JPS6017061A - Free cutting steel and its production - Google Patents

Free cutting steel and its production

Info

Publication number
JPS6017061A
JPS6017061A JP12165983A JP12165983A JPS6017061A JP S6017061 A JPS6017061 A JP S6017061A JP 12165983 A JP12165983 A JP 12165983A JP 12165983 A JP12165983 A JP 12165983A JP S6017061 A JPS6017061 A JP S6017061A
Authority
JP
Japan
Prior art keywords
steel
weight
ingot
slab
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12165983A
Other languages
Japanese (ja)
Other versions
JPH0456103B2 (en
Inventor
Jiyoutarou Hamada
浜田 城太郎
Ryoji Tanaka
良治 田中
Kenji Isogawa
礒川 憲二
Sadayuki Nakamura
中村 貞行
Atsuyoshi Kimura
木村 篤良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP12165983A priority Critical patent/JPS6017061A/en
Publication of JPS6017061A publication Critical patent/JPS6017061A/en
Publication of JPH0456103B2 publication Critical patent/JPH0456103B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve cold plastic workability by accelerating the flotation of alumina cruster in a molten steel by addition of Ca and converting a slight amt. of remaining S to spherical sulfide. CONSTITUTION:A carbon steel for machine structural purpose and an alloy steel for machine structural purpose are incorporated therein with, by weight %, >=0.0002 Ca, <=0.0015 O, <=0.25 Si, >=0.003atom% in total of C and N and >=0.003 atom% one or >=2 kinds among Nb, V, Ti and Ta. Said steels are further incorporated therein with <=0.01 1 or >=2 kinds among <=0.12 Pb, <=0.12 Bi and <=0.015 Te. A casting billet or steel ingot is produced by a continuous casting method or ingot making method from such molten steel and after the billet or ingot is heated to 1,150-1,350 deg.C, the billet or ingot is rolled to a slab. The slab is then rolled at 850-1,000 deg.C and a free cutting steel which has a pearlite strucand of which the crystal grain size number of ferrite is >=9 is produced.

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、冷間鍛造等の冷間塑性加工および切削加工
を良好に行うことができる冷間塑性加工性および被削性
に優れた快削鋼に関し、かつ又前記快削鋼の製造方法に
関するものである。 近年、炉外精錬技術の発達に伴って低S鋼の工業的生産
が可能となり、低Sの冷間塑性加工用鋼が実用化されつ
つあるが、従来の低SfMでは被削性に乏しいという欠
点があった。 そこで、本発明者らの一部は先に、冷間鍛造等の冷間塑
性加工性および被削性の優れた鋼を得ることを目的とし
て、冷間塑性加工性および被削性に及ぼす各種元素の含
有量ならびに組織の影響を詳細に調べた結果、冷間塑性
加工性および被削性に優れた快削鋼を開発するに至った
。 この発明は、これをさらに改良したものであって、Ca
添加により溶鋼中のアルミナクラスグーの浮上分離を促
進するととも番乙残余の微量Sを球状硫化物とすること
により冷間塑性加工性が一層向」ニすることをみいだし
た結果、完成するに至ったものである。 すなわち、この発明による冷間塑性加工性および被削性
に優れた快削鋼は、機械構造用炭素鋼および機械構造用
合金鋼において、S≦0.009重量%、Ca≧0.0
002重量%、
The present invention relates to a free-cutting steel that has excellent cold plastic workability and machinability and can be satisfactorily subjected to cold plastic working such as cold forging and cutting, and also relates to a method for producing the free-cutting steel. It is something. In recent years, industrial production of low-S steel has become possible with the development of outside-furnace refining technology, and low-S steel for cold plastic forming is being put into practical use.However, conventional low-SfM steels have poor machinability. There were drawbacks. Therefore, some of the present inventors first attempted to obtain a steel with excellent cold plastic workability and machinability by cold forging, etc. As a result of detailed investigation of the effects of element content and structure, we have developed a free-cutting steel with excellent cold plastic formability and machinability. This invention is a further improvement on this, and Ca
As a result of the discovery that the addition of alumina chloride in molten steel promotes flotation and separation, and that the small amount of S remaining in the steel is converted into spherical sulfide, cold plastic workability is further improved. This is what we have come to. That is, the free-cutting steel with excellent cold plastic workability and machinability according to the present invention has S≦0.009% by weight and Ca≧0.0 in carbon steel for machine structures and alloy steel for machine structures.
002% by weight,

