JPH0530548B2 - - Google Patents

Info

Publication number
JPH0530548B2
JPH0530548B2 JP14503390A JP14503390A JPH0530548B2 JP H0530548 B2 JPH0530548 B2 JP H0530548B2 JP 14503390 A JP14503390 A JP 14503390A JP 14503390 A JP14503390 A JP 14503390A JP H0530548 B2 JPH0530548 B2 JP H0530548B2
Authority
JP
Japan
Prior art keywords
segregation
reduction
amount
slab
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14503390A
Other languages
Japanese (ja)
Other versions
JPH03114643A (en
Inventor
Shigeaki Ogibayashi
Mamoru Yamada
Tatsuo Mukai
Makoto Tefun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14503390A priority Critical patent/JPH03114643A/en
Publication of JPH03114643A publication Critical patent/JPH03114643A/en
Publication of JPH0530548B2 publication Critical patent/JPH0530548B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は連続鋳造鋳片の厚み中心部にみられる
不純物元素、即ち鋼鋳片の場合には硫黄、燐、マ
ンガン等の偏析を防止し均質な金属を得ることの
できる連続鋳造法に関するものである。 (従来の技術) 近年、海洋構造物、貯槽、石油およびガス運搬
用鋼管などの材質特性に対する要求は厳しさを増
しており、均質な鋼材を提供することが重要課題
となつている。元来鋼材は、板厚方向に均質であ
るべきものであるが、鋼は一般に硫黄、燐、マン
ガン等の不純物元素を含有しており、これらが鋳
造過程において偏析し、部分的に濃化するため鋼
が脆弱となる。特に近年生産性や歩留の向上及び
少エネルギー等の目的のために連続鋳造法が一般
に普及しているが、連続鋳造により得られる鋳片
の厚み中心部には通常顕著な成分偏析が観察され
る。こうした成分偏析は最終製品の均質性を著し
く損ない、製品の使用過程で鋼に作用する応力に
よる亀裂発生等重大欠陥の原因になるため、その
低減が切望されている。かかる成分偏析は凝固末
期の残溶鋼が凝固収縮力等によつて流動し、固液
界面近傍の濃化溶鋼を洗い出し、残溶鋼が累進的
に濃化していくことによつて生じる。従つて成分
偏析を防止するには、残溶鋼の流動原因を取り除
くことが肝要であり、そのためにはロール間の鋳
片バルジングを極力小さくし、かつ凝固収縮量に
相当する量だけ鋳片を圧下することが有効である
ことが知られている。 鋳片を圧下することにより偏析を改善する試み
は古くからなされており、例えば特公昭59−
16862号公報に記載されているように、連続鋳造
工程において鋳片中心部温度が液相線温度から固
相線温度に至るまでの間鋳片を一定の割合で圧下
する方法が知られている。しかしながら、これら
従来法の場合次のような重大な欠点があり、この
ため成分偏析の充分な改善が困難である。すなわ
ち従来法の場合、圧下量を増加させるにつれて最
終凝固部の偏析形態がスポツト状の偏析から線状
の偏析に変化する。 通常、厚み中心部の成分偏析は直径1mm前後の
スポツト状の高濃度部分が鋳造方向および幅方向
に分散した形態をとるのが普通である。以後この
種の偏析形態をスポツト状偏析と呼ぶ。これに対
し、圧下量を増大させることによつて生じる線状
の偏析とは、高濃度部分が鋳造方向および幅方向
に連続した形態の偏析であつて、その特徴は例え
ば鉄と鋼A201(1983)にも詳述されているとおり
である。この線状偏析はスポツト状偏析に比べて
偏析の幅が非常に狭く、通常鋳片段階で0.1〜0.5
mm以下であり、一見すると偏析が大幅に改善され
たかにみえる。しかしながらこの鋳片を圧延し、
たとえば耐サワー特性である水素誘起割れ(以後
HICと称す)面積率を調査するとスポツト状偏析
の場合に比べて割れ面積率はかえつて増加してお
り、従つて凝固末期での溶鋼流動を抑えるために
凝固収縮量に見あつた圧下を加えることが実質的
には逆効果となることがわかつた。第3図にこの
関係を模式的に示す。同様の傾向は、厚板溶接部
の割れ(HAZ割れ)にも認められている。 本発明者らは、この原因について調査してた結
果、線状偏析の場合、これを鋳片広幅面に平行な
面(以後Z断面と呼ぶ)で観察すると偏析部が網
目状に連なつており、これが圧延後の製品におい
ても明瞭に残存し、連続した高濃度部分が亀裂の
優先的伝播経路となるために著しく製品を脆弱に
することがわかつた。 従つて従来法の場合圧下量を増大させるにつれ
てある程度までの範囲では製品の材質は改善方向
に向うものの、更に圧下量を増大させると材質は
再び、かつ急激に悪化するため、凝固収縮による
溶鋼流動の発生の防止を犠牲にしてでも線状偏析
の発生を回避するため凝固収縮量よりはるかに小
さな量の圧下量に留めざめるを得ないという重大
な問題があつた。このため例えば鉄と鋼A201
(1983)に見られるように凝固収縮量に見合つた
圧下が本来最も本質的な偏析改善策であるにもか
かわらず、その適用を断念しもう一つの対策とし
ての電磁攪拌を採用した例も多い。電磁攪拌法
は、流動の悪影響を小さくするための有効な方策
であるが、それだけでは凝固収縮による流動の悪
影響を完全には防止出来ず、特にスラブ鋳造の場
合には現段階では必ずしも充分な偏析解決手段と
は言えない。 (発明が解決しようとする問題点) 本発明の目的は従来法のかかる問題点を解消
し、均質な鋼材を得るための連続鋳造法を提供す
るにある。 (問題点を解決するための手段) 本発明の要旨とするところは、鋳片を連続的に
引き抜く溶融金属の連続鋳造において、鋳造中に
未凝固鋳片を連続的に圧下し、その圧下量を、鋳
片の中心部が液相線温度となる時点から流動限界
固相率となる時点までの領域では0.5mm/分ない
し2.0mm/分、それ以降、鋳片中心部が固相線温
度となるまでの領域では0.3mm/分以下とするこ
とを特徴とする連続鋳造法にある。 以下、本発明を更に詳述する。 本発明者らは前記した従来法の問題点を解決す
るための手段を見い出すため、鋳片圧下に関し系
統的な研究を実施した。まず凝固収縮量を補償す
るための必要圧下量について検討した。通常、連
鋳鋳片には、中心部の偏析にほかに、第2図に示
すようにV状の偏析(V偏析)が見えられる。こ
のV偏析は凝固収縮によつて生じるものであるか
ら、その発生個数を観察することによつて、圧下
量が凝固収縮量に対して充分か否かを知ることが
出来る。本発明者らは、かかる現象を観察するこ
とにより次の二つの事実を見い出した。その一つ
は、圧下量の考え方に関するものであり、凝固収
縮量を補償するために重量なのは、ロール一本あ
たり圧下量(単位mm)ではなく、クレーターエン
ド(凝固先端)近傍数mの範囲での平均的な圧下
速度(mm/分)であることを知つた。ここで圧下
速度とは鋳片上の任意の点が、複数のロールの間
を通過する過程で単位時間当り圧下される量をい
う。実操業におけるロール間隔の設定にあつて
は、上記圧下速度を引抜速度で除した値、すなわ
ち圧下勾配(単位mm/m)により、鋳造方向単位
長さ当りの圧下量(すなわちロール間隔絞り込み
量)を知ることが出来る。もう一つの事実は、凝
固収縮を過不足なく補償するための圧下量(以後
適正圧下量と呼ぶ)に関するものである。圧下量
が0.5mm/分未満であると、鋳造方向に向うV偏
析が生じるが、一方、圧下量が2.0mm/分を越え
て大きくなりすぎると鋳造方向と逆方向(すなわ
ちメニスカスの方向)に向うV偏析(以後逆V偏
析と称す)が生じる。従つて、V偏析も逆V偏析
も生じない適正圧下量は0.5〜2.0mm/分である。
よつて、本発明において、鋳片の中心部が液相線
温度となる時点から流動限界固相率となる時点ま
での領域における圧下量を0.5〜2.0mm/分と規定
