JPH0726175B2 - Method for manufacturing high speed tool steel - Google Patents
Method for manufacturing high speed tool steelInfo
- Publication number
- JPH0726175B2 JPH0726175B2 JP61054460A JP5446086A JPH0726175B2 JP H0726175 B2 JPH0726175 B2 JP H0726175B2 JP 61054460 A JP61054460 A JP 61054460A JP 5446086 A JP5446086 A JP 5446086A JP H0726175 B2 JPH0726175 B2 JP H0726175B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- speed tool
- content
- steel
- tool steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910001315 Tool steel Inorganic materials 0.000 title claims description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 238000000034 method Methods 0.000 title description 2
- 229910000831 Steel Inorganic materials 0.000 claims description 17
- 239000010959 steel Substances 0.000 claims description 17
- 230000001105 regulatory effect Effects 0.000 claims description 9
- 229910052726 zirconium Inorganic materials 0.000 claims description 8
- 229910052735 hafnium Inorganic materials 0.000 claims description 7
- 238000002844 melting Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 4
- 238000005520 cutting process Methods 0.000 description 22
- 150000001247 metal acetylides Chemical class 0.000 description 7
- 230000007547 defect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
- Heat Treatment Of Steel (AREA)
Description
【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、各種の切削工具,ロール,金型などの素材と
して利用される高速度工具鋼を製造するのに好適な高速
度工具鋼の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention is suitable for producing high-speed tool steel used as a material for various cutting tools, rolls, dies, and the like. The present invention relates to a method for producing high speed tool steel.
(従来の技術) 切削工具,ロール,金型などの素材として利用される高
速度工具鋼は、素材の被研削性ならびに耐チッピング性
などに優れていることが要求されると共に、とくに切削
工具においては切削性能にも優れていることが要求され
る。(Prior Art) High-speed tool steel used as a material for cutting tools, rolls, dies, etc. is required to have excellent grindability and chipping resistance of the material. Is also required to have excellent cutting performance.
ところで、この種の高速度工具鋼においてその切削性能
を向上させるために、Coを添加することが行われてきた
が、このCoは希少金属であると共に資源が偏在している
ため著しく高価でかつ入手が不安定な金属である。そこ
で、Co添加によらず、V添加によって切削工具の切削性
能を向上させることが行われるようになっており、例え
ばV含有量を3%以上とすることによってすぐれた切削
性能をもつ切削工具が得られるようにしている。By the way, in order to improve the cutting performance in this kind of high-speed tool steel, Co has been added, but this Co is a rare metal and resources are unevenly distributed, so it is extremely expensive and It is an unstable metal. Therefore, the cutting performance of the cutting tool has been improved by adding V instead of adding Co. For example, a cutting tool having excellent cutting performance by setting the V content to 3% or more is available. I am trying to get it.
(発明が解決しようとする問題点) このように、高速度工具鋼中のV含有量を多くすること
によって、とくに切削工具の切削性能を向上させ、切削
工具の高級化(高温硬さおよび耐摩耗性の向上)をはか
るようにすることが可能であるが、このようなV含有量
の増加は、工具の製造過程において重要な位置を占める
研削加工工程の能率を大きく低下させてしまうという問
題点があった。(Problems to be Solved by the Invention) Thus, by increasing the V content in the high-speed tool steel, the cutting performance of the cutting tool is particularly improved, and the cutting tool is upgraded (high temperature hardness and resistance). It is possible to improve the wear resistance), but such an increase in the V content greatly reduces the efficiency of the grinding process which occupies an important position in the tool manufacturing process. There was a point.
(発明の目的) 本発明は、このような従来の問題点に着目してなされた
もので、切削性能を向上させると共に工具の高級化(高
温硬さおよび耐摩耗性の向上)をはかるためにV含有量
を多くしたときでも、工具の製造過程において重要な位
置を占める研削加工の際の被研削性に著しく優れた工具
素材用高速度工具鋼を得ることが可能である高速度工具
鋼の製造方法を提供することを目的としている。(Object of the Invention) The present invention has been made by paying attention to such conventional problems, and in order to improve the cutting performance and to enhance the quality of tools (high temperature hardness and wear resistance). Even when the V content is increased, it is possible to obtain a high-speed tool steel for a tool material that is extremely excellent in grindability during grinding, which occupies an important position in the tool manufacturing process. It is intended to provide a manufacturing method.