〔0〕≦0.0015重量%、St≦0
.25重量%、C,Nを合計で0.003原子%以上、
およびNb、V、Ti、Taのうちの1種または2種以
上を合計で0.003原子%以上、ざらにpb≦0.1
2重弗%、Bi≦0,12重量%、Te≦0.015重
量%のうちの1種または2種以上を合計で0.01重量
%以上含有することを特徴としており、このような快削
鋼を製造するにあたってより好ましくは、」−記成分の
溶鋼から連続鋳造法または造塊法にj:り鋳片または鋼
塊を製造し、前記鋳片または鋼塊を1150〜1350
℃の温度に放置または再加熱した後鋼片まで圧延し、次
いで前記鋼片を850〜1150℃の温度に放置または
再加熱した後圧延仕」二温度を750〜1000℃にし
て圧延することにより、フェライト+パーライト組織を
有しかつフェライト結晶粒度番号が9以上である鋼を得
ることを特徴としている。 この発明において適用される機械構造用炭素鋼および機
械構造用合金鋼としては、S−C材。 5−GK材、SNC材、SN0M材、SCr材。 30M材、SMn材、SMnC材、SNB材。 SACM材などがあり、基本的な成分元素の範囲として
は、例えば、C≦0908%、Mn≦1.65%、Ni
≦4.5%、Cr66%、MO≦0.65%、A文≦1
.2%等とするのがより好ましく、そのほか、この種の
構造用鋼に対して従来既知の合金成分を添加したものに
対しても適用することができる。 次に、このような機械構造用炭素鋼および機械構造用合
金鋼において、この明細書の特許請求の範囲に示す如く
元素の含有量を定めたのは以下の理由による。 S≦0.009重量% Sは鋼の被削性を向上させる元素でもあるが、0.00
9重量%を超えると冷間鍛造加工等の冷間塑性加工性が
著しく劣化するので、Sの含有量は0.009重量%以
下とし、Sによる被削性向上は期待しなこととした。 Ca≧0.0002重量% Caは鋼中においてアルミナクラスターの浮上分離を促
進するとともに、硫化物を形成する元素であって、0.
0002重量%以上添加することにより微量のSと結合
して硫化物を球状化し、冷間塑性加工性を著しく向上さ
せるのに有効な元素であるので、0.0002重量%以
上添加する。 しかし、多量に含有すると鋼の靭延性を害するので、よ
り望ましくは0.1重量・%以下とするのがよい。
[0]≦0.0015% by weight, St≦0
.. 25% by weight, a total of 0.003 atomic% or more of C and N,
and one or more of Nb, V, Ti, Ta in total of 0.003 atomic % or more, roughly pb≦0.1
It is characterized by containing at least 0.01% by weight in total of one or more of the following: double fluoride, Bi≦0.12% by weight, and Te≦0.015% by weight. In producing cut steel, it is more preferable to produce slabs or steel ingots from molten steel having the following components by a continuous casting method or an ingot making method, and to produce slabs or steel ingots with a
By standing or reheating the steel billet at a temperature of 850 to 1150 °C and then rolling it to a temperature of 750 to 1000 °C. The present invention is characterized by obtaining a steel having a ferrite + pearlite structure and having a ferrite grain size number of 9 or more. As the carbon steel for machine structures and the alloy steel for machine structures that are applied in this invention, S-C material is used. 5-GK material, SNC material, SN0M material, SCr material. 30M material, SMn material, SMnC material, SNB material. There are SACM materials, etc., and the range of basic component elements is, for example, C≦0908%, Mn≦1.65%, Ni
≦4.5%, Cr66%, MO≦0.65%, A text≦1
.. It is more preferable to set it to 2%, etc., and it can also be applied to this type of structural steel to which conventionally known alloying components are added. Next, in such carbon steel for machine structures and alloy steel for machine structures, the content of elements is determined as shown in the claims of this specification for the following reasons. S≦0.009% by weight S is an element that improves the machinability of steel, but 0.00%
If it exceeds 9% by weight, cold plastic workability such as cold forging will deteriorate significantly, so the content of S was set to 0.009% by weight or less, and it was decided that improvement in machinability due to S was not expected. Ca≧0.0002% by weight Ca is an element that promotes flotation of alumina clusters in steel and forms sulfides.
When added in an amount of 0.0002% by weight or more, it combines with a small amount of S to make the sulfide spheroidal and is effective in significantly improving cold plastic workability, so it is added in an amount of 0.0002% by weight or more. However, if it is contained in a large amount, it will impair the toughness and ductility of the steel, so the content is more preferably 0.1% by weight or less.