した。適正圧下量は、単位長さ当りの圧下量
(mm/m)で考えた場合には、鋳造速度により本
質的に変化するものであるが、これを圧下速度
(mm/m)で表わした場合には、鋳造速度にかか
わらずほぼ一定の値で表されるので本発明ではこ
の単位で規定した。ただし適正圧下量は鋳片の厚
み、幅、冷却条件によつて変化するので、好まし
くは、通常スラブの場合は0.5〜1.5mm/分、ブル
ームもしくはビレツトの場合には1.0〜2.0mm/分
とする。 次に偏析形態について検討した。前記したよう
に鋳片中心部温度が液相線温度となる時点から、
固相線温度となるまでの全領域について圧下を実
施した場合適正圧下量より小さい範囲では圧下量
を増すにつれてV偏析発生個数が減少し、それに
対応して偏析も改善されるが、V偏析の発生が防
止できない小さな圧下量の場合でも既に最終凝固
部の偏析形態がスポツト状から線状に変化し、耐
HIC特性等の最終製品の特性を悪化させる。とこ
ろで本発明者らは、数多くの鋳造試験の結果最終
凝固部の偏析形態が決定されるのは、凝固の極め
て末期であり、鋳片厚み中心部が流動限界固相率
に到達した時点以降の領域における圧下量を0.3
mm/分以下とすることにより線状偏析の発生を防
止し、最終凝固部偏析形態を常に微細なスポツト
状にし得ることを見出した。ここで流動限界固相
率とは、溶鋼が流動し得る上限の固相率であり、
固相率0.6ないし0.8の値である。鋳片厚み中心部
の固相率が該流動限界固相率より小さな上流の領
域(以後ステージIと呼ぶ)では、溶鋼が鋳造方
向に連なつており凝固収縮により溶鋼が鋳造方向
に流動し、残溶鋼の濃化を引き起すので凝固収縮
を補償し得る量の圧下を行なつて流動を防止する
ことが必要である。この領域での圧下量を適正な
値にすることによりV偏析や逆V偏析の発生を防
止し、偏析の極めて少ない良好な鋳片を得ること
が出来る。適正な圧下量は前記したとおりら0.5
〜2.0mm/分である。 本発明の根幹となる重大な発見は、ステージI
での圧下量の大小は最終凝固部の偏析形態には影
響しないということである。最終凝固部の偏析形
態は、鋳片厚み中心部の固相率が流動限界固相率
よりも大きくなる時点から中心部温度が固相線温
度に達するまでの領域(以後ステージと呼ぶ)
での圧下量によつて決定される。ステージでの
圧下量が大きすぎると線状偏析となるが、圧下量
を0.3mm/分以下にすることにより防止でき、微
細なスポツト状の偏析形態を確保することができ
ることを確かめた。 本発明に係るステージとステージの概念図
を第1図に示す。 本発明者らは更にセンターポロシテイーについ
ても圧下条件の影響を調査した結果、センターポ
ロシテイーはステージで適正圧下を実施するこ
とにより大幅に減少することを見出した。ステー
ジで過度の圧下を加えた場合には、ポロシテイ
ーは更に減少するが、この場合は極めて小さなポ
ロシテイーが減少するだけで材質改善効果はステ
ージでの適正圧下だけで十分である。 次の本発明を実施例に基づいて説明する。 実施例 1 表1−1の組成を目標成分として、転炉で溶製
しCaを添加して成分調整した溶鋼を210mm厚×
1580mm幅のスラブ断面サイズで連続鋳造し、次い
で厚板に圧延した。
(Field of Industrial Application) The present invention is aimed at preventing the segregation of impurity elements found in the center of the thickness of continuously cast slabs, such as sulfur, phosphorus, and manganese in the case of steel slabs, and obtaining a homogeneous metal. This is about a continuous casting method that can be used. (Prior Art) In recent years, requirements for material properties of offshore structures, storage tanks, steel pipes for oil and gas transportation, etc. have become more severe, and providing homogeneous steel materials has become an important issue. Originally, steel materials should be homogeneous in the thickness direction, but steel generally contains impurity elements such as sulfur, phosphorus, and manganese, which segregate and become partially concentrated during the casting process. Therefore, the steel becomes brittle. Particularly in recent years, continuous casting methods have become popular for purposes such as improving productivity and yield and reducing energy use, but noticeable component segregation is usually observed in the center of the thickness of slabs obtained by continuous casting. Ru. Such component segregation significantly impairs the homogeneity of the final product and causes serious defects such as the occurrence of cracks due to stress acting on the steel during the use of the product, so there is a strong desire to reduce it. Such component segregation occurs when residual molten steel at the final stage of solidification flows due to solidification contraction force, washes out concentrated molten steel near the solid-liquid interface, and progressively thickens the remaining molten steel. Therefore, in order to prevent component segregation, it is important to eliminate the cause of residual molten steel flowing. To do this, the bulging of the slab between the rolls should be minimized and the slab should be rolled down by an amount equivalent to the amount of solidification shrinkage. It is known to be effective. Attempts to improve segregation by rolling down slabs have been made for a long time; for example,