[発明の構成] (問題点を解決するための手段) 本発明による高速度工具鋼の製造方法は、重量%で、C:
0.35〜2.0%、Si:1.0%以下、Mn:1.0%以下、Cr:3〜5
%、2Mo+W:4〜30%、V:1〜5%を基本成分として含有
し、必要に応じてCo:1.0〜20.0%、Ni:0.01〜2.0%,B:
0.001〜0.050%のうちの1種または2種以上を含有する
高速度工具鋼を溶製するに際し、溶鋼中のN含有量を0.
010%以下に規制するとともに[Ti+Nb+Ta]×[N]
量を0.0001%以下(すなわち,10×10-5%以下)に規制
し、必要に応じて鋼中にREM:0.001〜0.60%,Zr:0.01〜
2.0%,Hf:0.01〜2.0%のうちの1種または2種以上が含
有される量のREM,Zr,Hfを添加するようにしたことを特
徴とするものである。[Structure of the Invention] (Means for Solving the Problems) The method for producing a high-speed tool steel according to the present invention uses C:
0.35 to 2.0%, Si: 1.0% or less, Mn: 1.0% or less, Cr: 3 to 5
%, 2Mo + W: 4 to 30%, V: 1 to 5% as a basic component, Co: 1.0 to 20.0%, Ni: 0.01 to 2.0%, B:
When melting high-speed tool steel containing one or more of 0.001 to 0.050%, the N content in the molten steel is set to 0.
Regulate less than 010% and [Ti + Nb + Ta] × [N]
The amount is regulated to 0.0001% or less (that is, 10 × 10 -5 % or less), and REM: 0.001 to 0.60%, Zr: 0.01 to
2.0%, Hf: 0.01 to 2.0% of REM, Zr, or Hf in an amount containing one or more of them is added.
本発明が適用される高速度工具鋼は、上述したように、
重量%で、C:0.35〜2.0%、Si:1.0%以下、Mn:1.0%以
下、Cr:3〜5%、2Mo+W:4〜30%、V:1〜5%を基本成
分として含有するものであるが、以下にその理由を説明
する。The high speed tool steel to which the present invention is applied, as described above,
% By weight, C: 0.35 to 2.0%, Si: 1.0% or less, Mn: 1.0% or less, Cr: 3 to 5%, 2Mo + W: 4 to 30%, V: 1 to 5% as a basic component However, the reason will be described below.
Cは工具として必要な強度,硬さおよび耐摩耗性等を確
保するのに有効な元素であって、このような効果を得る
ために0.35%以上含有させるのがよい。しかし、多すぎ
ると耐摩耗性は増大するが靱性および加工性が低下する
ので2.0%以下とするのがよい。C is an element effective for ensuring the strength, hardness, wear resistance and the like required as a tool, and in order to obtain such effects, C is preferably contained in an amount of 0.35% or more. However, if the amount is too large, the wear resistance increases but the toughness and workability deteriorate, so 2.0% or less is preferable.
Siは溶製時において脱酸剤として作用し、鋼の清浄度を
高めると共に、基地を強化して降伏点を高め、高温度で
の表面酸化を阻止するとともに疲労眼を向上させるのに
有効な元素であるが、多量に含有させると熱伝導性の低
下と靱性の劣化が生じることによる工具寿命の短縮をも
たらすので、1.0%以下とするのがよい。Si acts as a deoxidizing agent during smelting, enhances the cleanliness of steel, strengthens the matrix and raises the yield point, is effective in preventing surface oxidation at high temperatures and improving fatigue eyes. Although it is an element, if it is contained in a large amount, the thermal conductivity decreases and the toughness deteriorates, so that the tool life is shortened, so it is preferable to be 1.0% or less.