〔0〕≦0.0015重量% 0は鋼中において酸化物を形成する元素であり、O,0
O15′mJi%を超えると冷間塑性加工性が著しく劣
化するので、0の含有量は0.0015重量%以下とし
た。 Si≦0.25重量% Stは鋼の脱酸に有効な元素であるが、0.25重量%
を超えると冷間塑性加工性が著しく劣化するので、St
の含有量は0.25重量%以下とした。 C,Nを合計で0.003原子%以上、およびNb、V
、Ti、Ta(7)’)ち(7)1種マタは2 g 以
上を合計で0.003原子%以上 N b 、 V 、 T i 、 T aは結晶粒微細
化の作用を果すと共に、C,Nと結びついて鋼の靭性を
向上させる作用を果す。そして、このような作用を有効
に得るためには、それぞれにおいて合計で0.003原
子%以」−含有させることが必要である。 Pb≦0.12重量%、Bi≦0.12重量%。 Te≦0.015重量%のうちの1種または2種以−に
を合計で0.01重量%以上 Pb、Bi、Teはいずれも鋼の被、削性を向上させる
のに有効な元素であり、このような効果を得るためには
合計で0.01重量%以上含有させることが必要である
。しかしながら、pbが0.12重量%を超え、Biが
0.12重量%を超え、Teが0.015重量%を超え
ると、冷間塑性加工性が著しく劣化するので各々上記の
範囲とする。 なお、結晶粒微細化の目的のために必要な炭窒化物は、
上記したC、N量およびNb、V、Ti、Ta量の範囲
で十分生成するが、脱酸ならびに結晶粒調整の目的で0
.06重量%以下のAA。 を添加しても良い。また、このような目的だけでなく、
A文を0.5重量%まで添加した軟窒化鋼や、A文を1
.2重量%lで添加した窒化鋼(SACM)などに対し
てもこの発明を適用することができる。 上記した冷間塑性加工性および被削性に優れた快削鋼は
、常法に従って、溶鋼から連続鋳造法または造塊法によ
り鋳片または鋼塊を製造し、前記鋳片または鋼塊を鋼片
まで圧延し、この鋼片を仕」二圧延することによって製
造されるが、より望ましくは、溶鋼から連続鋳造法また
は造塊法により鋳片または鋼塊を製造し、前記鋳片また
は鋼塊を1150〜1350℃の温度に放置または再加
熱した後鋼片まで圧延し、次いで前記鋼片を850〜1
150℃の温度に放置または再加熱した後圧延仕上温度
を750〜1000°Cにして圧延することにより、フ
ェライト+パーライト組織を有しかつフェライト結晶粒
度番号が9以上である鋼を得るようにする。このような
製造工程を採用することがより望ましいのは、次の理由
による。 すなわち、鋳片または鋼塊の圧延時に1150〜135
0℃の温度にするのは、次工程の鋼片、圧延においてオ
ーステナイト結晶粒の微細化に有効な微細なNb、V、
Ti、Taの炭窒化物を析出させるために、前記鋳片ま
たは鋼塊の凝固冷却時に晶出あるいは析出した大きなN
b、V、Ti 。 Taの炭窒化物をいったん固溶させるためである。すな
わち、上記温度が1150℃よりも低いと大型の炭窒化
物が十分固溶せず、1350℃よりも高いとオーステナ
イト結晶粒が大きくなり、その影響が製品にまで持ち越
され、微細なフェライト結晶粒が得られなくなるためで
ある。 次いで、上記圧延によって得られかつNb。 V、Ti、Taの炭窒化物を十分に固溶した鋼片を85
0〜1150℃の温度にすると、オーステナイト結晶粒
の微細化に有効な炭窒化物が析出する。しかし、鋼片を
1150℃よりも高い温度にすると、オーステナイト結
晶粒が粗大化してしまい、製品において粒度番号が9以
上の微細なフェライト結晶粒を得ることができなくなる
ので好ましくない。また、鋼片を850℃よりも低い温
度にして圧延を行った場合には、圧延材の変形抵抗が増
大して圧延が困難となるので好ましくない。 そして、この圧延における圧延仕上温度は750〜10
00℃としているが、この理由は、圧延仕上温度が75
0°Cよりも低いとオーステナイト結晶粒が再結晶せず
、変態によって得られたフェライト粒は粒度番号で9以
上にならないためであり、1ooo℃よりも高いと再結
晶したオーステナイト結晶粒が急速に成長してしまい、
変態によって得られたフェライト粒1:i′粒度番号で
9以上にならないためである。そして、このようにして
得られた快削鋼の組織をフェライト+パーライト組織に
限定し6のは、この圧延材をそのまま冷間鍛造加工等の
冷間塑性加工する場合に、ベイナイト組織ではフェライ
ト+パーライト組織に比較して硬さが大であり、加工用
金型の寿命が低下するためである。また、フェライト結
晶粒度番号を9以上に限定したのは、圧延材をそのまま
冷間鍛造等の冷間塑性加工をする場合に、9未満では延
性が不足し、割れ等が発生する頻度が高いためである。 以下、実施例について説明する。 実施例1 容量70トンのアーク炉を用いて機械構造用低合金鋼(
SCM)を溶解し、取鍋精錬および真空脱ガスを行った
後、得られた溶鋼を連続鋳造して鋳片を作製した。なお
、溶鋼中へのPb、Bi 。 Te 、Caの添加は、鋳造の直前においてタンディツ
シュ内にワイヤで楕加することにより行った。次いで、
上記鋳片から通常の圧延工程によって直径34開の丸棒
を製造した。次に前記各丸棒の表層部より供試片を切り
出し、研磨および腐食後フェライト結晶粒度を測定する
と共に、化学成分を調べた。この結果を第1表に示す。 次に、冷間鍛造性を評価するために、前記各丸棒を50
mmの長さに切断し、600トンプレスによって据え込
み鍛造を行った。なお、この鍛造においては、20個の
試験片に対して各々据え込み率75%の加工を行い、加
工後の割れ発生率を1 めた。この結果を第2表に示す。 続いて、被削性をH・P価するために、前記各丸棒に対
し、切削速度; 50〜200mm/min 、送り速
度; 0 、05〜0 、3 On+m/rev 、切
り込み叶;0.5〜2mmの範囲内で40種の組み合わ
せを作り、超硬工具を用いて各条件で数秒間加工したの
ち切り屑を採取した。そして、長さ50+nm以下の破
砕切り屑が得られる条件の全条件に占める割合(百分率
)を切り屑破砕性指数としてめた。 この結果を同じく第2表に示す。 第 1 第2表 14 第1表および第2表から明らかなように、木兄可調No
、1〜5はいずれも冷間鍛造性および被削性にすぐれて
いることが明らかであるが、比較鋼No、11−1.5
は被削1!1邊こはすぐれているものの冷間鍛造性は木
兄可調はど良くないという結果が得られた。 火凰ffL? 容jA、 70 トンのアーク炉を用いて機械構造用炭
素鋼(S−C)を溶解し2、実施例1と同様にして鋳片
を作製したのち丸棒に圧延し、フェライト結晶粒度を測
定すると共に、化学成分を調べた。この結果を第3表に
示す。 次に、実施例1と同様にして冷間鍛造性および被削性を
評価した。これらの結果を第4表に示温 3 第4表 第3表および第4表に示す結果から明らかなように、本
発明#PINo、 6 、7では冷間鍛造性にすぐれて
いるが、比較鋼No、16.17では冷間鍛造性がさほ
ど良くないことが確認された。 火施刻」 容ffi: 701−ンのアーク炉を用いて機械構造用
低合金鋼(SCr)溶解し、取鍋精錬および真空脱ガス
を行った後、得られた溶鋼を連続鋳造して鋳片を作製し
た。なお、Pb、Bi、Te、Ca(7)添加は実施例
1と同様にして行った。次いで、−に記鋳片に対し、第
5表に示す条件で鋳片の圧延を行って鋼片を作製し、続
いて同じく第5表に示す条件で鋼片の圧延を行って直径
34mraの丸棒を製造した。次に、実施例1と同様に
して各供試片のフェライト結晶粒度を測定すると共に、
化学成分を調べた。この結果を第6表に示す。さらに、
実施例1と同様にして冷間鍛造性(据え込み率80%を
追加)および被削性を評価した。これらの結果を第7表
に示す。 第 7 表 第5表ないし第7表に示すように、本発明の第一発明を
