比較鋼C6はNの含有量が本発明の請求範囲よ
り低く,Pの含有量が本発明の請求範囲より高いため,
発明鋼D6に対して延性低下温度が低く,仕上げ面粗さ
も大きい.
When examined in more detail, the invention steel D1 produced by the ingot and the invention steel D2 produced by continuous casting have higher ductility lowering temperatures than the respective comparison steels C1 and C2, and the finished surface roughness and the tool life. Are equivalent. On the other hand, Comparative Steel C3 has a high ductility lowering temperature because the P content falls within the scope of the claims of the present invention, but has a large finished surface roughness because the N content is low. Also,
Comparative steel C4 has a high ductility lowering temperature because the content of P is included in the scope of the claims of the present invention, but Ti, Zr and N
Since the total content of b (Ti + Zr ÷ Nb) is higher than the claimed range of the present invention, the sulfide is small (that is, D * is small), resulting in a short tool life, and because N does not act effectively, the finished surface roughness is small. It is also big. Invention Steels D3 to D6
Is a steel grade corresponding to claim 2 of the present invention. One of Te, Se, Bi and Sn is added to the steel grade D2 corresponding to the first claim.
Steels or steels with more than two types of machinability added, but both have higher ductility lowering temperature, smaller finished surface roughness, and longer tool life than Comparative Steel C2. On the other hand, the comparative steel C5 corresponding to the invention steel D4 has P and T
Since i + Zr + Nb is higher than the claimed range of the present invention, the ductility lowering temperature is low and the tool life is short. Further, the comparative steel C6 corresponding to the invention steel D6 has a N content lower than the claimed range of the present invention and a P content higher than the claimed range of the present invention.
Compared to invention steel D6, the ductility lowering temperature is low and the finished surface roughness is large.

【0030】すなわち,発明鋼は延性低下温度,仕上げ
面粗さおよび切削工具寿命のすべてにおいてSUM24
Lに比べて優れており,このような特性の両立には本発
明のN,P,Ti+Zr+Nbおよび硫化物平均面積の
請求範囲のすべてを満足しなければならないことが明ら
かである.
In other words, the invention steel is SUM24 in terms of ductility lowering temperature, finish surface roughness and cutting tool life.
It is superior to L, and it is clear that all of the claims of N, P, Ti + Zr + Nb, and the average area of sulfide of the present invention must be satisfied in order to satisfy such characteristics.

【0031】[0031]

【発明の効果】以上のように本発明によれば,低炭素硫
黄鉛複合快削鋼におけるPを低減し,これによる切削仕
上げ面粗さの劣化をNを増量することで補い,さらに高
N化による硫化物の微細化をTi,Zr,Nbを低減す
ることで防止することにより,仕上げ面粗さおよび切削
工具寿命を保ちながら従来の鋼種に比べて熱間加工の加
熱温度を高くすることが可能である.これにより,硫黄
鉛複合快削鋼の製造において熱間加工の中間段階での再
加熱の省略や鋼片整備工程の簡略化,さらには熱間加工
状態の表面品質の向上が可能となり,産業上の利点は極
めて大きい.
As described above, according to the present invention, P in the low carbon sulfur lead composite free-cutting steel is reduced, and the deterioration of the cut surface roughness due to this is compensated for by increasing N, and a higher N By increasing Ti, Zr, and Nb to prevent the refinement of sulfides due to aging, the heating temperature for hot working is increased compared to conventional steel types while maintaining the finished surface roughness and cutting tool life. Is possible. As a result, in the production of sulfur-lead composite free-cutting steel, it becomes possible to omit reheating in the intermediate stage of hot working, simplify the billet maintenance process, and improve the surface quality in the hot working state. The advantages of are extremely large.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量で,C:0.02〜0.15%,M
n:0.6〜1.5%,S:0.10〜0.40%,P
b:0.10〜0.40%,O:0.010〜0.02
0%,N:0.007〜0.020%を基本成分とし,
さらに,P:0.050%以下,Ti+Zr+Nb:
0.020%以下,Si:0.005%以下,Al:
0.0010%以下に制限し,残部実質的にFeからな
り,かつ,鋼材の圧延方向に垂直な断面の表層部におけ
る硫化物系介在物の平均面積が5〜20μmであるこ
とを特徴とする高温延性に優れた低炭素硫黄鉛複合快削
鋼.
1. C: 0.02 to 0.15% by weight, M
n: 0.6 to 1.5%, S: 0.10 to 0.40%, P
b: 0.10 to 0.40%, O: 0.010 to 0.02
0%, N: 0.007 to 0.020% as a basic component,
Furthermore, P: 0.050% or less, Ti + Zr + Nb:
0.020% or less, Si: 0.005% or less, Al:
The average area of sulfide-based inclusions in the surface layer portion of the cross section perpendicular to the rolling direction of the steel material is 5 to 20 μm 2 by limiting the content to 0.0010% or less. Low carbon sulfur lead composite free-cutting steel with excellent high temperature ductility.
【請求項2】 重量で,C:0.02〜0.15%,M
n:0.6〜1.5%,S:0.10〜0.40%,P
b:0.10〜0.40%,O:0.010〜0.02
0%,N:0.007〜0.020%を基本成分とし,
さらに,Te:0.005〜0.15%,Se:0.0
2〜0.30%,Bi:0.03〜0.20%,Sn:
0.0030〜0.0200%のうちから選んだ1種ま
たは2種以上を含有し,P:0.050%以下,Ti+
Zr+Nb:0.020%以下,Si:0.005%以
下,Al:0.0010%以下に制限し,残部実質的に
Feからなり,かつ,鋼材の圧延方向に垂直な断面の表
層部における硫化物系介在物の平均面積が5〜20μm
であることを特徴とする高温延性に優れた低炭素硫黄
鉛複合快削鋼.
2. C: 0.02 to 0.15% by weight, M
n: 0.6 to 1.5%, S: 0.10 to 0.40%, P
b: 0.10 to 0.40%, O: 0.010 to 0.02
0%, N: 0.007 to 0.020% as a basic component,
Furthermore, Te: 0.005 to 0.15%, Se: 0.0
2 to 0.30%, Bi: 0.03 to 0.20%, Sn:
Contains one or more selected from 0.0030 to 0.0200%, P: 0.050% or less, Ti +
Zr + Nb: 0.020% or less, Si: 0.005% or less, Al: 0.0010% or less, the balance consisting essentially of Fe, and sulfurization in the surface layer portion of the cross section perpendicular to the rolling direction of the steel material. The average area of material inclusions is 5 to 20 μm
Low carbon sulfur lead composite free cutting steels with excellent high temperature ductility, which is a 2.
JP34703495A 1995-12-05 1995-12-05 Free cutting steel excellent in hot workability Pending JPH09157791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34703495A JPH09157791A (en) 1995-12-05 1995-12-05 Free cutting steel excellent in hot workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34703495A JPH09157791A (en) 1995-12-05 1995-12-05 Free cutting steel excellent in hot workability