Mnは溶製時において主に脱酸剤および脱硫剤として作用
し、鋼の清浄度を高めると共に焼入性の向上にも寄与す
る元素である。しかし、多すぎると被研削性や熱間加工
性を害するので1.0%以下とするのがよい。Mn is an element that mainly acts as a deoxidizing agent and a desulfurizing agent at the time of melting, and contributes to improving the cleanliness of steel and improving the hardenability. However, if it is too large, the grindability and hot workability are impaired, so 1.0% or less is preferable.
CrはCと結合して複炭化物を形成し、工具の強度、とく
に高温強度を高めると共に、耐摩耗性および耐熱衝撃性
を向上させるのに有効な元素であって、このような効果
を得るために3%以上とするのがよい。しかし、多すぎ
ると靱性や加工性を劣化させるので5%以下とするのが
よい。Cr is an element effective in improving the wear resistance and the thermal shock resistance as well as increasing the strength of the tool, especially the high temperature strength, by forming a double carbide by combining with C. It is better to be 3% or more. However, if it is too large, the toughness and workability are deteriorated, so it is preferable to set it to 5% or less.
MoおよびWはCと結合して微細な複炭化物を形成し、ま
た、基地中にも固溶して当該基地を強化し、熱処理硬さ
を増大して耐摩耗性を向上させるのに有効な元素である
ので、これらの1種または2種を合計で2Mo+Wにおい
て4%以上含有させるのがよい。しかし、多すぎると靱
性を低下させると共に粗大炭化物も多くなり、被研削性
や疲労特性に悪影響を及ぼすので、2Mo+Wにおいて30
%以下とするのがよい。Mo and W combine with C to form fine double carbides, and are also solid-dissolved in the matrix to strengthen the matrix, which is effective in increasing the heat treatment hardness and improving the wear resistance. Since it is an element, it is preferable to contain one or two of these in a total amount of 4% or more in 2Mo + W. However, if the amount is too large, the toughness is reduced and coarse carbides are increased, which adversely affects the grindability and fatigue characteristics.
It is better to be less than or equal to%.
VはCと結合して微細な複炭化物を形成し、また、基地
中にも固溶して当該基地を強化し、熱処理硬さを増大し
て耐摩耗性を向上させることにより、工具の切削性能を
向上させるのに有効な元素であり、このような効果を得
るために1%以上とするのがよい。しかし、多すぎると
靱性が低下すると共に、粗大炭化物も多くなり、工具を
研削加工して製作する際の被研削性を低下させるので5
%以下とするのがよい。V combines with C to form fine double carbides, and also forms a solid solution in the matrix to strengthen the matrix and increase the heat treatment hardness to improve wear resistance, thereby cutting the tool. It is an element effective for improving the performance, and it is preferable to be 1% or more to obtain such an effect. However, if the amount is too large, the toughness decreases, and the amount of coarse carbides increases, which deteriorates the grindability when the tool is ground and manufactured.
It is better to be less than or equal to%.
Co,Ni,Bはいずれも基地を強化して工具の強度,耐衝撃
性,耐ヒートチェック性をさらに高めるので、これらの
元素を適宜選んで、Coは1.0〜20.0%、Niは0.01〜2.0
%、Bは0.001〜0.050%の範囲で添加するのもよい。Co, Ni, and B all strengthen the matrix to further enhance the strength, impact resistance, and heat check resistance of the tool. Therefore, select these elements appropriately, Co is 1.0 to 20.0%, Ni is 0.01 to 2.0.
% And B may be added in the range of 0.001 to 0.050%.
そして、本発明の第一発明においては、上記基本成分の
高速度鋼を製造するに際し、溶鋼中のN含有量を0.010
%以下に規制するとともに[Ti+Nb+Ta]×[N]量を
0.0001%以下(すなわち,10×10-5%以下)に規制する
ようにしているが、この理由は、N含有量を0.010%以
下、より望ましくは0.005%以下にすることによって、
晶出MC炭化物を微細化することが可能であり、工具鋼の
被研削性および耐チッピング性を著しく改善することが
できるようになるためであり、また、Ti,Nb,Ta量が多い
とMC炭化物を粗大化するため、N含有量との関連で[Ti
+Nb+Ta]×[N]量が0.0001%以下となるようにして
いるのである。Then, in the first invention of the present invention, when producing the high-speed steel having the above-mentioned basic components, the N content in the molten steel is set to 0.010.