As described in Publication No. 16862, there is a known method in which the slab is rolled down at a constant rate during the continuous casting process until the temperature at the center of the slab reaches from the liquidus temperature to the solidus temperature. . However, these conventional methods have the following serious drawbacks, which make it difficult to sufficiently improve component segregation. That is, in the case of the conventional method, as the reduction amount increases, the segregation form of the final solidified portion changes from spot-like segregation to linear segregation. Normally, component segregation at the center of the thickness takes the form of spot-like high concentration areas with a diameter of about 1 mm dispersed in the casting direction and width direction. Hereinafter, this type of segregation will be referred to as spot segregation. On the other hand, the linear segregation caused by increasing the rolling reduction is a type of segregation in which the high concentration part is continuous in the casting direction and width direction, and its characteristics are, for example, in Tetsu to Hagane A201 (1983). ) is also detailed. This linear segregation has a much narrower width than spot segregation, and is usually 0.1 to 0.5 at the slab stage.
mm or less, and at first glance it appears that segregation has been significantly improved. However, when this slab is rolled,
For example, hydrogen-induced cracking (hereinafter referred to as
When investigating the area ratio (referred to as HIC), it was found that the crack area ratio increased compared to the case of spot segregation, and therefore, in order to suppress the flow of molten steel at the final stage of solidification, a reduction appropriate to the amount of solidification shrinkage was applied. It turns out that this actually has the opposite effect. FIG. 3 schematically shows this relationship. A similar tendency is also observed in cracks in thick plate welds (HAZ cracks). As a result of investigating the cause of this, the inventors found that in the case of linear segregation, when observed in a plane parallel to the wide surface of the slab (hereinafter referred to as the Z section), the segregated areas are connected in a network. It was found that this clearly remained in the product after rolling, and that continuous high-concentration areas served as preferential propagation paths for cracks, making the product extremely brittle. Therefore, in the conventional method, as the reduction amount increases, the material quality of the product tends to improve to a certain extent, but if the reduction amount is further increased, the material quality deteriorates again and rapidly, resulting in molten steel flow due to solidification shrinkage. There was a serious problem in that, in order to avoid the occurrence of linear segregation, it was necessary to keep the amount of reduction much smaller than the amount of solidification shrinkage, even at the expense of preventing the occurrence of linear segregation. For this example iron and steel A201
(1983), although reduction commensurate with the amount of solidification shrinkage is originally the most essential measure to improve segregation, there are many cases in which the application of this method has been abandoned and electromagnetic stirring has been adopted as another measure. . The electromagnetic stirring method is an effective measure to reduce the negative effects of flow, but it alone cannot completely prevent the negative effects of flow due to solidification shrinkage, and especially in the case of slab casting, there is not always sufficient segregation at this stage. I can't say it's a solution. (Problems to be Solved by the Invention) An object of the present invention is to solve the problems of the conventional method and provide a continuous casting method for obtaining a homogeneous steel material. (Means for Solving the Problems) The