満たすNo、10は、比較のNo、20j:りも冷間鍛
造性が著しく優れているが、第二発明をも満たすNo、
 8 、9の方がさらに優れた冷間鍛造性を有すること
が確認された。 なお、」1記実施例1〜3では、連続鋳造法により得ら
れる鋳片を対象にした場合を示しているが、造塊法によ
り得られる鋼塊を対象にして実施した場合にも同様の結
果を得ることができた。 以」−説明してきたように、この発明によれば、機械構
造用炭素鋼および機械構造用合金鋼において、冷間鍛造
等の冷間型、1生加工性および被削性に及ぼす各種元素
の含有量および組織の影響を詳細に調べることによって
、鋼の化学成分範囲を規制し、さらに望ましくは鋳片ま
たは鋼塊の圧延条件を定めるようにしたから、冷間塑性
加工性および被削性に著しく優れた快削鋼を得ることが
できるという著大なる効果を奏する。 特許出願人 大同特殊鋼株式会社 代理人弁理士 小 塩 豊
[0]≦0.0015% by weight 0 is an element that forms oxides in steel, O,0
If O exceeds 15'mJi%, the cold plastic workability deteriorates significantly, so the content of O is set to 0.0015% by weight or less. Si≦0.25% by weight St is an effective element for deoxidizing steel, but 0.25% by weight
If St
The content was set to 0.25% by weight or less. A total of 0.003 atomic % or more of C, N, and Nb, V
, Ti, Ta(7)') (7) Type 1 material is 2 g or more in total of 0.003 atomic % or more N b , V , Ti , Ta plays the role of grain refinement, and Combines with C and N to improve the toughness of steel. In order to effectively obtain such effects, it is necessary to contain a total of 0.003 atomic % or more in each element. Pb≦0.12% by weight, Bi≦0.12% by weight. Pb, Bi, and Te are all effective elements for improving the machinability of steel. In order to obtain such an effect, it is necessary to contain 0.01% by weight or more in total. However, if Pb exceeds 0.12% by weight, Bi exceeds 0.12% by weight, and Te exceeds 0.015% by weight, the cold plastic workability deteriorates significantly, so the respective ranges are set as above. In addition, carbonitrides necessary for the purpose of grain refinement are:
Sufficient production occurs within the above ranges of C, N and Nb, V, Ti, Ta, but for the purpose of deoxidation and crystal grain adjustment,
.. 0.06% by weight or less of AA. may be added. In addition to this purpose,
Soft nitrided steel with A content added up to 0.5% by weight, or 1% A content added.
.. The present invention can also be applied to nitrided steel (SACM) added at 2% by weight. The above-mentioned free-cutting steel with excellent cold plastic workability and machinability is produced by manufacturing a slab or steel ingot from molten steel by a continuous casting method or an ingot forming method according to a conventional method. The slab or steel ingot is manufactured by rolling the molten steel to a single piece and finishing rolling the steel slab, but more preferably, the slab or steel ingot is manufactured from the molten steel by a continuous casting method or an ingot making method, and the slab or steel ingot is is left or reheated at a temperature of 1150-1350°C and then rolled into a steel billet, and then the steel billet is heated to a temperature of 850-1350°C.
Steel having a ferrite + pearlite structure and a ferrite grain size number of 9 or more is obtained by standing or reheating at a temperature of 150 °C and then rolling at a finishing temperature of 750 to 1000 °C. . The reason why it is more desirable to employ such a manufacturing process is as follows. That is, 1150 to 135 when rolling slabs or steel ingots.
The temperature is set at 0°C by adding fine Nb, V, and
In order to precipitate carbonitrides of Ti and Ta, large amounts of N crystallized or precipitated during solidification and cooling of the slab or steel ingot are removed.