% And the amount of [Ti + Nb + Ta] x [N]
The amount is regulated to 0.0001% or less (that is, 10 × 10 -5 % or less) because the N content is 0.010% or less, more preferably 0.005% or less.
This is because it is possible to refine the crystallized MC carbides, and it becomes possible to significantly improve the grindability and chipping resistance of the tool steel, and when Ti, Nb, and Ta contents are large, MC In order to coarsen the carbide, [Ti
The amount of + Nb + Ta] × [N] is set to 0.0001% or less.
さらに、本発明の第二発明においては、上記N含有量お
よび[Ti+Nb+Ta]×[N]量の規制のほかに、さらに
REM,Zr,Hfの1種または2種以上を添加するようにして
いるが、この理由は、鋼中の晶出MC炭化物をより一層微
細化して高V工具鋼の被研削性をさらに向上させるよう
にするためであり、このような効果を得るためにREMは
0.001%以上、Zrは0.01%以上、Hfは0.01%以上含有さ
せるのもよい。しかし、多すぎると靱性および加工性を
低下させるので、添加するとしてもREMは0.60%以下、Z
rは2.0%以下、Hfは2.0%以下とするのがよい。Furthermore, in the second invention of the present invention, in addition to the regulation of the above N content and [Ti + Nb + Ta] × [N] amount,
One or more of REM, Zr, and Hf are added, but the reason is that the crystallized MC carbides in the steel are further refined to further improve the grindability of the high V tool steel. REM to get this effect
0.001% or more, Zr may be 0.01% or more, and Hf may be 0.01% or more. However, if it is added too much, the toughness and workability deteriorate, so even if added, the REM is 0.60% or less, Z
r should be 2.0% or less and Hf should be 2.0% or less.
そのほか、Pは地疵の発生を増大させる元素であり、こ
のP含有量を低減することによって靱性を大きく改善す
ることができると共に、耐ヒートチェック性を向上させ
ることができ、さらには衝撃値の異方性を小さくするこ
とができるので、0.020%以下、より望ましくは0.010%
以下に規制するのもよく、またS含有量を規制すること
によって地疵の発生を抑制すると共に衝撃値を高めるこ
とができるので、0.0030%以下、より望ましくは0.0010
%以下に規制するのもよい。さらに、鋼中におけるO含
有量を低減することによって地疵の発生を抑制し、地疵
等級を向上させることができると共に成形加工時の被研
削性を高めることができるようになるので、0.0030%以
下に規制するのもよい。さらにまた、鋼中におけるAl含
有量を低減することによって地疵の発生を抑制し、地疵
等級を向上させることができるようになるので、0.020
%以下に規制するのもよい。In addition, P is an element that increases the occurrence of ground defects. By reducing the P content, toughness can be greatly improved, heat check resistance can be improved, and the impact value can be improved. Since anisotropy can be reduced, 0.020% or less, more preferably 0.010%
The content may be regulated to the following, and by controlling the S content, it is possible to suppress the occurrence of ground defects and increase the impact value, so 0.0030% or less, and more desirably 0.0010% or less.
It is also good to regulate to less than%. Further, by reducing the O content in the steel, the occurrence of ground defects can be suppressed, the ground defect grade can be improved, and the grindability during forming can be improved. The following restrictions may be applied. Furthermore, by reducing the Al content in the steel, it becomes possible to suppress the occurrence of ground defects and improve the ground defect grade.
It is also good to regulate to less than%.
(実施例) 真空誘導溶解炉(容量2ton)以内に原材料を装入して排
気したのち溶解を開始し、溶け落ち後に炉内を0.2〜0.3
Torrにして溶鋼中のN含有量が0.010%以下となるよう
にし、レードル分析を行ってN含有量が0.010%以下で
あることを確認したのち、さらに溶鋼中の[Ti+Nb+T
a]×[N]量が0.0001%以下となるようにし、次いで
必要に応じて底部にREM,Zr,Hfを所要量鍋置した取鍋内
に出鋼したのち造塊してインゴットとした。ここで得た
各インゴットの化学成分を第1表のNo.1〜6に示す。(Example) The raw materials were charged into a vacuum induction melting furnace (capacity: 2 tons), exhausted, and then melting was started.
