JPS594943A - Production of continuous casting ingot having no semimacro segregation - Google Patents
Production of continuous casting ingot having no semimacro segregationInfo
- Publication number
- JPS594943A JPS594943A JP11370882A JP11370882A JPS594943A JP S594943 A JPS594943 A JP S594943A JP 11370882 A JP11370882 A JP 11370882A JP 11370882 A JP11370882 A JP 11370882A JP S594943 A JPS594943 A JP S594943A
- Authority
- JP
- Japan
- Prior art keywords
- segregation
- semi
- slab
- macro
- crater end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/1206—Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、鋼の連鋳4片の成分偏析を改善するための鋳
造法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a casting method for improving component segregation in four pieces of continuously cast steel.
近年、歩留り及び生産能率の向上、消費エネルギーの節
減化等の点よシ自動化機械化が容易で作業環境の改善が
図られる連続鋳造法(以下連鋳法という。)が鋼の鋳片
製造法として採用されている。これら連鋳法において、
連鋳4片の中心偏析を解消するため電磁攪拌方法が連鋳
プロセスに適用され、これによって鋳片内に等軸晶又は
粒状晶を安定的に発生することが可能と々り電磁攪拌が
ない時に発生した中心偏析は添附第1図に示す如く消失
する。(第1図は電磁攪拌の有無による鋳片中心部の偏
析状況の変化を示すもので、鋳込速度0.9 % 、溶
鋼過熱度25℃、鋳込片サイズ250””X2300−
の鋳造条件で鋳造し分析方法は鋳片厚み方向で1w毎の
殺到した削粉を分析したもの)
然しなから第2図(電磁攪拌の有無での第1図の条件で
鋳造した鋳片鋳込方向断面の凝固組織を示す図で(1K
)は無(b)は有の場合)に示す如く、鋳片のL断面(
鋳込方向の断面)の凝固組織で分る様に等晶軸又は粒状
晶を発生させて鋳造したものには必ずV状に連なる偏析
バンド(通常V偏析という。)が存在している。10倍
程度の倍率で前記鋳片の凝固組織を観察すると、このV
偏析は第3図に示す如く等軸晶又は粒状晶の粒界に島状
の偏析部が断続的にV字状に連なって形成されているこ
とが分る。この島状の偏析部のことをセミマクロ偏析と
定義する。このV偏析は凝固の進行に伴なって固液共存
相内を残溶鋼が高固相率側に吸引されて流動する際に形
成されるとされており、仁の部分には高濃度の溶質が存
在するために、ミクロ的な凝固遅れが生じ、ボイドの生
成原因となシ残され極めて高濃度の部分が形成されやす
いこと及び、Mn18の濃縮に伴なってMn+Sの性成
場所となることが知られている。仁の様なセミマクロ的
な偏析部#′i最近需要が増えている耐I(IC性(織
をできる限シ微細な岬軸晶に改善して、セミマクロ偏析
も可能力限り微細なものにする努力が払われて来たが、
未だ本問題は完全に解決を見てない。In recent years, the continuous casting method (hereinafter referred to as "continuous casting method") has been gaining popularity as a method for manufacturing steel slabs, as it improves yield and production efficiency, reduces energy consumption, etc., is easy to automate and mechanize, and improves the working environment. It has been adopted. In these continuous casting methods,
An electromagnetic stirring method is applied to the continuous casting process to eliminate the center segregation of the four continuously cast slabs, and this allows stable generation of equiaxed crystals or granular crystals within the slabs.There is no uneven electromagnetic stirring. The center segregation that occurred at the time disappears as shown in attached Figure 1. (Figure 1 shows the change in the segregation situation at the center of the slab depending on the presence or absence of electromagnetic stirring. Pouring speed: 0.9%, molten steel superheat: 25°C, slab size: 250" x 2300mm)
However, as shown in Figure 2 (the slab cast under the conditions of Figure 1 with and without electromagnetic stirring) This is a diagram showing the solidification structure in the cross section in the direction of incorporation (1K
) is absent (b) is present), the L cross section of the slab (
As can be seen from the solidification structure in the cross section (in the casting direction), products cast with equicrystalline or granular crystals always have a V-shaped segregation band (usually referred to as V-segregation). When observing the solidified structure of the slab at a magnification of about 10 times, this V
As shown in FIG. 3, it can be seen that segregation is formed by island-like segregation parts intermittently continuing in a V-shape at the grain boundaries of equiaxed crystals or granular crystals. This island-like segregation is defined as semi-macro segregation. This V segregation is said to be formed when residual molten steel is attracted to the high solid phase side and flows in the solid-liquid coexistence phase as solidification progresses, and it is said that the core part contains a high concentration of solutes. Due to the presence of Mn18, there is a microscopic solidification delay, which is the cause of void formation, and an extremely high concentration part is likely to be formed, and with the concentration of Mn18, it becomes a place where Mn+S forms. It has been known. Semi-macro segregation part #'i, which has increased demand recently, has increased I resistance (IC property) (Improve the weave to as fine a cape axis crystal as possible, and make semi-macro segregation as fine as possible. Although efforts have been made,
This problem has not yet been completely resolved.