b, V, Ti. This is to once dissolve the Ta carbonitride in solid solution. In other words, if the temperature is lower than 1150°C, large carbonitrides will not form a solid solution, and if it is higher than 1350°C, austenite crystal grains will become large, and this effect will be carried over to the product, resulting in fine ferrite crystal grains. This is because it becomes impossible to obtain. Next, Nb obtained by the above rolling. 85 steel pieces with sufficient solid solution of carbonitrides of V, Ti, and Ta
When the temperature is 0 to 1150°C, carbonitrides, which are effective in refining austenite grains, precipitate. However, if the steel slab is heated to a temperature higher than 1150° C., the austenite crystal grains will become coarse, making it impossible to obtain fine ferrite crystal grains with a grain size number of 9 or more in the product, which is not preferable. Furthermore, if the steel slab is rolled at a temperature lower than 850° C., the deformation resistance of the rolled material will increase, making rolling difficult, which is not preferable. The finishing temperature in this rolling is 750 to 10
The reason for this is that the finishing temperature of rolling is 75°C.
This is because if it is lower than 0°C, austenite grains will not recrystallize and the ferrite grains obtained by transformation will not have a grain size number of 9 or higher.If it is higher than 1ooo°C, recrystallized austenite grains will rapidly I have grown up,
This is because the ferrite grains 1:i' obtained by transformation do not have a grain size number of 9 or more. The structure of the free-cutting steel obtained in this way is limited to a ferrite + pearlite structure, and when this rolled material is subjected to cold plastic processing such as cold forging as it is, the bainite structure has a ferrite + pearlite structure. This is because the hardness is greater than that of pearlite structure, and the life of the processing mold is shortened. In addition, the reason why the ferrite grain size number is limited to 9 or more is because when the rolled material is subjected to cold plastic processing such as cold forging as it is, if it is less than 9, the ductility is insufficient and cracks occur more frequently. It is. Examples will be described below. Example 1 Low alloy steel for mechanical structure (
After melting SCM), performing ladle refining and vacuum degassing, the obtained molten steel was continuously cast to produce slabs. Note that Pb and Bi are added to the molten steel. Te and Ca were added by adding a wire into the tundish immediately before casting. Then,
A round bar with a diameter of 34 mm was manufactured from the above slab by a normal rolling process. Next, test pieces were cut out from the surface layer of each of the round bars, and after polishing and corrosion, the ferrite crystal grain size was measured and the chemical composition was investigated. The results are shown in Table 1. Next, in order to evaluate cold forgeability, each round bar was
It was cut into lengths of mm and upset forged using a 600 ton press. In this forging, 20 test pieces were each processed at an upsetting rate of 75%, and the crack occurrence rate after processing was estimated at 1. The results are shown in Table 2. Subsequently, in order to evaluate the machinability by H/P, cutting speed: 50 to 200 mm/min, feed rate: 0, 05 to 0, 3 On+m/rev, depth of cut: 0. Forty combinations were made within the range of 5 to 2 mm, and chips were collected after processing for several seconds under each condition using a carbide tool. Then, the ratio (percentage) of the conditions for obtaining crushed chips with a length of 50+ nm or less to the total conditions was determined as the chip friability index. The results are also shown in Table 2. No. 1 No. 2 Table 14 As is clear from Tables 1 and 2,
