JPH038863B2 - - Google Patents
Info
- Publication number
- JPH038863B2 JPH038863B2 JP29877385A JP29877385A JPH038863B2 JP H038863 B2 JPH038863 B2 JP H038863B2 JP 29877385 A JP29877385 A JP 29877385A JP 29877385 A JP29877385 A JP 29877385A JP H038863 B2 JPH038863 B2 JP H038863B2
- Authority
- JP
- Japan
- Prior art keywords
- segregation
- roll
- center
- amount
- slab
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005096 rolling process Methods 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 24
- 238000009749 continuous casting Methods 0.000 claims description 18
- 239000007790 solid phase Substances 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 238000005204 segregation Methods 0.000 description 92
- 229910000831 Steel Inorganic materials 0.000 description 40
- 239000010959 steel Substances 0.000 description 40
- 230000000694 effects Effects 0.000 description 28
- 238000007711 solidification Methods 0.000 description 23
- 230000008023 solidification Effects 0.000 description 23
- 238000005266 casting Methods 0.000 description 15
- 239000007787 solid Substances 0.000 description 13
- 238000011144 upstream manufacturing Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 6
- 230000002411 adverse Effects 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000013000 roll bending Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/1206—Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Description
(産業上の利用分野)
本発明は連続鋳造鋳片の厚み中心部にみられる
不純物元素、即ち鋼鋳片の場合には硫黄、燐、マ
ンガン等の偏析を防止し均質な金属を得ることの
できる連続鋳造方法に関するものである。
(従来の技術)
近年、海洋構造物、貯槽、石油およびガス運搬
用鋼管および高張力線材などの材質特性に対する
要求は厳しさを増しており、均質な鋼材を提供す
ることが重要課題となつている。元来鋼材は、断
面内において均質であるべきものであるが、鋼は
一般に硫黄、燐、マンガン等の不純物元素を含有
しており、これらが鋳造過程において偏析し部分
的に濃化するため鋼が脆弱となる。特に近年生産
性や歩留の向上及び省エネルギー等の目的のため
に連続鋳造法が一般に普及しているが、連続鋳造
により得られる鋳片の厚み中心部には通常顕著な
成分偏析が観察される。こうした成分偏析は最終
製品の均質性を著しく損ない、製品の使用過程や
線材の線引き工程等で鋼に作用する応力により亀
裂が発生するなど重大欠陥の原因になるため、そ
の低減が切望されている。かかる成分偏析は凝固
末期に残溶鋼が凝固収縮力等によつて流動し、固
液界面近傍の濃化溶鋼を洗い出し、残溶鋼が累進
的に進化していくことによつて生じる。従つて成
分偏析を防止するには、残溶鋼の流動原因を取り
除くことが肝要である。かかる溶鋼流動原因とし
ては、凝固収縮に起因する流動のほか、ロール間
