JPH03114643A - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JPH03114643A
JPH03114643A JP14503390A JP14503390A JPH03114643A JP H03114643 A JPH03114643 A JP H03114643A JP 14503390 A JP14503390 A JP 14503390A JP 14503390 A JP14503390 A JP 14503390A JP H03114643 A JPH03114643 A JP H03114643A
Authority
JP
Japan
Prior art keywords
segregation
cast slab
continuous cast
reduction
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14503390A
Other languages
Japanese (ja)
Other versions
JPH0530548B2 (en
Inventor
Shigeaki Ogibayashi
荻林 成章
Mamoru Yamada
衛 山田
Tatsuo Mukai
向井 達夫
Makoto Tefun
手墳 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14503390A priority Critical patent/JPH03114643A/en
Publication of JPH03114643A publication Critical patent/JPH03114643A/en
Publication of JPH0530548B2 publication Critical patent/JPH0530548B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent segregation of impurities at center part of a continuous cast slab and to produce the continuous cast slab having uniform material by continuously executing rolling reduction to the continuous cast slab drawn from a mold with the different rolling reduction rate according to temp. at the center unsolidified part at the time of continuously casting molten steel. CONSTITUTION:The molten steel is poured into the mold for continuous casting and continuously drawn from the mold as the continuous cast slab under condition of existence of the unsolidified part in the inner part. In the unsolidified part at center part of the continuous cast slab, the impurities of S, P, Mn, etc., are accumulated and the segregation is developed and the quality of continuous cast slab is deteriorated. In order to prevent this, the rolling reduction is continuously executed to the continuous cast slab. In this case, the rolling reduction is executed to the cast slab during the range from the time point when the temp. at center part of the continuous cast slab becomes liquids temp. for this steel to the time point when the above temp. becomes fluidity limit solidus ratio at 0.5-2.0mm/min the rolling reduction rate and during the range till the temp. in the center part of continuous cast slab becomes solidus temp. after that at 0.3mm/min the rolling reduction rate to solidify the unsolidified part at the center part.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は連続鋳造鋳片の厚み中心部にみられる不純物元
素、即ち鋼鋳片の場合には硫黄、燐、マンガン等の偏析
を防止し均質な金属を得ることのできる連続鋳造法に関
するものである。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention prevents the segregation of impurity elements found in the center of the thickness of continuously cast slabs, such as sulfur, phosphorus, and manganese in the case of steel slabs. It relates to a continuous casting method that can produce homogeneous metal.

(従来の技術) 近年、海洋構造物、貯槽、石油およびガス運搬用鋼管な
どの材質特性に対する要求は厳しさを増しており、均質
な鋼材を提供することが重要課題となっている。元来鋼
材は、板厚方向に均質であるべきものであるが、鋼は一
般に硫黄、燐、マンガン等の不純物元素を含有しており
、これらが鋳造過程において偏析し、部分的に濃化する
ため鋼が脆弱となる。特に近年生産性や歩留の向上及び
省エネルギー等の目的のために連続鋳造法が一般に普及
しているが、連続鋳造により得られる鋳片の厚み中心部
には通常顕著な成分偏析が観察される。こうした成分偏
析は最終製品の均質性を著しく損ない、製品の使用過程
で鋼に作用する応力による亀裂発生等重大欠陥の原因に
なるため、その低減が切望されている。かかる成分偏析
は凝固末期の残溶鋼が凝固収縮力等によって流動し、固
液界面近傍の濃化溶鋼を洗い出し、残溶鋼が累進的に濃
化していくことによって生じる。従って成分偏析を防止
するには、残溶鋼の流動原因を取り除くことが肝要であ
り、そのためにはロール間の鋳片バルジングを極力小さ
くし、かつ凝固収縮量に相当する量だけ鋳片を圧下する
ことが有効であることが知られている。
(Prior Art) In recent years, requirements for material properties of offshore structures, storage tanks, steel pipes for oil and gas transportation, etc. have become more severe, and providing homogeneous steel materials has become an important issue. Originally, steel materials should be homogeneous in the thickness direction, but steel generally contains impurity elements such as sulfur, phosphorus, and manganese, which segregate and become partially concentrated during the casting process. Therefore, the steel becomes brittle. Particularly in recent years, continuous casting methods have become popular for purposes such as improving productivity and yield and saving energy, but noticeable component segregation is usually observed in the center of the thickness of slabs obtained by continuous casting. . Such component segregation significantly impairs the homogeneity of the final product and causes serious defects such as the occurrence of cracks due to stress acting on the steel during the use of the product, so there is a strong desire to reduce it. Such component segregation occurs when residual molten steel at the final stage of solidification flows due to solidification contraction force or the like, washes out the concentrated molten steel near the solid-liquid interface, and the residual molten steel progressively becomes concentrated. Therefore, in order to prevent component segregation, it is important to eliminate the cause of the flow of residual molten steel. To do this, the bulging of the slab between the rolls should be minimized and the slab should be rolled down by an amount equivalent to the amount of solidification shrinkage. It is known that this is effective.