一方従来の高温鋳造を実施した鋳片には柱状晶問題とす
る場合に水素誘起割れが発生する場合がある。On the other hand, in slabs subjected to conventional high-temperature casting, hydrogen-induced cracking may occur when columnar crystal problems occur.
本発明は前記従来法の問題点である連鋳法における電磁
攪拌を用いた際に発生する等軸晶内のV偏析を構成する
セミマクロ偏析の生成を防止することを目的とするもの
である。The present invention aims to prevent the formation of semi-macro segregation, which constitutes V segregation in equiaxed crystals, which occurs when electromagnetic stirring is used in the continuous casting method, which is a problem with the conventional method.
本発明者等は、セミマクロ偏析の生成について種々研究
の結果次の如き知見を得た。The present inventors have obtained the following knowledge as a result of various studies on the generation of semi-macro segregation.
即ち前述の如くセミマクロ偏析は極めて高濃度の溶質が
存在する場所となっている。即ち第1図に示す様にマク
ロ的なチェック分析では電磁攪拌を1!施したものは電
磁攪拌を実施しなかったものに比べて極めてフラットな
溶質分布をしているにかかわらず第4図よりPmar/
P6 = 12 + Mn max/Mn6:; 、2
.0程度のセミマクロ偏析が存在するのが確認された。That is, as mentioned above, semi-macro segregation is a place where extremely high concentration of solute exists. In other words, as shown in Figure 1, the macroscopic check analysis shows that electromagnetic stirring is 1! Despite the fact that the solute distribution in the sample subjected to electromagnetic stirring was extremely flat compared to the sample without electromagnetic stirring, Pmar/
P6 = 12 + Mn max/Mn6:; , 2
.. It was confirmed that there was approximately 0 semi-macro segregation.
第4図は50μφの電子ビームを用いたX線マイクロア
ナライザ(XMA)にょシ鋳込速度0、8〜t OmA
−k 、溶鋼過熱度10〜62℃、鋳片サイズ250x
2300−1電磁攪拌有りの条件で鋳造した鋳片のP
、 Mnを線分析し夫々のピーク値の素鋼値に対する比
の関係を示したものである。Figure 4 shows an X-ray microanalyzer (XMA) using an electron beam of 50 μΦ at a casting speed of 0, 8 to t OmA.
-k, molten steel superheating degree 10~62℃, slab size 250x
2300-1 P of slab cast with electromagnetic stirring
, Mn was line analyzed and the relationship of the ratio of each peak value to the raw steel value is shown.