gist of the present invention is that in continuous casting of molten metal in which slabs are continuously drawn, unsolidified slabs are continuously reduced during casting, and the amount of reduction is is 0.5 mm/min to 2.0 mm/min from the time when the center of the slab reaches the liquidus temperature to the time when the solid phase ratio reaches the flow limit, and after that, the center of the slab reaches the solidus temperature. The continuous casting method is characterized by a casting rate of 0.3 mm/min or less in the region up to . The present invention will be explained in further detail below. The present inventors conducted systematic research on slab reduction in order to find a means to solve the problems of the conventional method described above. First, we investigated the amount of reduction necessary to compensate for the amount of solidification shrinkage. Usually, in a continuously cast slab, in addition to segregation in the center, V-shaped segregation (V-segregation) can be seen as shown in FIG. Since this V segregation is caused by solidification shrinkage, by observing the number of occurrences, it is possible to know whether the reduction amount is sufficient for the solidification shrinkage amount. The present inventors discovered the following two facts by observing such phenomena. One of them is related to the concept of rolling reduction.In order to compensate for the amount of solidification shrinkage, the weight is not the rolling reduction (unit: mm) per roll, but the range of several meters near the crater end (solidification tip). I learned that the average rolling speed (mm/min) is The rolling speed here refers to the amount by which a given point on the slab is rolled down per unit time during the process of passing between a plurality of rolls. When setting the roll spacing in actual operation, the amount of reduction per unit length in the casting direction (that is, the amount of narrowing of the roll spacing) is determined by the value obtained by dividing the above reduction speed by the drawing speed, that is, the reduction gradient (unit: mm/m). You can know. Another fact concerns the amount of reduction (hereinafter referred to as the appropriate amount of reduction) to compensate for solidification shrinkage in just the right amount. If the reduction amount is less than 0.5 mm/min, V segregation will occur in the casting direction, but if the reduction amount is too large, exceeding 2.0 mm/min, V segregation will occur in the opposite direction to the casting direction (i.e., in the direction of the meniscus). Direct V segregation (hereinafter referred to as reverse V segregation) occurs. Therefore, the appropriate rolling reduction amount at which neither V segregation nor reverse V segregation occurs is 0.5 to 2.0 mm/min.
Therefore, in the present invention, the reduction amount in the region from the time when the center of the slab reaches the liquidus temperature to the time when the flow limit solid phase ratio is reached is defined as 0.5 to 2.0 mm/min. The appropriate amount of reduction essentially changes depending on the casting speed when considered in terms of the amount of reduction per unit length (mm/m), but when expressed in terms of the reduction speed (mm/m). Since it is expressed as a substantially constant value regardless of the casting speed, it is specified in this unit in the present invention. However, the appropriate reduction amount varies depending on the thickness, width, and cooling conditions of the slab, so it is preferably 0.5 to 1.5 mm/min for normal slabs, and 1.0 to 2.0 mm/min for blooms or billets. do. Next, we investigated the segregation form. As mentioned above, from the point when the temperature at the center of the slab reaches the liquidus temperature,