の鋳片バルジングやロールアライメント不整に起
因する流動等があるが、これらの内最も重大な原
因は凝固収縮であり、偏析を防止するには、これ
を補償する量だけ鋳片を圧下することが必要であ
る。
鋳片を圧下することにより偏析を改善する試み
は古くからなされており、例えば特公昭59−
16862号公報に記載されているように、連続鋳造
工程において鋳片中心部温度が液相線温度から固
相線温度に至るまでの間鋳片を凝固収縮を補償す
る量以上の一定の割合で圧下する方法が知られて
いる。
しかしながら、この場合、条件によつては偏析
改善効果が殆ど認められなかつたり場合によつて
は、偏析がかえつて悪化する等の問題があり、成
分偏析を充分に改善することは困難であつた。
本発明者らはかかる従来法の問題の発生原因に
ついて種々調査した結果、従来法の場合に偏析改
善効果が認められなかつたり、あるいは偏析がか
えつて悪化することが起こるのは、基本的に圧下
すべき凝固時期範囲が不適正であることに起因し
ており、次の三つの事実が考慮されていなかつた
点にあることを知見した。その一つはロールアラ
イメントの不整、ロール曲り等の機械的要因によ
つて偏析が悪化し、かつその悪影響は圧下量が大
きいほど顕著となることである。鋳片を圧下する
ことによる偏析改善効果は、凝固収縮補償による
偏析改善効果と機械的要因による偏析悪化による
逆効果の差として得られ、機械的要因が大きい場
合にはその悪影響が凝固収縮補償による偏析改善
効果を上回り、かえつて偏析が悪化することが起
こる。二つ目の事実は圧下すべき量である。圧下
量は凝固収縮を過不足なく補償する量でなければ
ならず、この値を超える圧下を加えると偏析は再
び悪化する。もう一つの事実は線状偏析に関する
ものである。線状偏析とは、鋳片を鋳造方向に平
行に切断した断面でみた時に、鋳片厚み方向中心
部の高濃度部分が鋳造方向に細く連続した形態の
偏析であつて、これを鋳片広幅面に平行な面で観
察すると偏析部が編目状に連なつている。線状偏
析は圧延後の製品においても残存し、連続した高
濃度部分が亀裂の優先的伝播経路となるため製品
を脆弱にする。線状偏析は凝固末期に過度に鋳片
を圧下した場合に発生する偏析形態であり、軽圧
下による偏析改善効果を発揮するには偏析形態が
線状となるのを避け、分散したスポツト状の形態
としなければならない。
(発明が解決しようとする問題点)
本発明の目的は従来法のかかる問題点を解消
し、均質な鋼材を得るための連続鋳造方法を提供
するにある。
(問題点を解決するための手段)
本発明の要旨とするところは下記のとおりであ
る。
(1) 鋳片を連続的に引き抜く溶融金属の連続鋳造
方法において、鋳片厚み中心部が固相率0.1な
いし0.3となる時点から流動限界固相率となる
時点までの領域で、ロール熱反り量が0.5mm未
満のロールを用いて0.5mm/分ないし2.5mm/分
の割合で鋳片を連続的に圧下することを特徴と
する連続鋳造方法。
(2) 鋳片を連続的に引き抜く溶融金属の連続鋳造
方法において、鋳片厚み中心部が固相率0.1な
いし0.3となる時点から流動限界固相率となる
時点までの領域で、ロール熱反り量が0.5mm未
満で、かつロール摩耗量が0.5mm未満のロール
を用いて0.5mm/分ないし2.5mm/分の割合で鋳
片を連続的に圧下することを特徴とする連続鋳
造方法。
以下、本発明を更に詳述する。
中心偏析のない鋳片を得るための手段として前
記特公昭59−16862号公報に開示されているよう
な軽圧下法は有効な方策ではあるが、本発明者ら
の知見によれば、軽圧下法において極めて重要な
ことは、この圧下すべき領域である。すなわち、
中心偏析を低減するには、鋳片厚み中心部が、固
相率0.1ないし0.3となる時点から流動限界固相率
となる時点までの領域(以後、この領域をステー
ジ−2と称す)で凝固収縮を過不足なく補償す
るように連続的に鋳片を圧下することが重要であ
る。
ここで、流動限界固相率とは、溶鋼が流動し得
る上限の固相率であつて、固相率0.6ないし0.8の
値である。
中心偏析は固液共存域内、すなわち鋳片中心部
が液相線温度となる時点から固相線温度となる時
点の間の領域内での溶鋼流動によつて生じるもの
であるが、本発明者らの知見によれば、鋳片に圧
下を加えることによる偏析改善効果は中心部固相
率の高い下流域で大きく、上流域では小さい。何
故ならば、下流側での凝固収縮を補うため上流側
から供給される溶鋼は鋳片厚み方向では、最も流
動抵抗の小さい厚み中心付近の溶鋼が主体となる
が、厚み中心付近の溶鋼の濃度は中心部固相率が
増大するにつれて高くなるので、下流域ほど高濃
度の溶鋼が最終凝固部へ吸引され中心偏析への悪
影響が大きいからである。逆に上流域では中心部