第5図は第1図の鋳造条件で電磁攪拌実施鋳片のL断面
中のセミマクロ偏析の厚みと個数との関係を示したもの
であるがその最大厚みは311II程度まで存在してい
る。この様な高濃度の部分では圧延過程の炉中高温保持
時に溶質の拡散によって消滅する場合もある。即ち溶質
の拡散のし易さからいえば、セミマクロ偏析厚みが小さ
い程消滅し易く、一般に圧延成品に至るまで消滅する限
界のセミマクロ偏析厚みは300μ程度であることが判
明しているので、これ以上の大きさのものは成品中にも
高濃度として残留することKなる。FIG. 5 shows the relationship between the thickness and number of semi-macro segregations in the L cross section of the electromagnetically stirred slab under the casting conditions shown in FIG. 1, and the maximum thickness exists up to about 311II. In such a high-concentration portion, the solute may disappear due to diffusion of the solute during the high-temperature holding in the furnace during the rolling process. In other words, in terms of the ease of solute diffusion, the smaller the thickness of semi-macro segregation, the easier it is to disappear, and it is generally known that the limit thickness of semi-macro segregation that disappears up to the rolled product is about 300μ, so If the size is large, it will remain in the product at a high concentration.
又セミマクロ偏析中の溶質製化度のピーク値はセミマク
ロ偏析の大きさと相関が認められている。In addition, the peak value of the degree of solute refinement during semi-macro segregation is recognized to be correlated with the magnitude of semi-macro segregation.
第6図は鋳込み速度0.8〜1.0 my’−1−、溶
鋼過熱度10〜62℃、鋳片t(ズ250x2300−
。Figure 6 shows a casting speed of 0.8 to 1.0 my'-1, a molten steel superheat of 10 to 62°C, and a slab of 250 x 2300.
.
電磁攪拌を実施した鋳造条件でビーム径50μφのXM
Aで、岬軸晶率25%の試料中のPmax/P6とセミ
マクロ偏析厚みとの関係を示すグラフであるが、第6図
に示す如くセミマクロ偏析の厚みが増すにつれて溶質濃
度化も高くなる。又一方セミマクロ偏析の厚みと鋳片の
L断面内でのセミマクロ偏析面積率(鋳片り断面のHC
tマクロ試験集施後観察されるセミマクロ偏析の面積総
量を画像処理装置を使用して測定し、測定した鋳片断面
積で除して求めたもの)とセミマクロ偏析厚みは相関が
あり面積率が太きく女ると厚みも増す傾向あることは鋳
片中セミマクロ偏析面積率とセミマクロ偏析厚みとの関
係を示した第7図に明らかである。XM with a beam diameter of 50μφ under casting conditions with electromagnetic stirring
A is a graph showing the relationship between Pmax/P6 and the thickness of semi-macro segregation in a sample with a cape axis crystallinity of 25%; as shown in FIG. 6, as the thickness of semi-macro segregation increases, solute concentration also increases. On the other hand, the thickness of semi-macro segregation and the semi-macro segregation area ratio within the L cross section of the slab (HC of the slab cross section)
There is a correlation between the total area of semi-macro segregation observed after performing macro tests using an image processing device and dividing it by the measured slab cross-sectional area, and the area ratio is thick. It is clear from Figure 7, which shows the relationship between the area ratio of semi-macro segregation in the slab and the thickness of semi-macro segregation, that the thickness tends to increase as the thickness increases.
この傾向は等軸晶率の大小に関係なく存在するものであ
る。この様なセミマクロ偏析社鋼が凝固時に体積収縮す
るものである限り発生するものであるからこれを解消す
るためKは固液共存相中の残溶鋼の流動を完全に停止さ
せることが必要となって来る。然しただ単に流動を停止
させただけでれ凝固時の体積収縮を補うことができない
ためボイドの生成を助長することとなる。This tendency exists regardless of the magnitude of equiaxed crystallinity. This kind of semi-macro segregation will occur as long as the steel undergoes volumetric contraction during solidification, so in order to eliminate this, it is necessary for K to completely stop the flow of the residual molten steel in the solid-liquid coexistence phase. I'm coming. However, simply stopping the flow cannot compensate for the volumetric contraction during solidification, which promotes the formation of voids.
以上に基づき発明者は固液共存相の凝固の進行に伴なっ
て、体積収縮分だけ鋳片厚みを減する方法(軽圧下鋳造
法。)が有効であるという知見を得た。Based on the above, the inventors have found that a method (light reduction casting method) of reducing the slab thickness by the amount of volumetric shrinkage as solidification of the solid-liquid coexisting phase progresses is effective.