, 1 to 5 are clearly superior in cold forgeability and machinability, but comparative steel No. 11-1.5
The results showed that although the workpiece 1!1 area was excellent, the cold forging property was not as good as the adjustable one. Firefly ffL? Machine structural carbon steel (S-C) was melted using a 70-ton electric arc furnace, and a slab was produced in the same manner as in Example 1. After that, it was rolled into a round bar, and the ferrite grain size was measured. At the same time, we investigated the chemical composition. The results are shown in Table 3. Next, cold forgeability and machinability were evaluated in the same manner as in Example 1. These results are shown in Table 4. As is clear from the results shown in Tables 3 and 4, the present invention #PINo, 6, and 7 have excellent cold forgeability, but the comparative steel It was confirmed that the cold forgeability of No. 16.17 was not so good. "Fire Engraving" Process: After melting low-alloy steel (SCr) for machine structures using a 701-year arc furnace, performing ladle refining and vacuum degassing, the resulting molten steel is continuously cast and cast. A piece was made. Note that addition of Pb, Bi, Te, and Ca (7) was performed in the same manner as in Example 1. Next, the slabs listed in - were rolled under the conditions shown in Table 5 to produce steel slabs, and then the slabs were rolled under the same conditions shown in Table 5 to obtain a steel slab with a diameter of 34 mra. A round bar was manufactured. Next, the ferrite crystal grain size of each specimen was measured in the same manner as in Example 1, and
The chemical composition was investigated. The results are shown in Table 6. moreover,
Cold forgeability (upset rate of 80% was added) and machinability were evaluated in the same manner as in Example 1. These results are shown in Table 7. Table 7 As shown in Tables 5 to 7, No. 10, which satisfies the first invention of the present invention, is No. 20j, which satisfies the first invention of the present invention, and No. 20j: Rimo, which has extremely excellent cold forgeability, but satisfies the second invention. No, which also satisfies
It was confirmed that Nos. 8 and 9 had even better cold forgeability. Note that Examples 1 to 3 in Section 1 show the case where slabs obtained by the continuous casting method were used, but the same results can be applied to steel ingots obtained by the ingot making method. I was able to get results. As described above, according to the present invention, in carbon steel for machine structures and alloy steels for machine structures, cold forming such as cold forging, 1. By examining the effects of content and structure in detail, we have regulated the chemical composition range of steel and, if desired, determined the rolling conditions for slabs or steel ingots, thereby improving cold plastic formability and machinability. This has the great effect of making it possible to obtain extremely superior free-cutting steel. Patent applicant: Daido Steel Co., Ltd. Representative patent attorney: Yutaka Oshio