鋳片を圧下することにより偏析を改善する試みは古くか
らなされており、例えば特公昭59−16862号公報
に記載されているように、連続鋳造工程において鋳片中
心部温度が液相線温度から固相線温度に至るまでの間鋳
片を一定の割合で圧下する方法が知られている。しかし
ながら、これら従来法の場合次のような重大な欠点があ
り、このため成分偏析の充分な改善が困難である。すな
わち従来法の場合、圧下量を増加させるにつれて最終凝
固部の偏析形態がスポット状の偏析から線状の偏析に変
化する。
Attempts to improve segregation by compressing slabs have been made for a long time, and for example, as described in Japanese Patent Publication No. 16862/1986, the temperature at the center of a slab is lowered from the liquidus temperature in a continuous casting process. A method is known in which a slab is rolled down at a constant rate until it reaches its solidus temperature. However, these conventional methods have the following serious drawbacks, which make it difficult to sufficiently improve component segregation. That is, in the case of the conventional method, as the reduction amount increases, the segregation form of the final solidified portion changes from spot-like segregation to linear segregation.

通常、厚み中心部の成分偏析は直径1 mm前後のスポ
ット状の高濃度部分が鋳造方向および幅方向に分散した
形態をとるのが普通である。以後この種の偏析形態をス
ポット状偏析と呼ぶ。これに対し、圧下量を増大させる
ことによって生じる線状の偏析とは、高濃度部分が鋳造
方向および幅方向に連続した形態の偏析であって、その
特徴は例えば鉄と鋼A201 (1983)にも詳述さ
れているとおりである。この線状偏析はスポット状偏析
に比べて偏析の幅が非常に狭く、通常鋳片段階で0.1
〜0、5 mm以下であり、−見すると偏析が大幅に改
善されたかにみえる。しかしながらこの鋳片を圧延し、
たとえば耐サワー特性である水素誘起割れ(以後HIC
と称す)面積率を調査するとスポット状偏析の場合に比
べて割れ面積率はかえって増加しており、従って凝固末
期での溶鋼流動を抑えるために凝固収縮量に見あった圧
下を加えることが実質的には逆効果となることがわかっ
た。第3図にこの関係を模式的に示す。同様の傾向は、
厚板溶接部の割れ(HAZ割れ)にも認められている。
Normally, component segregation at the center of the thickness takes the form of spot-like high concentration areas with a diameter of about 1 mm dispersed in the casting direction and width direction. Hereinafter, this type of segregation form will be referred to as spot segregation. On the other hand, linear segregation caused by increasing the rolling reduction is a type of segregation in which the high concentration part is continuous in the casting direction and width direction, and its characteristics are described, for example, in Tetsu to Hagane A201 (1983). is also detailed. This linear segregation has a much narrower width than spot segregation, and is usually 0.1 at the slab stage.
It is ~0.5 mm or less, and it appears that segregation has been significantly improved. However, when this slab is rolled,
For example, hydrogen-induced cracking (hereinafter referred to as HIC), which has sour resistance properties,
When examining the area ratio (referred to as ``solidification shrinkage''), it was found that the crack area ratio actually increased compared to the case of spot segregation.Therefore, in order to suppress the flow of molten steel at the final stage of solidification, it is effective to apply a reduction commensurate with the amount of solidification shrinkage. It turned out that it had the opposite effect. FIG. 3 schematically shows this relationship. A similar trend is
It has also been observed in cracks in thick plate welds (HAZ cracks).