即ち本発明の要旨とする所は[電磁攪拌によシ溶鋼を攪
拌しながら鋳造する連続鋳造方法において、軽圧下鋳造
を行ない液相線クレータエンドと同相線クレータエンド
間を軽圧下率0.5 m以上で鋳片厚み方向に圧下し、
鋳片中心部の固液共存相内の溶鋼流動を防止しながら鋳
造してセミマクロ偏析の生成を防止することを要旨とす
る連鋳々片製造法である。」
第8図は軽圧下法の概念図である。第8図において1は
溶鋼、2は溶鋼の液相線6は固相線4は鋳造品5は液相
線クレータエンドであり6は固相線クレータエンド、7
は軽圧下ロール、8は軽圧下ロールの油圧シリンダーで
あり9はピンチロールである。本第8図に示す様に本発
明は液相線クレータエンド5と固相線クレータエンド6
間をその凝固収縮に見合う分だけ鋳片4を軽圧下ロール
7を介して油圧シリンダー8により圧下するため完全固
相になった部分の熱収縮に対応するピンチロール9の絞
り込みに加えて更に固液共存部分の凝固収縮に見合う軽
圧下ロール7による圧下を同時に行なう方法である。然
して軽圧下条件によシ、セミマクロ偏析面積率及び厚み
の個々の値は変化する。鋳片軽圧下条件を軽圧下長さく
鋳片引抜き方向での軽圧下を実施している長さで定義す
る。)と軽圧下率(鋳片引抜き方向での1m当りの軽圧
下長)のパラメータとした場合、後述する実施例3によ
抄、軽圧下率を0.5 vm/m以上に設定することで
セミマクロ偏析面積率を0.12%以下の値に抑制され
る。That is, the gist of the present invention is [in a continuous casting method in which molten steel is cast while being stirred by electromagnetic stirring, light reduction casting is performed and a light reduction ratio of 0.5 is applied between the liquidus crater end and the homophase crater end. Roll down in the thickness direction of the slab at a pressure of m or more,
This is a continuous slab manufacturing method that aims to prevent the formation of semi-macro segregation by casting while preventing the flow of molten steel in the solid-liquid coexistence phase at the center of the slab. ” Figure 8 is a conceptual diagram of the light reduction method. In Fig. 8, 1 is the molten steel, 2 is the liquidus line 6 of the molten steel, the solidus line 4 is the cast product 5, is the liquidus line crater end, 6 is the solidus line crater end, and 7 is the liquidus line of the molten steel.
is a light reduction roll, 8 is a hydraulic cylinder of the light reduction roll, and 9 is a pinch roll. As shown in FIG. 8, the present invention has a liquidus crater end 5 and a solidus crater end 6.
The slab 4 is reduced by a hydraulic cylinder 8 via a light reduction roll 7 by an amount commensurate with the solidification shrinkage. This is a method in which reduction by a light reduction roll 7 corresponding to the solidification shrinkage of the liquid-coexisting portion is simultaneously performed. However, the individual values of the semi-macro segregation area ratio and thickness change depending on the light reduction conditions. The light reduction condition for the slab is defined as the length of light reduction in the slab drawing direction. ) and light reduction rate (light reduction length per 1 m in the slab drawing direction), by setting the light reduction rate to 0.5 vm/m or more according to Example 3, which will be described later. The semi-macro segregation area ratio is suppressed to a value of 0.12% or less.
又軽圧下率を0.5 wI/lnに固定して軽圧下長さ
を種々変化せしめ、セミマクロ偏析面積率を求めた場合
後述の実施例4により軽圧下長さが2m以上であればセ
ミマクロ偏析面積率は0.12%以下の値になる。In addition, when the light reduction ratio is fixed at 0.5 wI/ln and the light reduction length is varied to determine the semi-macro segregation area ratio, according to Example 4 described later, if the light reduction length is 2 m or more, semi-macro segregation is detected. The area ratio becomes a value of 0.12% or less.