If reduction is carried out in the entire region up to the solidus temperature, the number of V segregations will decrease as the reduction amount increases in a range smaller than the appropriate reduction amount, and the segregation will be improved accordingly. Even in the case of small reductions where the occurrence cannot be prevented, the segregation form of the final solidification zone has already changed from spot-like to linear, and the resistance has deteriorated.
Deteriorates the properties of the final product such as HIC properties. By the way, as a result of numerous casting tests, the present inventors have found that the segregation form of the final solidified zone is determined at the very end of solidification, and that after the time when the central part of the thickness of the slab reaches the flow limit solid fraction. The amount of reduction in the area is 0.3
It has been found that by setting the flow rate to less than mm/min, the occurrence of linear segregation can be prevented and the final solidified portion segregation form can always be made into a fine spot shape. Here, the flow limit solid fraction is the upper limit solid fraction at which molten steel can flow,
The solid phase ratio is between 0.6 and 0.8. In the upstream region (hereinafter referred to as stage I) where the solid fraction at the center of the thickness of the slab is smaller than the flow limit solid fraction, the molten steel continues in the casting direction, and the molten steel flows in the casting direction due to solidification contraction. Since this will cause the residual molten steel to thicken, it is necessary to prevent flow by reducing the amount by enough to compensate for solidification shrinkage. By setting the reduction amount in this region to an appropriate value, it is possible to prevent the occurrence of V segregation and reverse V segregation, and to obtain a good slab with extremely little segregation. The appropriate reduction amount is 0.5 as mentioned above.
~2.0mm/min. The important discovery that forms the basis of this invention is that stage I
This means that the magnitude of the reduction amount at step does not affect the segregation form of the final solidified part. The segregation form of the final solidification zone is the region from the time when the solid fraction at the center of the thickness of the slab becomes larger than the flow limit solid fraction until the temperature at the center reaches the solidus temperature (hereinafter referred to as stage).
Determined by the amount of reduction at. If the amount of reduction on the stage is too large, linear segregation will occur, but it was confirmed that this can be prevented by reducing the amount of reduction to 0.3 mm/min or less, and that a fine spot-like form of segregation can be ensured. A conceptual diagram of a stage and a stage according to the present invention is shown in FIG. The present inventors further investigated the influence of rolling conditions on center porosity and found that center porosity can be significantly reduced by performing appropriate rolling on the stage. If an excessive reduction is applied on the stage, the porosity will further decrease, but in this case, only a very small porosity will be reduced, and the appropriate reduction on the stage will be sufficient to improve the material quality. The present invention will be explained below based on examples. Example 1 Molten steel made in a converter and adjusted by adding Ca to the target composition of Table 1-1 was heated to 210 mm thick.
It was continuously cast with a slab cross-sectional size of 1580 mm width and then rolled into thick plates.