Torr was used so that the N content in the molten steel would be 0.010% or less, and after ladle analysis was performed to confirm that the N content was 0.010% or less, [Ti + Nb + T
The amount of a] × [N] was set to 0.0001% or less, and then, if necessary, REM, Zr, and Hf were tapped into a ladle with a required amount of pan placed on the bottom, and then ingots were made into ingots. The chemical components of each ingot obtained here are shown in Nos. 1 to 6 of Table 1.
次に、前記インゴットを鍛伸しその後焼なましを施し
た。続いて、焼なまし材に対して線引きを行ったのち焼
なましと線引きを必要に応じてくりかえし、得られた線
材から被研削性評価用試験片(10mm角×50mm)を取り出
した。そして、試験片に焼入れ焼もどしを施してHRC66.
5±0.5に調質したのち、各試験片に対して第2表に示す
条件で研削を行って、各試験片の被研削性(研削摩耗
量)を評価した。この結果を同じく第1表に示す。Next, the ingot was forged and then annealed. Subsequently, after drawing the annealed material, the annealing and the drawing were repeated as needed, and a grindability evaluation test piece (10 mm square × 50 mm) was taken out from the obtained wire. Then, the test piece is subjected to quenching and tempering and H R C66.
After tempering to 5 ± 0.5, each test piece was ground under the conditions shown in Table 2 to evaluate the grindability (grinding wear amount) of each test piece. The results are also shown in Table 1.
他方、前記線材から製作したタップ(M10×1.5)を用い
て第3表に示す条件で切削性能(切削個数)を調べた。
この結果を同じく第1表に示す。On the other hand, using a tap (M10 × 1.5) manufactured from the wire, the cutting performance (cutting number) was examined under the conditions shown in Table 3.
The results are also shown in Table 1.
また、従来の製造法により溶製した比較鋼(No.9〜12)
のインゴットに対しても前記と同様に鍛伸,焼なまし,
線引きを行い、得られた線材から被研削性評価用試験片
(10mm角×50mm)を取り出し、第2表に示した条件で被
研削性を評価した。この結果を同じく第1表に示す。ま
た、上記線材から製作したタップ(M10×1.5)を用いて
第3表に示した条件で切削性能(切削個数)を調べた。
この結果を同じく第1表に示す。Also, comparative steels (No. 9-12) produced by conventional manufacturing methods
For the ingot, the same as above, forging, annealing,
A wire-drawing test piece (10 mm square × 50 mm) for grindability evaluation was taken out from the obtained wire material, and grindability was evaluated under the conditions shown in Table 2. The results are also shown in Table 1. Further, using a tap (M10 × 1.5) manufactured from the above wire, the cutting performance (number of cuts) was examined under the conditions shown in Table 3.
The results are also shown in Table 1.
第1表に示すように、本発明により製造された高速度工
具鋼は、比較のために従来法により製造された高速度工
具鋼に比べて、鋳造時に晶出するMC炭化物が著しく微細
であり、研削比が大であって被研削性に優れているとと
もに、上記高速度工具鋼より製作した切削工具を用いた
場合の切削個数が多く、切削工具の切削性能にも優れて
いるものであることが明らかである。 As shown in Table 1, the high speed tool steel produced according to the present invention has a significantly finer MC carbide crystallized during casting as compared with the high speed tool steel produced by the conventional method for comparison. In addition to having a large grinding ratio and excellent grindability, when the cutting tool made from the above high-speed tool steel is used, the number of cuts is large, and the cutting performance of the cutting tool is also excellent. It is clear.