本発明と従来の電磁攪拌を実施したり又は低温鋳造し等
軸晶を発生させた時に同時に軽圧下を実施しだものは実
施しないものに比べてセミマクロ偏析面積率は低位安定
している。The semi-macro segregation area ratio is stable at a lower level in the cases where electromagnetic stirring of the present invention and the conventional method is carried out, or when light reduction is carried out at the same time as low-temperature casting to generate equiaxed crystals, compared to cases where it is not carried out.
次の鋳造条件で鋳造した鋳片をX M Aでセミマクロ
偏析中の溶質製化度を測定比較し結果を第10図に示す
。The degree of solute formation during semi-macro segregation was measured and compared using XMA for slabs cast under the following casting conditions, and the results are shown in Figure 10.
(ビーム径=50μφで測定、等軸晶率は相方とも約2
5%)
図に示す如く電磁攪拌実施シ、て同時に軽圧下したもの
は電磁撹拌のみの場合の最低レベルに納っていることが
明らかである。(Measured with beam diameter = 50μφ, equiaxed crystallinity is about 2 for both sides.
5%) As shown in the figure, it is clear that the case where electromagnetic stirring was performed and light pressure was applied at the same time was within the lowest level of the case where only electromagnetic stirring was used.
実施例6
次の鋳造条件で鋳造した鋳片のL断面セミマクロ偏析面
積率を求め軽圧下率との関係を求めその結果を第11図
に示す。Example 6 The L-section semi-macro segregation area ratio of a slab cast under the following casting conditions was determined, and the relationship with the light reduction rate was determined, and the results are shown in FIG.
等軸晶率25〜60チ
第11図に明らかなように軽圧下長さを2mに周定した
場合での軽圧下率とセミマクロ偏析面積率との関係は軽
圧下率を0.5 m/m以上設定することでセミマクロ
偏析面積率を0,12%U下となる。Equiaxed crystallinity: 25 to 60 cm As shown in Figure 11, the relationship between the light reduction rate and the semi-macro segregation area ratio when the light reduction length is set to 2 m is that the light reduction rate is 0.5 m/ By setting m or more, the semi-macro segregation area ratio will be lowered by 0.12%U.
実施例4
次の鋳造条件で鋳造した鋳片のセミマクロ偏析面積率を
求め軽圧下長さとの関係を求めその結果等軸晶率=25
〜30%
第12図に明らかなように軽圧下率を0.5〜に固定し
た場合軽圧下長さが2m以上であれはセミマクロ偏析面
積率が0.12%以下の値になる。Example 4 The semi-macro segregation area ratio of the slab cast under the following casting conditions was determined, and the relationship with the light reduction length was determined. As a result, the equiaxed crystal ratio = 25
~30% As is clear from Fig. 12, when the light reduction ratio is fixed at 0.5~, the semi-macro segregation area ratio becomes a value of 0.12% or less if the light reduction length is 2 m or more.
実施例5
次の鋳造条件で鋳造した鋳片の等軸晶率とセミマクロ偏
析面積率を求め、本発明と従来法とを比較試験を実施し
、その結果を第16図に示す。Example 5 The equiaxed crystallinity and semi-macro segregation area ratio of a slab cast under the following casting conditions were determined, and a comparative test was conducted between the present invention and the conventional method, and the results are shown in FIG.
従来法■は低温鋳造の場合
第16図に明らかな様に本発明法による鋳片は従来の電
磁攪拌を実施又は低温鋳造して等軸晶を発生せしめた鋳
片に比して低位に安定している。Conventional method (2) is a case of low-temperature casting.As is clear from Figure 16, the slab produced by the method of the present invention is less stable than the slab produced by conventional electromagnetic stirring or low-temperature casting to generate equiaxed crystals. are doing.
実施例6
次の鋳造条件で鋳片A、Bを製造しAについてはセミマ
クロ偏析をBについては中心偏析を求め本発明鋳片A、
BからAPIX52〜×80相当の圧延成品を製造し耐
水素鰐起割れ(HIC)試験を実施しCL R(Cra
ck leugth ratio )を求め、面積率と
CLR%との関係を調査した。その結果を第14図に示
す。Example 6 Slabs A and B were manufactured under the following casting conditions, semi-macro segregation was determined for A, and center segregation was determined for B, and slabs A and B of the present invention were obtained.