【表】【table】

【表】 連続鋳造直後の鋳片からサンプルを採取し、中
心偏析指数、最終凝固部偏析形態、V偏析個数を
調査した。また圧延後の厚板からサンプルを採取
し、HICテストを実施し、HIC割れ発生率を調査
し結果を表2に示した。なお、中心偏析指数と
は、鋼中Mnのレードル値を基準として、この値
の1.3倍以上の高濃度部分(偏析スポツト)の厚
みを指数化して示したもので、この値が大きいほ
ど成分の偏析が大であることを示している。連続
鋳造に当り、本発明適用鋼A,Bでは、所定の鋳
造速度に対してステージでの圧下量が0.85mm/
分、ステージでの圧下量が0.1mm/分〜0.3mm/
分になるように鋳造前に予めロール間隔を調整し
た。鋳造速度は、中心部固相率が0.7となる時点
がロールセグメントの境界にくるように設定し
1.2m/分とした。鋼C,D,E,F,Gは比較
鋼であつて、鋼C,Dは、ステージでの圧下量
が過大で逆V偏析が発生した例、鋼Eはステージ
での圧下量が過大で線状偏析となつた例、鋼
F,Gはステージでの圧下量が過少のためV偏
析が発生した例である。比較鋼の場合、HIC割れ
発生率は50〜90%であり、特にステージIでの圧
下量が0であつたために顕著なV偏析が発生し、
かつステージでの圧下量が過大であつたために
最終凝固部が線状偏析となつた鋼Gが最も割れ発
生率が高い。これに対し、本発明適用鋼では同じ
成分系で9%以下のHIC割れ発生率であり、中心
偏析も軽微で比較鋼との間に顕著な差が認めら
れ、本発明の優位性が実証された。
[Table] Samples were taken from slabs immediately after continuous casting, and the center segregation index, final solidified zone segregation form, and number of V segregations were investigated. In addition, samples were taken from the thick plates after rolling, HIC tests were conducted, and the HIC cracking incidence was investigated. The results are shown in Table 2. The center segregation index is an index that indicates the thickness of a high concentration area (segregation spot) that is 1.3 times or more of the ladle value of Mn in steel, and the higher the value, the higher the concentration of the component. This shows that segregation is large. During continuous casting, for steels A and B to which the present invention is applied, the reduction amount at the stage is 0.85 mm/min for a given casting speed.
The amount of reduction at the stage is 0.1mm/min to 0.3mm/min.
Before casting, the roll spacing was adjusted in advance so that The casting speed is set so that the point at which the solid fraction in the center reaches 0.7 is at the boundary of the roll segment.
The speed was set at 1.2m/min. Steels C, D, E, F, and G are comparison steels. Steels C and D are examples of inverted V segregation occurring due to excessive reduction in stage, and steel E is an example in which reverse V segregation occurred due to excessive reduction in stage. Steels F and G are examples where linear segregation occurred, and V segregation occurred because the reduction amount at the stage was too small. In the case of comparative steel, the HIC cracking incidence was 50 to 90%, and in particular, significant V segregation occurred because the reduction amount in stage I was 0.
Steel G, which had linear segregation in the final solidified part due to excessive reduction at the stage, had the highest crack occurrence rate. On the other hand, the steel to which the present invention was applied had an HIC cracking incidence of 9% or less for the same composition system, and the center segregation was slight, showing a significant difference from the comparison steel, demonstrating the superiority of the present invention. Ta.