[発明の効果] 以上説明してきたように、本発明によれば、重量%で、
C:0.35〜2.0%、Si:1.0%以下、Mn:1.0%以下、Cr:3〜
5%、2Mo+W:4〜30%、V:1〜5%を基本成分として含
有し、その他必要に応じて他の合金元素を添加した高速
度工具鋼を溶製するに際し、溶鋼中のN含有量を0.010
%以下に規制するとともに[Ti+Nb+Ta]×[N]量を
0.0001%以下に規制し、必要に応じて鋼中にREM:0.001
〜0.60%,Zr:0.01〜2.0%,Hf:0.01〜2.0%のうちの1種
または2種以上が含有される量のREM,Zr,Hfを添加する
ようにしたものであるから、溶製後の鋳造時において晶
出するMC炭化物が著しく微細なものとなっているので、
切削工具,ロール,金型などの工具を研削加工によって
製作する場合の被研削性に著しく優れた高速度工具鋼を
得ることが可能であり、工具の切削性能を向上させより
一層の高級化(高温硬さおよび耐摩耗性の向上)をはか
るためにV含有量を多くしたときでも、工具を研削加工
により製作する際の被研削性に著しく優れたものとする
ことが可能であり、工具として基本的に要求される切削
性能にも、もちろん優れたものであって、高V高速度工
具鋼の適用範囲をさらに拡大することができるようにな
るという著大なる効果がもたらされる。[Effect of the Invention] As described above, according to the present invention,
C: 0.35 to 2.0%, Si: 1.0% or less, Mn: 1.0% or less, Cr: 3 to
5%, 2Mo + W: 4 to 30%, V: 1 to 5% as a basic component, and when other high-speed tool steels containing other alloy elements are added as required, when N is contained in the molten steel Amount 0.010
% And the amount of [Ti + Nb + Ta] x [N]
Restricted to 0.0001% or less, and REM: 0.001 in steel as required
~ 0.60%, Zr: 0.01 ~ 2.0%, Hf: 0.01 ~ 2.0% REM, Zr, Hf in an amount containing one or more of them, so that Since MC carbides that crystallize during the subsequent casting are extremely fine,
It is possible to obtain high-speed tool steel with outstanding grindability when manufacturing tools such as cutting tools, rolls, and dies by grinding, improving the cutting performance of tools and further increasing the quality ( Even if the V content is increased in order to improve the high temperature hardness and wear resistance), it is possible to obtain extremely excellent grindability when the tool is manufactured by grinding. Of course, the cutting performance basically required is also excellent, which brings about a remarkable effect that the range of application of the high-V high-speed tool steel can be further expanded.
Claims (4)
下、Mn:1.0%以下、Cr:3〜5%、2Mo+W:4〜30%、V:1
〜5%を基本成分として含有する高速度工具鋼を溶製す
るに際し、溶鋼中のN含有量を0.010%以下に規制する
とともに[Ti+Nb+Ta]×[N]量を0.0001%以下に規
制するようにしたことを特徴とする高速度工具鋼の製造
方法。1. By weight%, C: 0.35 to 2.0%, Si: 1.0% or less, Mn: 1.0% or less, Cr: 3 to 5%, 2Mo + W: 4 to 30%, V: 1
When melting high-speed tool steel containing ~ 5% as a basic component, the N content in the molten steel is regulated to 0.010% or less and the [Ti + Nb + Ta] × [N] content is regulated to 0.0001% or less. A method for producing a high-speed tool steel characterized by the above.
るようにした特許請求の範囲第(1)項記載の高速度工
具鋼の製造方法。2. The method for producing a high speed tool steel according to claim 1, wherein the N content in the molten steel is regulated to 0.005% or less.
下、Mn:1.0%以下、Cr:3〜5%、2Mo+W:4〜30%、V:1
〜5%を基本成分として含有する高速度工具鋼を溶製す
るに際し、溶鋼中のN含有量を0.010%以下に規制する
とともに[Ti+Nb+Ta]×[N]量を0.0001%以下に規
制し且つ鋼中にREM:0.001〜0.60%,Zr:0.01〜2.0%,Hf:
0.01〜2.0%のうちの1種または2種以上が含有される
量のREM,Zr,Hfを添加するようにしたことを特徴とする
高速度工具鋼の製造方法。3. By weight%, C: 0.35 to 2.0%, Si: 1.0% or less, Mn: 1.0% or less, Cr: 3 to 5%, 2Mo + W: 4 to 30%, V: 1
When melting high-speed tool steel containing ~ 5% as a basic component, the N content in the molten steel is regulated to 0.010% or less and the [Ti + Nb + Ta] x [N] content is regulated to 0.0001% or less and the steel is REM: 0.001 to 0.60%, Zr: 0.01 to 2.0%, Hf:
A method for producing a high-speed tool steel, characterized in that REM, Zr, and Hf are added in an amount containing one or more of 0.01 to 2.0%.