A rolled product equivalent to APIX 52 to x 80 was manufactured from B, and a hydrogen crocodile cracking (HIC) test was conducted to obtain CL R (Cra
ck leugth ratio) was determined, and the relationship between area ratio and CLR% was investigated. The results are shown in FIG.
[註]HIC試験は第15図(a)に示す如く圧延成品
を3分割しサンプル6個について欠陥を調査する。更に
1サンプルについて3断面を第15図(b)に示す如<
t、t、t、(割れ伝播長さ)を求め、W(断面長さ)
より
尚NACE 環境下での水素銹起割れ試験環境は次表の
条件による。[Note] In the HIC test, the rolled product is divided into three parts as shown in FIG. 15(a), and six samples are examined for defects. Furthermore, three cross sections of one sample are shown in Fig. 15(b).
Find t, t, t, (crack propagation length), and calculate W (cross-sectional length)
Furthermore, the hydrogen corrosion cracking test environment under the NACE environment is based on the conditions shown in the table below.
第14図に示す如く、セミマクロ偏析面積率が0.12
−以下であれば水素銹起割れは発生しない。As shown in Figure 14, the semi-macro segregation area ratio is 0.12.
- If it is below, hydrogen corrosion cracking will not occur.
試験鋳片Bは電磁攪拌を使用しないので等軸晶が全く存
在しない場合のHIC試験結果で、中心偏析面積率とC
LRとの関係を第14図には示している、1この結果よ
シセミマクロ偏析も中心偏析もほぼ同等の偏析面積率で
欠陥発生の臨界値があることを示す。Test slab B did not use electromagnetic stirring, so the HIC test results were obtained when no equiaxed crystals were present.
The relationship with LR is shown in FIG. 14.1 This result shows that both semi-macro segregation and central segregation have a critical value for defect generation at approximately the same segregation area ratio.
マクロ偏析生成状況を示す金属顕微鏡図、第4図はセミ
マクロ偏析をXMAで線分析した時のP + Mnのピ
ーク値の素鋼値に対する比の関係を示す図、第5図は電
磁攪拌実施鋳片り断面中のセミマクロA)TL
偏析の厚みと個数の関係を示す図、第6図はセミマクロ
偏析厚みとXMAにより溶質製化度を測定筒
した結果の関係を示す図、第7図は鋳片中セミマ迄
偏析の厚みと個数の関係を示す図、第10図は実施例2
に示す鋳片のセミマクロ偏析中の溶質濃化碓
度をXMAで測定した例を示す図、第11図は実施例3
に示す軽圧下長さを一定にし軽圧下率を変図は実施例5
に示す本発明鋳片と従来鋳片の等軸羨ji、。
晶率とセミマクロ偏析面積率との関係を示尤図、第14
図は実施例6に示すHIC試験結果と対応する鋳片のセ
ミマクロ偏析面積率との関係を示す、<JL図、第15
図(、)は実施例6に示すHIC試験に針CLRを求め
るだめの説明に用いる割れ調査断面繰入図である。
第8図において1:溶鋼、2:液相線、6:固相線、5
:液相線クレータエンド、6:固相線クレータエンド、
7:軽圧下ロール、9:ピンチロール。
第1図
刺 2 図
(G)
(b)
■鴬哲′JA竹へ
第3図
第 4図
1 2 4 6 8 10 12 14PmO
X/PO
第5IvI
rミzりu%?’+717 mm
第 6 図
第7図
ヤミマクロ墳を巾rdbネ嚢1タン6
第8図
第9DA
第10国
2.0 40 6.0 &OIQO12,QJ14.
0Pmax/P。
11図
車イ斤下千 mm/m
第12図
第13図
等軸品串%Figure 4 is a diagram showing the ratio of the peak value of P + Mn to the raw steel value when line analysis of semi-macro segregation is performed by XMA. A diagram showing the relationship between the thickness and number of semi-macro A) TL segregation in a single cross section, Figure 6 is a diagram showing the relationship between the thickness of semi-macro segregation and the results of measuring the degree of solute formation by A diagram showing the relationship between the thickness and number of segregation up to semima in one piece, Figure 10 is Example 2
Figure 11 is a diagram showing an example of measuring the degree of solute concentration during semi-macro segregation of the slab shown in Figure 11 using XMA.