Claims (1)

【特許請求の範囲】 (+) m板構造用炭素鋼および機械構造用合金鋼にお
いて、S≦0.009重量%、Ca≧0.0002重1
%、〔0〕≦0.0015重量%、Si≦0.25重量
%、C,Nを合計で0.003原子%以上、およびNb
、V、Tf。 Taのうちの1種または2種以上を合計で0.003原
子%以上、ざらにPb≦0.12重遍%、Bi≦0.1
2重量%、Te≦0.015重量%のうちの1種または
2種以」二を合計で0.01重量%以上含有することを
特徴とする冷間塑性加工性および被削性に優れた快削鋼
。 (2)S≦0.009重量%、Ca≧o、oo。 2重量%、〔0〕≦0.0015重量%、St≦0.2
5重量%、C,Nを合計で0.003原子%以」二、お
よびNb、V、Ti 、Taのうちの1種または2種以
上を合計で0.003原子%以上、ざらにPb≦0.1
2fii1%、Bi≦0.12重量%、Te≦0.01
5重量%のうちの1種または2種以」:含有する機 械構造用炭素鋼および機械構造用合金鋼の溶鋼から連続
鋳造法または造塊法により鋳片または鋼塊を製造し、前
記鋳片または鋼塊を1150〜1350℃の温度にした
後鋳片まで圧延し、次いで前記鋼片を850〜1150
°Cの温度にした後圧延仕上温度を750〜1000℃
にして圧延することにより、フェライト+パーライト組
織を有しかつフェライト結晶粒度番号が9以上である鋼
を得ることを特徴とする冷間塑性加工性および被削性に
優れた快削鋼の製造方法。
[Claims] (+) In carbon steel for m-plate structure and alloy steel for machine structure, S≦0.009% by weight, Ca≧0.0002 weight 1
%, [0]≦0.0015% by weight, Si≦0.25% by weight, C, N in total 0.003 atomic% or more, and Nb
,V,Tf. A total of 0.003 atomic % or more of one or more of Ta, roughly Pb≦0.12, Bi≦0.1
2% by weight, one or more of the following: Te≦0.015% by weight in total of 0.01% or more. Free-cutting steel. (2) S≦0.009% by weight, Ca≧o, oo. 2% by weight, [0]≦0.0015% by weight, St≦0.2
5% by weight, a total of 0.003 atomic % or more of C, N, and 0.003 atomic % or more of one or more of Nb, V, Ti, Ta, roughly Pb≦ 0.1
2fii1%, Bi≦0.12wt%, Te≦0.01
"One or more of 5% by weight": A slab or steel ingot is produced from the molten steel of carbon steel for machine structures and alloy steel for machine structures by a continuous casting method or an ingot-making method, and Alternatively, the steel ingot is heated to a temperature of 1150 to 1350°C and then rolled to a slab, and then the steel slab is heated to a temperature of 850 to 1150°C.
After rolling to a temperature of °C, the finishing temperature is 750 to 1000 °C.
A method for producing free-cutting steel with excellent cold plastic workability and machinability, characterized by obtaining steel having a ferrite + pearlite structure and a ferrite grain size number of 9 or more by rolling the steel. .
JP12165983A 1983-07-06 1983-07-06 Free cutting steel and its production Granted JPS6017061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12165983A JPS6017061A (en) 1983-07-06 1983-07-06 Free cutting steel and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12165983A JPS6017061A (en) 1983-07-06 1983-07-06 Free cutting steel and its production