本発明者らは、この原因について調査した結果、線状偏
析の場合、これを鋳片広幅面に平行な面(以後Z断面と
呼ぶ)で観察すると偏析部が網目状に連なっており、こ
れが圧延後の製品においても明瞭に残存し、連続した高
濃度部分が亀裂の優先的伝播経路となるために著しく製
品を脆弱にすることがわかった。
As a result of investigating the cause of this, the present inventors found that in the case of linear segregation, when observed in a plane parallel to the wide surface of the slab (hereinafter referred to as the Z cross section), the segregated areas are connected in a network pattern. It was found that it clearly remained in the product after rolling, and that the continuous high concentration areas served as preferential propagation routes for cracks, making the product extremely brittle.

従って従来法の場合圧下量を増大させるにつれである程
度までの範囲では製品の材質は改善方向に向うものの、
更に圧下量を増大させると材質は再び、かつ急激に悪化
するため、凝固収縮による溶鋼流動の発生の防止を犠牲
にしてでも線状偏析の発生を回避するため凝固収縮量よ
りはるかに小さな量の圧下量に留めざるを得ないという
重大な問題があった。このため例えば鉄と鋼A201 
(1,983)に見られるように凝固収縮量に見合った
圧下が本来量も本質的な偏析改善策であるにもかかわら
ず、その適用を断念しもう一つの対策としての電磁撹拌
を採用した例も多い。電磁撹拌法は、流動の悪影響を小
さくするだめの有効な方策ではあるが、それだけでは凝
固収縮による流動の悪影響を完全には防止出来ず、特に
スラブ鋳造の場合には現段階では必ずしも充分な偏析解
決手段とは言えない。
Therefore, in the conventional method, as the reduction amount increases, the material quality of the product tends to improve to a certain extent, but
If the reduction amount is further increased, the material quality will deteriorate again and rapidly. Therefore, in order to avoid the occurrence of linear segregation, even at the expense of preventing the occurrence of molten steel flow due to solidification shrinkage, the reduction amount is much smaller than the amount of solidification shrinkage. There was a serious problem in that the amount of reduction had to be limited. For this reason, for example, iron and steel A201
(1,983), although reduction commensurate with the amount of solidification shrinkage is an essential measure to improve segregation, we abandoned its application and adopted electromagnetic stirring as another measure. There are many examples. The electromagnetic stirring method is an effective measure to reduce the negative effects of flow, but it alone cannot completely prevent the negative effects of flow due to solidification shrinkage, and especially in the case of slab casting, there is not always sufficient segregation at this stage. I can't say it's a solution.

(発明が解決しようとする問題点) 本発明の目的は従来法のかかる問題点を解消し、均質な
鋼材を得るための連続鋳造法を提供するにある。
(Problems to be Solved by the Invention) An object of the present invention is to solve the problems of the conventional method and provide a continuous casting method for obtaining a homogeneous steel material.

(問題点を解決するための手段) 本発明の要旨とするところは、鋳片を連続的に引き抜く
溶融金属の連続鋳造において、鋳造中に未凝固鋳片を連
続的に圧下し、その圧下量を、鋳片の中心部が液相線温
度となる時点から流動限界固相率となる時点までの領域
では0.5 mm 7分ないし2.0mm/分、それ以
降、鋳片中心部が固相線温度となるまでの領域では0.
3mm/分以下とすることを特徴とする連続鋳造法にあ
る。
(Means for Solving the Problems) The gist of the present invention is that in continuous casting of molten metal in which slabs are continuously drawn, unsolidified slabs are continuously reduced during casting, and the amount of reduction is 0.5 mm/min to 2.0 mm/min in the region from the time when the center of the slab reaches the liquidus temperature to the time when the solid fraction reaches the flow limit, and after that, the center of the slab becomes solid. 0 in the region up to the phase line temperature.
The continuous casting method is characterized by a casting rate of 3 mm/min or less.

以下、本発明を更に詳述する。The present invention will be explained in more detail below.