The figure shown in Example 5 shows that the light rolling length is constant and the light rolling ratio is varied.
The equiaxed dimensions of the inventive slab and the conventional slab are shown in FIG. Diagram showing the relationship between crystal rate and semi-macro segregation area ratio, No. 14
The figure shows the relationship between the HIC test results shown in Example 6 and the semi-macro segregation area ratio of the corresponding slab.
The figure (,) is a crack investigation cross-sectional drawing used to explain the reason for determining the needle CLR in the HIC test shown in Example 6. In Figure 8, 1: Molten steel, 2: Liquidus line, 6: Solidus line, 5
: Liquidus crater end, 6: Solidus crater end,
7: Light reduction roll, 9: Pinch roll. Figure 1 Sashimi Figure 2 Figure (G) (b) ■ Tetsu Tetsu' JA bamboo Figure 3 Figure 4 1 2 4 6 8 10 12 14PmO
X/PO 5th IvI rmizuriu%? '+717 mm Fig. 6 Fig. 7 Yami Macro tomb width rdb bag 1 tongue 6 Fig. 8 9DA 10th country 2.0 40 6.0 &OIQO12,QJ14.
0Pmax/P. Fig. 11 Wheel size: 1,000 mm/m Fig. 12 Fig. 13 Equal shaft product skewer%
Claims (1)
法において、液相線クレータエンドと固相線クレータエ
ンドの間を軽圧下率0.5′%以上で鋳片厚み方向に圧
下することを特徴とするセミマクロ偏析のない連鋳4片
製造法。A continuous casting method in which molten steel is cast while being stirred by electromagnetic stirring, characterized by rolling down in the slab thickness direction between the liquidus crater end and the solidus crater end at a light reduction rate of 0.5'% or more. Continuously cast four-piece manufacturing method without semi-macro segregation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11370882A JPS594943A (en) | 1982-06-30 | 1982-06-30 | Production of continuous casting ingot having no semimacro segregation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11370882A JPS594943A (en) | 1982-06-30 | 1982-06-30 | Production of continuous casting ingot having no semimacro segregation |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS594943A true JPS594943A (en) | 1984-01-11 |
Family
ID=14619145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11370882A Pending JPS594943A (en) | 1982-06-30 | 1982-06-30 | Production of continuous casting ingot having no semimacro segregation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS594943A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60148651A (en) * | 1984-01-13 | 1985-08-05 | Kawasaki Steel Corp | Continuous casting machine |
JPS60162564A (en) * | 1984-01-31 | 1985-08-24 | Nippon Steel Corp | Vertical type continuous casting method |
JPS6233048A (en) * | 1985-08-03 | 1987-02-13 | Nippon Steel Corp | Continuous casting method |
JPH03281051A (en) * | 1990-03-29 | 1991-12-11 | Nippon Steel Corp | Continuous casting method |
JPH05237621A (en) * | 1992-02-28 | 1993-09-17 | Sumitomo Metal Ind Ltd | Continuous casting method |
JPH1177269A (en) * | 1997-09-10 | 1999-03-23 | Kobe Steel Ltd | Continuous casting method |
JP2008260056A (en) * | 2007-04-16 | 2008-10-30 | Kobe Steel Ltd | Continuous casting method for slab steel less in central segregation |
JP2020521053A (en) * | 2017-05-26 | 2020-07-16 | 宝山鋼鉄股▲分▼有限公司 | Bearing steel for automobile hub and manufacturing method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54107831A (en) * | 1978-02-13 | 1979-08-24 | Nippon Kokan Kk | Continuous steel casting |
JPS5762804A (en) * | 1980-09-30 | 1982-04-16 | Nippon Kokan Kk <Nkk> | Continuous casting method for cast steel ingot having excellent sour resisting characteristic |
-
1982