【表】 実施例 2 表1−2の組成を目標成分として、転炉で溶製
した溶鋼を300mm×500mmの断面サイズでブルーム
に連続鋳造し、次いで線材に圧延した。前記実施
例1と同様に連続鋳造直後の鋳片からサンプルを
採取し、中心偏析指数、最終凝固部偏析形態、V
偏析個数を調査した。その結果を表3にまとめて
示す。 本発明適用鋼イ,ロはステージでの圧下量を
1.7〜1.8mm/分、ステージでの圧下量を0.1mm/
分0.3mm/分の範囲内で変化させて試験を行つた。
鋳造速度は0.6m/分とした。 鋼ハ,ニ,ホ,ヘ,トは比較鋼であつて、鋼
ハ,ニはステージでの圧下量が過大で逆V偏析
が発生した例、鋼ホはステージでの圧下量が過
大で線状偏析となつた例、鋼ヘ,トはステージ
での圧下量が過少のためV偏析が発生した例であ
る。
[Table] Example 2 Using the composition shown in Table 1-2 as the target component, molten steel produced in a converter was continuously cast into a bloom with a cross-sectional size of 300 mm x 500 mm, and then rolled into a wire rod. As in Example 1, samples were taken from slabs immediately after continuous casting, and the center segregation index, final solidified part segregation form, and V
The number of segregated pieces was investigated. The results are summarized in Table 3. Steels A and B to which the present invention is applied reduce the amount of reduction at the stage.
1.7-1.8mm/min, reduction amount on stage 0.1mm/min
The test was conducted by varying the speed within a range of 0.3 mm/min.
The casting speed was 0.6 m/min. Steels C, D, E, H, and G are comparison steels. Steels C and D are examples where the amount of reduction at the stage was too large and inverted V segregation occurred, and steel E was an example where the amount of reduction at the stage was too large and caused a line. This is an example where V segregation occurs due to the reduction amount in the stage being too small.