本発明者らは前記した従来法の問題点を解決するだめの
手段を見い出すため、鋳片圧下に関し系統的な研究を実
施した。まず凝固収縮量を補償するための必要圧下量に
ついて検討した。通常、連鋳鋳片には、中心部の偏析に
ほかに、第2図に示すようにV状の偏析(V偏析)が見
られる。この■偏析は凝固収縮によって生じるものであ
るから、その発生個数を観察することによって、圧下量
が凝固収縮量に対して充分か否かを知ることが出来る。
The present inventors conducted systematic research on slab reduction in order to find a means to solve the problems of the conventional method described above. First, we investigated the amount of reduction necessary to compensate for the amount of solidification shrinkage. In addition to segregation in the center, continuous cast slabs usually exhibit V-shaped segregation (V-segregation) as shown in FIG. 2. Since this (1) segregation is caused by solidification shrinkage, by observing the number of occurrences, it is possible to know whether the reduction amount is sufficient for the solidification shrinkage amount.

本発明者らは、かかる現象を観察することにより次の二
つの事実を見い出した。その一つば、圧下量の考え方に
関するものであり、凝固収縮量を補償するために重要な
のは、ロール−本あたり圧下量(単位mm)ではなく、
クレータ−エンド(凝固先端)近傍数mの範囲での平均
的な圧下速度(mm/分)であることを知った。ここで
圧下速度とは鋳片」二の任意の点が、複数のロールの間
を通過する過程で単位時間当り圧下される量をいう。
The present inventors discovered the following two facts by observing such phenomena. One of these concerns the idea of the amount of reduction.What is important in compensating for the amount of solidification shrinkage is not the amount of reduction per roll (unit: mm).
It was learned that the rolling down speed (mm/min) is the average rolling speed in a range of several meters near the crater end (solidification tip). The rolling speed here refers to the amount by which a given point on the slab is rolled down per unit time during the process of passing between a plurality of rolls.

実操業におけるロール間隔の設定にあたっては、上記圧
下速度を引抜速度で除した値、すなわち圧下勾配(単位
mm / m )により、鋳造方向単位長さ当りの圧下
量(すなわちロール間隔絞り込み量)を知ることが出来
る。もう一つの事実は、凝固収縮を過不足なく補償する
ための圧下量(以後適正圧下量と呼ぶ)に関するもので
ある。圧下量が0、5 mm 7分未満であると、鋳造
方向に向う■偏析が生じるが、一方、圧下量が2.0 
mm 7分を越えて大きくなりすぎると鋳造方向と逆方
向(すなわちメニスカスの方向)に向う■偏析(以後逆
■偏析と称す)が生じる。従って、■偏析も逆■偏析も
生じない適正圧下量は0.5〜2.0 mm 7分であ
る。
When setting the roll spacing in actual operation, the amount of reduction per unit length in the casting direction (i.e., the amount of narrowing of the roll spacing) is determined by the value obtained by dividing the above reduction speed by the drawing speed, that is, the reduction gradient (unit: mm/m). I can do it. Another fact concerns the amount of reduction (hereinafter referred to as the appropriate amount of reduction) to compensate for solidification shrinkage in just the right amount. If the reduction amount is less than 0.5 mm 7 minutes, segregation will occur in the casting direction, but on the other hand, if the reduction amount is less than 2.0 mm, segregation will occur in the casting direction.
If it becomes too large, exceeding mm 7 minutes, ■ segregation (hereinafter referred to as reverse ■ segregation) occurs in the direction opposite to the casting direction (that is, in the direction of the meniscus). Therefore, the appropriate rolling reduction amount that does not cause either (1) segregation or reverse (3) segregation is 0.5 to 2.0 mm and 7 minutes.

よって、本発明において、鋳片の中心部が液相線温度と
なる時点から流動限界固相率となる時点までの領域にお
ける圧下量を0.5〜2.0 mm 7分と規定した。
Therefore, in the present invention, the reduction amount in the region from the time when the central part of the slab reaches the liquidus temperature to the time when the flow limit solid phase ratio is reached is defined as 0.5 to 2.0 mm and 7 minutes.