Publications (1)

Publication Number Publication Date
JPH09157791A true JPH09157791A (en) 1997-06-17

Family

ID=18387478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34703495A Pending JPH09157791A (en) 1995-12-05 1995-12-05 Free cutting steel excellent in hot workability

Country Status (1)

Country Link
JP (1) JPH09157791A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003239038A (en) * 2002-02-19 2003-08-27 Nippon Steel Corp Free-cutting steel
US6890389B2 (en) 2001-10-12 2005-05-10 Minebea Co., Ltd. Method for treating sulfur free-cutting alloy steel
US7666350B2 (en) 2003-12-01 2010-02-23 Kabushiki Kaisha Kobe Seiko Sho Low carbon composite free-cutting steel product excellent in roughness of finished surface and method for production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890389B2 (en) 2001-10-12 2005-05-10 Minebea Co., Ltd. Method for treating sulfur free-cutting alloy steel
JP2003239038A (en) * 2002-02-19 2003-08-27 Nippon Steel Corp Free-cutting steel
US7666350B2 (en) 2003-12-01 2010-02-23 Kabushiki Kaisha Kobe Seiko Sho Low carbon composite free-cutting steel product excellent in roughness of finished surface and method for production thereof

Similar Documents

Publication Publication Date Title
US7534314B2 (en) High carbon steel with superplasticity
JP5277315B2 (en) Environmentally friendly lead-free free-cutting steel and method for producing the same
CN114959442B (en) Steel for universal joint cross shaft for cold extrusion and manufacturing method thereof
JPH01168848A (en) Universal free cutting steel for automobile parts and its production
JP3706560B2 (en) Mechanical structural steel with excellent chip control and mechanical properties
EP0924313B1 (en) Ferritic Chromium alloyed steel
US5868875A (en) Non-ridging ferritic chromium alloyed steel and method of making
JPH08193240A (en) Steel material excellent in temper embrittlement resistance and its production
JP4041413B2 (en) Machine structural steel having excellent chip disposal and manufacturing method thereof
KR100940715B1 (en) Eco-friendly pb-free free cutting steel with excellent machinability and hot workability
JP2003034840A (en) Steel for machine structure superior in machinability
JPH09157791A (en) Free cutting steel excellent in hot workability
US4042380A (en) Grain refined free-machining steel
US6855213B2 (en) Non-ridging ferritic chromium alloyed steel
JP2003034842A (en) Steel for cold forging superior in swarf treatment property
CN117026100A (en) Super-thick structural steel material with excellent brittle crack initiation resistance and manufacturing method thereof
JP2003055743A (en) Steel for cold die having excellent machinability
JP2003253383A (en) Steel for plastic molding die
JPH091303A (en) Manufacture of low temperature use steel excellent in ctod property of heat affected zone
KR101091275B1 (en) Eco-Friendly Pb-Free Free-Cutting Steel
JP5318638B2 (en) Machine structural steel with excellent machinability
KR20230096258A (en) Medium carbon structural steel having excellent surface hardenability and machinability, and its manufacturing process
JP2001020042A (en) High wear resistance and high toughness high speed tool steel
JPH0726175B2 (en) Method for manufacturing high speed tool steel
JPS6017061A (en) Free cutting steel and its production