【表】 表3に示すように、本発明適用鋼ではV偏析や
逆V偏析は発生せず、偏析形態は微細スポツト状
を呈し、中心偏析指数も低く、比較鋼との間に顕
著な差異が認められ、本発明の優位性はブルーム
の連続鋳造においても実証された。
[Table] As shown in Table 3, in the steel to which the present invention was applied, V segregation and inverted V segregation did not occur, the segregation form was in the form of fine spots, and the center segregation index was low, making it a remarkable difference from the comparison steel. was recognized, and the superiority of the present invention was also demonstrated in continuous bloom casting.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る各凝固ステージ、圧下す
べき量および範囲の関係を示す図、第2図は連続
鋳造鋳片にみられる中心偏析とV偏析の模式図、
第3図は従来法による圧下量と水素誘起割れ面積
率との関係を示す図である。
Fig. 1 is a diagram showing the relationship between each solidification stage, the amount and range to be reduced according to the present invention, and Fig. 2 is a schematic diagram of center segregation and V segregation seen in continuously cast slabs.
FIG. 3 is a diagram showing the relationship between the reduction amount and the hydrogen-induced crack area ratio according to the conventional method.

Claims (1)

【特許請求の範囲】[Claims] 1 鋳片を連続的に引き抜き溶融金属の連続鋳造
において、鋳造中に未凝固鋳片を連続的に圧下
し、その圧下量を、鋳片の中心部が液相線温度と
なる時点から流動限界固相率となる時点までの領
域では0.5mm/分ないし2.0mm/分、それ以降、鋳
片中心部が固相線温度となるまでの領域では0.3
mm/分以下とすることを特徴とする連続鋳造法。
1. In continuous casting of molten metal by continuously drawing slabs, the unsolidified slab is continuously reduced during casting, and the amount of reduction is controlled from the point at which the center of the slab reaches the liquidus temperature to the flow limit. 0.5 mm/min to 2.0 mm/min in the area up to the point where the solid phase rate is reached, and 0.3 mm/min in the area after that until the center of the slab reaches the solidus temperature.
A continuous casting method characterized by a casting rate of less than mm/min.
JP14503390A 1990-06-02 1990-06-02 Continuous casting method Granted JPH03114643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14503390A JPH03114643A (en) 1990-06-02 1990-06-02 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14503390A JPH03114643A (en) 1990-06-02 1990-06-02 Continuous casting method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60171314A Division JPS6233048A (en) 1985-08-03 1985-08-03 Continuous casting method

Publications (2)

Publication Number Publication Date
JPH03114643A JPH03114643A (en) 1991-05-15
JPH0530548B2 true JPH0530548B2 (en) 1993-05-10

Family

ID=15375857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14503390A Granted JPH03114643A (en) 1990-06-02 1990-06-02 Continuous casting method

Country Status (1)

Country Link
JP (1) JPH03114643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1177269A (en) * 1997-09-10 1999-03-23 Kobe Steel Ltd Continuous casting method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3314036B2 (en) * 1998-06-05 2002-08-12 住友重機械工業株式会社 Continuous casting method and continuous casting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1177269A (en) * 1997-09-10 1999-03-23 Kobe Steel Ltd Continuous casting method

Also Published As

Publication number Publication date
JPH03114643A (en) 1991-05-15

Similar Documents

Publication Publication Date Title
JPH036855B2 (en)
JPH038864B2 (en)
JP3427794B2 (en) Continuous casting method
US4687047A (en) Continuous casting method
JPH0530548B2 (en)
US4747445A (en) Continuous casting method
JPH0550201A (en) Light rolling reduction method in continuous casting
JP6816523B2 (en) Continuous steel casting method
JPH038863B2 (en)
JP7273307B2 (en) Steel continuous casting method
JP2593384B2 (en) Continuous casting method
JPH078421B2 (en) Continuous casting method
JP3394730B2 (en) Continuous casting method of steel slab
JPH0390259A (en) Continuous casting method
JP2885880B2 (en) Continuous casting method
JPH11267814A (en) Steel billet continuous casting method
JP3113995B2 (en) Continuous cast slab for hot rolling
JPH04313453A (en) Continuous casting method
JPH03138056A (en) Method for continuously casting steel
JP2885881B2 (en) Continuous casting method
JP2593385B2 (en) Continuous casting method
JP2920836B2 (en) Continuous casting method
JPH05212517A (en) Method for executing light rolling reduction in continuous casting
JP2640399B2 (en) Continuous casting method
JPH05245605A (en) Light rolling reduction method in continuous casting

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term