適正圧下量は、単位長さ当りの圧下量(mm/m)で考
えた場合には、鋳造速度により木質的に変化するもので
あるが、これを圧下速度(mm/分)で表わした場合に
は、鋳造速度にかかわらずほぼ一定の値で表わされるの
で本発明ではこの11位で規定した。ただし適正圧下量
は鋳片の厚み2幅、冷却条件によって変化するので、好
ましくは、通常スラブの場合は0.5〜1.5mm/分
、ブルームもしくばビレットの場合には1.0〜2.0
肛/分とする。
The appropriate amount of reduction changes depending on the casting speed when considered in terms of the amount of reduction per unit length (mm/m), but when expressed in terms of the reduction speed (mm/min). Since it is expressed as a substantially constant value regardless of the casting speed, this 11th place is specified in the present invention. However, the appropriate reduction amount varies depending on the thickness and width of the slab and the cooling conditions, so it is preferably 0.5 to 1.5 mm/min for normal slabs, and 1.0 to 2 mm/min for blooms or billets. .0
anus/min.

次に偏析形態について検討した。前記したように鋳片中
心部温度が液相線温度となる時点から、固相線温度とな
るまでの全領域について圧下を実施した場合適正圧下量
より小さい範囲では圧下量を増すにつれてV偏析発生個
数が減少し、それに対応して偏析も改善されるが、V偏
析の発生が防止できない小さな圧下量の場合でも既に最
終凝固部の偏析形態がスポット状から線状に変化し、耐
HIC特性等の最終製品の特性を悪化させる。ところで
本発明者らは、数多くの鋳造試験の結果最終凝固部の偏
析形態が決定されるのは、凝固の極めて末期であり、鋳
片厚み中心部が流動限界固相率に到達した時点以降の領
域における圧下量を0、3 mm /分収下とすること
により線状偏析の発生を防止し、最終凝固部偏析形態を
常に微細なスボッ1−状にし得ることを見出した。ここ
で流動限界固相率とは、溶鋼が流動し得る上限の固相率
であり、固相率0.6ないし0.8の値である。鋳片厚
み中心部の固相率が該流動限界固相率より小さな上流の
領域(以後ステージ■と呼ぶ)では、溶鋼が鋳造方向に
連なっており凝固収縮により溶鋼が鋳造方向に流動し、
残溶鋼の濃化を引き起すので凝固収縮を補償し得る量の
圧下を行なって流動を防止することが必要である。この
領域での圧下量を適正な値にすることによりV偏析や逆
■偏析の発生を防止し、偏析の極めて少ない良好な鋳片
を得ることが出来る。適正な圧下量は前記したとおりら
0.5〜2.0 mm 7分である。
Next, we examined the segregation morphology. As mentioned above, if the reduction is carried out in the entire range from the time when the temperature at the center of the slab reaches the liquidus temperature until it reaches the solidus temperature, V segregation will occur as the reduction amount increases in a range smaller than the appropriate reduction amount. The number of pieces decreases, and segregation is improved accordingly, but even in the case of small reductions where the occurrence of V segregation cannot be prevented, the segregation form in the final solidified part already changes from spot-like to linear, resulting in poor HIC resistance. deteriorate the properties of the final product. By the way, as a result of numerous casting tests, the present inventors have found that the segregation form of the final solidified zone is determined at the very end of solidification, and that after the time when the central part of the thickness of the slab reaches the flow limit solid fraction. It has been found that by setting the reduction amount in the area to 0.3 mm/minute, the occurrence of linear segregation can be prevented and the final solidified portion segregation form can always be made into a fine splotch shape. Here, the flow limit solid fraction is the upper limit solid fraction at which molten steel can flow, and is a value of 0.6 to 0.8. In the upstream region (hereinafter referred to as stage ■) where the solid fraction at the center of the thickness of the slab is smaller than the flow limit solid fraction, molten steel continues in the casting direction, and solidification shrinkage causes the molten steel to flow in the casting direction.
Since this causes the residual molten steel to thicken, it is necessary to reduce the amount of pressure to compensate for solidification shrinkage to prevent flow. By setting the reduction amount in this region to an appropriate value, it is possible to prevent the occurrence of V segregation and reverse ■ segregation, and obtain a good slab with extremely little segregation. The appropriate reduction amount is 0.5 to 2.0 mm and 7 minutes as described above.