Publications (2)

Publication Number Publication Date
JPS6017061A true JPS6017061A (en) 1985-01-28
JPH0456103B2 JPH0456103B2 (en) 1992-09-07

Family

ID=14816719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12165983A Granted JPS6017061A (en) 1983-07-06 1983-07-06 Free cutting steel and its production

Country Status (1)

Country Link
JP (1) JPS6017061A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188622A (en) * 1988-01-22 1989-07-27 Sumitomo Metal Ind Ltd Production of non-tempred tellurium free-cutting steel having high-temperature ductility
JPH02243714A (en) * 1989-03-16 1990-09-27 Sumitomo Metal Ind Ltd Production of non-heattreated free cutting steel forging having high ductility at high temperature
CN103692152A (en) * 2013-09-17 2014-04-02 马鞍山市益华液压机具有限公司 Manufacturing method for withdrawing sleeve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188622A (en) * 1988-01-22 1989-07-27 Sumitomo Metal Ind Ltd Production of non-tempred tellurium free-cutting steel having high-temperature ductility
JPH02243714A (en) * 1989-03-16 1990-09-27 Sumitomo Metal Ind Ltd Production of non-heattreated free cutting steel forging having high ductility at high temperature
CN103692152A (en) * 2013-09-17 2014-04-02 马鞍山市益华液压机具有限公司 Manufacturing method for withdrawing sleeve
CN103692152B (en) * 2013-09-17 2016-08-24 马鞍山市益华液压机具有限公司 A kind of manufacturing method for withdrawing sleeve

Also Published As

Publication number Publication date
JPH0456103B2 (en) 1992-09-07

Similar Documents

Publication Publication Date Title
JP6058439B2 (en) Hot-rolled steel sheet with excellent cold workability and surface hardness after processing
JP6177551B2 (en) Hot-rolled steel sheet with excellent drawability and surface hardness after processing
JPH10273756A (en) Cold tool made of casting, and its production
JPH06322482A (en) High toughness high-speed steel member and its production
JP2008088547A (en) Fire-resistant steel having excellent high-temperature strength, toughness and reheat embrittlement resistance and process for production of the same
JP3633515B2 (en) Hot-rolled steel sheet having excellent resistance to hydrogen-induced cracking and method for producing the same
CN114231834A (en) High-strength and good low-temperature toughness ultra-thick structural steel and production method thereof
JP2809677B2 (en) Rolling die steel
JPH1072644A (en) Cold rolled austenitic stainless steel sheet reduced in amount of springback, and its production
CN113631733A (en) Bar-shaped steel
KR970009087B1 (en) Method for manufacturing strong and touch thick steel plate
JPS6017061A (en) Free cutting steel and its production
JPH08325673A (en) Composite roll for rolling excellent in wear resistance, surface roughening resistance and the like
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
TWI614350B (en) Hot rolled steel sheet
JPH029088B2 (en)
CN113242910A (en) Super-thick structural steel material having excellent embrittlement initiation resistance and method for manufacturing the same
JP3181448B2 (en) Oxide-containing dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JPH11286742A (en) Manufacture of tapered steel plate
JP4357080B2 (en) Solidified grain refined steel and solidified grain refined austenitic stainless steel and their welded joints
JPH09227990A (en) Hot tool steel excellent in high temperature strength and fracture toughness
JPH055127A (en) Production of high strength steel sheet pile
JP4564189B2 (en) High toughness non-tempered steel for hot forging
JP3778140B2 (en) Free-cutting steel
JP2005290555A (en) Steel plate excellent in machinability and toughness, and method for production thereof