- 1982-06-30 JP JP11370882A patent/JPS594943A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54107831A (en) * | 1978-02-13 | 1979-08-24 | Nippon Kokan Kk | Continuous steel casting |
JPS5762804A (en) * | 1980-09-30 | 1982-04-16 | Nippon Kokan Kk <Nkk> | Continuous casting method for cast steel ingot having excellent sour resisting characteristic |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60148651A (en) * | 1984-01-13 | 1985-08-05 | Kawasaki Steel Corp | Continuous casting machine |
JPS60162564A (en) * | 1984-01-31 | 1985-08-24 | Nippon Steel Corp | Vertical type continuous casting method |
JPH0468064B2 (en) * | 1984-01-31 | 1992-10-30 | Nippon Steel Corp | |
JPS6233048A (en) * | 1985-08-03 | 1987-02-13 | Nippon Steel Corp | Continuous casting method |
JPH036855B2 (en) * | 1985-08-03 | 1991-01-31 | Nippon Steel Corp | |
JPH03281051A (en) * | 1990-03-29 | 1991-12-11 | Nippon Steel Corp | Continuous casting method |
JPH0710428B2 (en) * | 1990-03-29 | 1995-02-08 | 新日本製鐵株式会社 | Continuous casting method |
JPH05237621A (en) * | 1992-02-28 | 1993-09-17 | Sumitomo Metal Ind Ltd | Continuous casting method |
JPH1177269A (en) * | 1997-09-10 | 1999-03-23 | Kobe Steel Ltd | Continuous casting method |
JP2008260056A (en) * | 2007-04-16 | 2008-10-30 | Kobe Steel Ltd | Continuous casting method for slab steel less in central segregation |
JP2020521053A (en) * | 2017-05-26 | 2020-07-16 | 宝山鋼鉄股▲分▼有限公司 | Bearing steel for automobile hub and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006206967A (en) | Method for continuously casting free-cutting steel for machine structure | |
JPS594943A (en) | Production of continuous casting ingot having no semimacro segregation | |
JP3383647B2 (en) | Continuous cast billet and method of manufacturing the same | |
JPH09285856A (en) | Continuous casting method | |
JP4325497B2 (en) | Continuous casting method of low carbon sulfur free cutting steel | |
JPS6233048A (en) | Continuous casting method | |
JPS6234460B2 (en) | ||
JPH08238550A (en) | Method for continuously casting steel | |
Sychkov et al. | INHERENT EFFECT OF THE CRYSTAL STRUCTURE OF CONTINUOUS CAST STEEL BILLETS ON THE FORMATION OF STRUCTURE OF HIGH CARBON WIRE ROD IN COILS. | |
JP3104627B2 (en) | Unsolidified rolling production method of round billet | |
JP2016087623A (en) | Continuous casting method for steel, and continuously cast slab | |
Cheng et al. | Effects of Deformation Penetration and Recrystallization on the Internal Quality of Casting Ingot | |
JPH11138238A (en) | Production of b-containing austenitic stainless steel cast slab | |
ZoNg et al. | Influence of internal cracking on carbide precipitation in continuous casting bloom induced by soft reduction technology and the resulting segregated band In hot-rolled wire rods | |
Itofuji | Magnesium Map of the Spheroidal-graphite Structure in Ductile Cast Irons | |
JP2001262287A (en) | Austenitic stainless steel excellent in surface quality | |
JP2000094101A (en) | Continuously cast slab, continuous casting method thereof and production of thick steel plate | |
JPH01162551A (en) | Method for continuously casting round shape billet | |
JPH03114643A (en) | Continuous casting method | |
JP2614381B2 (en) | Thin slab of Fe-Cu alloy | |
JP3186614B2 (en) | Continuous casting method of Ni-containing steel | |
JP3494136B2 (en) | Continuous cast slab, casting method thereof, and method of manufacturing thick steel plate | |
Santillana et al. | Effect of V and N on the microstructure evolution during continuous casting of steel | |
JP3091924B2 (en) | Continuous casting method | |
JPH05293618A (en) | Continuous casting method |