本発明の根幹となる重大な発見は、ステージIでの圧下
量の大小は最終凝固部の偏析形態には影響しないという
ことである。最終凝固部の偏析形態は、鋳片厚み中心部
の固相率が流動限界固相率よりも大きくなる時点から中
心部温度が固相線温度に達するまでの領域(以後ステー
ジ■と呼ぶ)での圧下量によって決定される。ステージ
■での圧下量が大きずぎると線状偏析となるが、圧下量
を0.3  mm7分以下にすることにより防止でき、
微細なスポット状の偏析形態を確保することができるこ
とを確かめた。
An important discovery that forms the basis of the present invention is that the magnitude of the reduction in stage I does not affect the segregation form of the final solidified portion. The segregation form of the final solidification zone occurs in the region from the time when the solid fraction at the center of the thickness of the slab becomes larger than the flow limit solid fraction until the temperature at the center reaches the solidus temperature (hereinafter referred to as stage ■). Determined by the amount of reduction. If the amount of reduction in stage ■ is too large, linear segregation will occur, but this can be prevented by reducing the amount of reduction to 0.3 mm and 7 minutes or less.
It was confirmed that it was possible to secure a fine spot-like segregation morphology.

本発明に係るステージIとステージHの概念図を第1図
に示す。
A conceptual diagram of Stage I and Stage H according to the present invention is shown in FIG.

本発明者らは更にセンターポロシティ−についても圧下
条件の影響を調査した結果、センターポロシティ−はス
テージIで適正圧下を実施することにより大幅に減少す
ることを見出した。ステージ■で過度の圧下を加えた場
合には、ポロシティ0 −は更に減少するが、この場合は極めて小さなポロシテ
ィ−が減少するだけで材質改善効果はステージ■での適
正圧下だけで十分である。
The present inventors further investigated the influence of rolling conditions on center porosity and found that center porosity was significantly reduced by carrying out appropriate rolling at Stage I. If an excessive reduction is applied in stage (2), the porosity 0- is further reduced, but in this case, only a very small porosity is reduced, and the proper reduction in stage (2) is sufficient to improve the material quality.

次に本発明を実施例に基づいて説明する。Next, the present invention will be explained based on examples.

実施例1 表1−1の組成を目標成分として、転炉で溶製しCaを
添加して成分調整した溶鋼を210mm厚×1580m
m幅のスラブ断面サイズで連続鋳造し、次いで厚板に圧
延した。
Example 1 Using the composition shown in Table 1-1 as the target composition, molten steel was melted in a converter and the composition was adjusted by adding Ca, to a thickness of 210 mm x 1580 m.
The slab cross-section size was continuously cast with a width of m, and then rolled into a thick plate.

表1−1 試験用鋼の成分(%) 表1−2  試験用鋼の成分(%) 連続鋳造直後の鋳片からサンプルを採取し、中心偏析指
数、最終凝固部偏析形態、■偏析個数を調査した。また
圧延後の厚板からサンプルを採取し、HICテストを実
施し、HI C割れ発生率を調査し結果を表2に示した
。なお、中心偏析指数とは、鋼中Mnのし一ドル値を基
準として、この値の1.3倍以上の高濃度部分(偏析ス
ポット)の厚みを指数化して示したもので、この値が大
きいほど成分の偏析が大であることを示している。連続
鋳造に当り、本発明適用鋼A、Bでは、所定の鋳造速度
に対してステージIでの圧下量が0.85mm/分、ス
テージ■での圧下量が0.1mm/分〜0.3m+n/
分になるように鋳造前に予めロール間隔を調整した。鋳
造速度は、中心部固相率が0.7となる時点がロールセ
グメントの境界にくるように設定し1.2m/分とした
。鋼C,D、E、F、G■ は比較鋼であって、鋼C,Dは、ステージ■での圧下量
が過大で逆■偏析が発生した例、MEはステージ■での
圧下量が過大で線状偏析となった例、mF、Gはステー
ジ■での圧下量が過少のため■偏析が発生した例である
。比較鋼の場合、HI C割れ発生率は50〜90%で
あり、特にステージ■での圧下量が0であったために顕
著な■偏析が発生し、かつステージ■での圧下量が過大
であったために最終凝固部が線状偏析となった鋼Gが最
も割れ発生率が高い。これに対し、本発明適用鋼では同
じ成分系で9%以下のHIC割れ発生率であり、中心偏
析も軽微で比較鋼との間に顕著な差が認められ、本発明
の優位性が実証された。
Table 1-1 Composition of test steel (%) Table 1-2 Composition of test steel (%) A sample was taken from the slab immediately after continuous casting, and the central segregation index, final solidified part segregation form, and number of segregation pieces were determined. investigated. In addition, samples were taken from the thick plates after rolling and subjected to an HIC test to investigate the incidence of HIC cracking, and the results are shown in Table 2. The center segregation index is an index of the thickness of a high concentration area (segregation spot) that is 1.3 times or more of the Mn concentration value in steel, based on the dollar value of Mn in steel. The larger the value, the greater the component segregation. In continuous casting, for steels A and B to which the present invention is applied, the reduction amount in stage I is 0.85 mm/min and the reduction amount in stage II is 0.1 mm/min to 0.3 m+n for a predetermined casting speed. /
Before casting, the roll spacing was adjusted in advance so that The casting speed was set to 1.2 m/min so that the point at which the solid fraction in the center reached 0.7 was at the boundary of the roll segments. Steels C, D, E, F, and G■ are comparison steels. Steels C and D are examples where reverse ■ segregation occurred due to excessive reduction at stage ■, and ME is an example where the amount of reduction at stage ■ was too large. In mF and G, the amount of reduction in stage (2) was too small, resulting in linear segregation (2). In the case of the comparative steel, the HIC cracking incidence was 50 to 90%, and in particular, significant segregation occurred because the reduction amount at stage (■) was 0, and the reduction amount at stage (■) was excessive. Therefore, steel G, which has linear segregation in the final solidified part, has the highest crack occurrence rate. On the other hand, the steel to which the present invention was applied had an HIC cracking incidence of 9% or less for the same composition system, and the center segregation was slight, showing a significant difference from the comparison steel, demonstrating the superiority of the present invention. Ta.