るようにした特許請求の範囲第(3)項記載の高速度工
具鋼の製造方法。4. The method for producing a high speed tool steel according to claim 3, wherein the N content in the molten steel is regulated to 0.005% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61054460A JPH0726175B2 (en) | 1986-03-12 | 1986-03-12 | Method for manufacturing high speed tool steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61054460A JPH0726175B2 (en) | 1986-03-12 | 1986-03-12 | Method for manufacturing high speed tool steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62211354A JPS62211354A (en) | 1987-09-17 |
JPH0726175B2 true JPH0726175B2 (en) | 1995-03-22 |
Family
ID=12971283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61054460A Expired - Lifetime JPH0726175B2 (en) | 1986-03-12 | 1986-03-12 | Method for manufacturing high speed tool steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0726175B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100463998C (en) * | 2006-03-16 | 2009-02-25 | 沈阳东北大学冶金技术研究所 | High-strength wear-resistant and high-temperature resistant nano-alloy steel material and manufacturing method thereof |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2716441B2 (en) * | 1987-11-30 | 1998-02-18 | 日立金属株式会社 | High speed tool steel |
JP2760001B2 (en) * | 1989-01-24 | 1998-05-28 | 大同特殊鋼株式会社 | High speed tool steel |
EP2570507A1 (en) * | 2011-09-19 | 2013-03-20 | Sandvik Intellectual Property AB | A method for producing high speed steel |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52120216A (en) * | 1976-04-02 | 1977-10-08 | Daido Steel Co Ltd | Modification of carbide in the mo high speed tool steel containing w |
JPS59182953A (en) * | 1983-03-31 | 1984-10-17 | Hitachi Metals Ltd | High-speed tool steel having superior grindability |
-
1986
- 1986-03-12 JP JP61054460A patent/JPH0726175B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100463998C (en) * | 2006-03-16 | 2009-02-25 | 沈阳东北大学冶金技术研究所 | High-strength wear-resistant and high-temperature resistant nano-alloy steel material and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPS62211354A (en) | 1987-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5648044A (en) | Graphite steel for machine structural use exhibiting excellent free cutting characteristic, cold forging characteristic and post-hardening/tempering fatigue resistance | |
JPH05214484A (en) | High strength spring steel and its production | |
WO2022145061A1 (en) | Steel material | |
WO2022145068A1 (en) | Steel material | |
JP2809677B2 (en) | Rolling die steel | |
JPH0138847B2 (en) | ||
JP3581028B2 (en) | Hot work tool steel and high temperature members made of the hot work tool steel | |
JPH0726175B2 (en) | Method for manufacturing high speed tool steel | |
JPH075960B2 (en) | Method for manufacturing cold forging steel | |
JPS6159379B2 (en) | ||
JP4116708B2 (en) | Manufacturing method of fine grain structure steel | |
JP2003034842A (en) | Steel for cold forging superior in swarf treatment property | |
JPH05339676A (en) | Steel material for machine structure excellent in cold workability and its manufacturing method | |
JPH11106863A (en) | Steel for mechanical structure excellent in cold workability and method for producing the same | |
JPH09217147A (en) | Hot tool steel | |
JP2566068B2 (en) | Method for manufacturing steel bar with excellent cold workability | |
WO2022145069A1 (en) | Steel material | |
JP2000345290A (en) | Hot roll for copper and copper alloy | |
JP3217943B2 (en) | Method for producing steel for machine structural use having excellent machinability, cold forgeability and fatigue properties after quenching and tempering | |
JP2004018879A (en) | Steel for cold forging superior in swarf treatment property | |
JPH05339677A (en) | Steel material for machine structure excellent in cold workability and its manufacturing method | |
JP3419536B2 (en) | Alloy tool steel members made of ingot material | |
JP2004315840A (en) | Cold working tool steel superior in machinability, and manufacturing method therefor | |
JPH11106864A (en) | Steel for mechanical structure excellent in cold workability and method for producing the same | |
JPH029088B2 (en) |