3 実施例2 表1−2の組成を目標成分として、転炉で溶製した溶鋼
を300mmX500mmの断面サイズでブルームに連
続鋳造し、次いで線材に圧延した。前記実施例1と同様
に連続鋳造直後の鋳片からサンプルを採取し、中心偏析
指数、最終凝固部偏析形態、■偏析個数を調査した。そ
の結果を表3にまとめて示す。
3 Example 2 Using the composition shown in Table 1-2 as the target component, molten steel produced in a converter was continuously cast into a bloom with a cross-sectional size of 300 mm x 500 mm, and then rolled into a wire rod. In the same manner as in Example 1, samples were taken from slabs immediately after continuous casting, and the center segregation index, the final solidified part segregation form, and (1) the number of segregated pieces were investigated. The results are summarized in Table 3.

本発明適用鋼42口はステージIでの圧下量を1.7〜
1.8mm/分、ステージ■での圧下量を0.1mm/
分〜0.3 mm 7分の範囲内で変化させて試験を行
った。鋳造速度は0.6m/分とした。
For 42 steels to which the present invention is applied, the reduction amount at stage I is 1.7~
1.8 mm/min, the amount of reduction at stage ■ is 0.1 mm/min.
The test was conducted by changing the time within the range of 0.3 mm to 7 minutes. The casting speed was 0.6 m/min.

鋼ハ、二、ホ、へ、トば比較鋼であって、鋼ハ。Steel Ha, two, ho, he, toba is comparative steel, steel Ha.

二はステージIでの圧下量が過大で逆■偏析が発生した
例、鋼ホはステージ■での圧下量が過大で線状偏析とな
った例、鋼へ、トばステージIでの圧下量が過少のため
■偏析が発生した例である。
2 is an example where the amount of reduction at stage I was too large and reverse ■ segregation occurred; steel E is an example where the amount of reduction at stage 2 was too large and linear segregation occurred; to the steel, the amount of reduction at stage I This is an example where ■ segregation occurred due to an insufficient amount of .

■ 表3に示すように、本発明適用鋼でばV偏析や逆■偏析
は発生せず、偏析形態ば微細スボッI〜状を呈し、中心
偏析指数も低く、比較鋼との間に顕著な差異が認められ
、本発明の優位性はブルームの連続鋳造においても実証
された。
■ As shown in Table 3, in the steel to which the present invention is applied, V segregation and reverse ■ segregation do not occur, the segregation form exhibits a fine splotch I ~ shape, and the central segregation index is low, which is significantly different from the comparative steel. Differences were observed and the superiority of the present invention was also demonstrated in continuous bloom casting.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る各凝固ステージ、圧下ずべき量お
よび範囲の関係を示す図、第2図は連続鋳造鋳片にみら
れる中心偏析と■偏析の模式図、第3図は従来法による
圧下量と水素誘起割れ面積率との関係を示す図である。 7
Figure 1 is a diagram showing the relationship between each solidification stage, reduction amount and range according to the present invention, Figure 2 is a schematic diagram of center segregation and ■ segregation observed in continuously cast slabs, and Figure 3 is a conventional method. FIG. 3 is a diagram showing the relationship between the amount of rolling reduction and the hydrogen-induced crack area ratio. 7

Claims (1)

【特許請求の範囲】[Claims] 鋳片を連続的に引き抜く溶融金属の連続鋳造において、
鋳造中に未凝固鋳片を連続的に圧下し、その圧下量を、
鋳片の中心部が液相線温度となる時点から流動限界固相
率となる時点までの領域では0.5mm/分ないし2.
0mm/分、それ以降、鋳片中心部が固相線温度となる
までの領域では0.3mm/分以下とすることを特徴と
する連続鋳造法。
In continuous casting of molten metal, in which slabs are continuously drawn,
During casting, the unsolidified slab is continuously rolled down, and the reduction amount is
In the region from the time when the center of the slab reaches the liquidus temperature to the time when the solid fraction reaches the flow limit, the rate is 0.5 mm/min to 2.0 mm/min.
A continuous casting method characterized in that the casting speed is 0 mm/min and thereafter 0.3 mm/min or less in the region until the center of the slab reaches the solidus temperature.
JP14503390A 1990-06-02 1990-06-02 Continuous casting method Granted JPH03114643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14503390A JPH03114643A (en) 1990-06-02 1990-06-02 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14503390A JPH03114643A (en) 1990-06-02 1990-06-02 Continuous casting method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60171314A Division JPS6233048A (en) 1985-08-03 1985-08-03 Continuous casting method

Publications (2)

Publication Number Publication Date
JPH03114643A true JPH03114643A (en) 1991-05-15
JPH0530548B2 JPH0530548B2 (en) 1993-05-10

Family

ID=15375857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14503390A Granted JPH03114643A (en) 1990-06-02 1990-06-02 Continuous casting method

Country Status (1)

Country Link
JP (1) JPH03114643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064189A1 (en) * 1998-06-05 1999-12-16 Sumitomo Heavy Industries, Ltd. Method and device for continuous casting

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3412670B2 (en) * 1997-09-10 2003-06-03 株式会社神戸製鋼所 Method of setting rolling gradient in continuous casting and continuous casting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064189A1 (en) * 1998-06-05 1999-12-16 Sumitomo Heavy Industries, Ltd. Method and device for continuous casting

Also Published As

Publication number Publication date
JPH0530548B2 (en) 1993-05-10

Similar Documents

Publication Publication Date Title
JPH036855B2 (en)
JP3427794B2 (en) Continuous casting method
JPH038864B2 (en)
JPH03114643A (en) Continuous casting method
US4747445A (en) Continuous casting method
JPS6234460B2 (en)
JPH0550201A (en) Light rolling reduction method in continuous casting
JP7273307B2 (en) Steel continuous casting method
JP2593384B2 (en) Continuous casting method
JPH038863B2 (en)
JPH0390263A (en) Continuous casting method
JPH0390259A (en) Continuous casting method
JP2000094101A (en) Continuously cast slab, continuous casting method thereof and production of thick steel plate
JPH04313453A (en) Continuous casting method
JP3091924B2 (en) Continuous casting method
JPH03138056A (en) Method for continuously casting steel
JP3113995B2 (en) Continuous cast slab for hot rolling
JP2593385B2 (en) Continuous casting method
JP3463556B2 (en) Manufacturing method of round billet slab by continuous casting
JP2593386B2 (en) Continuous casting method
JP2640399B2 (en) Continuous casting method
JPH05293618A (en) Continuous casting method
JP2920836B2 (en) Continuous casting method
JPH05220557A (en) Continuous casting method
JPH05220555A (en) Continuous casting method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term