溶鋼の濃度が低いため溶鋼流動による中心偏析へ
の影響は小さく、言いかえれば圧下による偏析改
善効果が小さい。
ところで本発明者らは数多くの実験から次の事
実を見い出した。すなわち、一般に連続鋳造機の
互いに対をなす上、下ロールの間のロール間隔は
設定値に対して鋳造中は多生のずれを生じる(こ
のずれを以後動的アライメント不整と呼ぶ)。こ
の動的アライメント不整は、軸受のガタや、鋳片
軸方向の反力の違い、ロールのたわみ、ロールの
熱反り等によつて生じ、ロールが鋳片から受ける
反力が大きいほど、言いかえれば圧下量が大きい
ほど大きく、これによつて新たな流動が発生し、
偏析を悪化させる。鋳片を圧下することによる偏
析改善効果は、凝固収縮補償による偏析改善効果
と動的アライメント不整を増加させることによる
偏析悪化の逆効果との差として得られる。前者の
偏析改善効果は下流域で大きく、上流域で小さい
ので、上流域で圧下した場合、動的アライメント
不整による偏析悪化による逆効果が凝固収縮補償
による偏析改善効果を上回り、かえつて偏析が悪
化することが起こる。
本発明者らは数多くの実験から、その境界が、
中心部が固相率0.1ないし0.3となる時点であり、
通常の工業的規模の連鋳機においては、該時点よ
り上流側では鋳片を圧下することにより、中心偏
析がかえつて悪化することがあることを見出し
た。悪化の度合は連鋳機の整備状態が悪く、動的
アライメント不整の程度が著しいほど、また圧下
量が大きいほど顕著となる。すなわち、中心部固
相率が0.1ないし0.3となる時点より上流側で中心
部が液相線となる時点より下流側の領域(以後こ
の領域をステージ−1と称す)では、軽圧下に
よる中心偏析改善効果が小さく、動的アライメン
ト不整を極めて小さく管理していない場合には、
中心偏析がかえつて悪化することがあるため、基
本的には圧下を行わない方がよく、もし、悪化す
る場合には、圧下量を0.5mm/分未満とすること
が望ましい。また、通常圧下領域では、圧下反力
に耐え得るロール支持構造とする必要があり、設
備的にもコスト高となるため、上記領域を圧下し
ないことは、設備費削減という経済効果をもたら
すことになる。
鋳片厚み中心部が流動限界固相率となる時点よ
り下流側で中心部が固相となる時点より上流側の
領域(以後この領域をステージと称す)では厚
み中心部の未凝固溶鋼は固相で遮られ互いに孤立
しているため、凝固圧縮による溶鋼流動は起り得
ず、従つて圧下する必要はない。一方、この領域
で鋳片に温度の圧下を加えると、中心偏析の形態
は製品特性に対して有害な線状偏析となる。製品
特性に対して最も有利である分散した微細なスポ
ツト状の偏析形態を得るためには、この領域では
基本的に圧下しないことが好ましくもし圧下する
場合には圧下量を0.5mm/分未満とすることが望
ましい。
以上より、本発明において圧下すべき領域は鋳
片中心部が固相率0.1ないし0.3となる時点から流
動限界固相率となる時点までの領域とする。但
し、動的アライメント不整が著しく小さく圧下に
よる悪影響が殆ど無視できる場合や圧下量が0.5
mm/分未満の範囲内の場合には該領域の上流側
(ステージ−1)についても圧下してさしつか
えない。又製品特性上線状の偏析形態が有害でな
い場合や、圧下量が0.5mm/分未満の範囲内であ
れば、下流側のステージについても圧下してさ
しつかえない。本発明に係るステージ−1、
−2、の各領域の圧下状態と凝固状態の関係を
第1図に示す。
次に圧下すべき量について説明する。
通常、連鋳鋳片には中心部の偏析のほかに、第
2図に示すようにV状の偏析(V偏析)が見られ
る。このV偏析は凝固収縮によつて生じるもので
あるから、その発生個数を観察することによつ
て、圧下量が凝固収縮量に対して充分か否かを知
ることが出来る。本発明者らは、かかる現象を観
察することにより次の二つの事実を見い出した。
その一つは、圧下量の考え方に関するものであり
凝固収縮量を補償するために重要なのは、ロール
一本あたりの圧下量(単位mm)ではなく、クレー
ターエンド(凝固先端)近傍数mの範囲で平均的
な圧下速度(mm/分)であることを知つた。ここ
で圧下速度とは鋳片上の任意の点が、複数のロー
ルの間を通過する過程で単位時間当り圧下される
量をいう。実操業におけるロール間隔の設定にあ
たつては、上記圧下速度を引抜速度で除した値、
すなわち圧下勾配(単位mm/m)により、鋳造方
向単位長さ当りの圧下量(すなわちロール間隔絞
り込み量)を知ることが出来る。もう一つの事実
は、凝固収縮を過不足なく補償するための圧下量
(以後適正圧下量と呼ぶ)に関するものである。
適正圧下量に対し圧下量が小さすぎると、鋳造方
向に向うV偏析が生じるが圧下量が大きすぎると
鋳造方向と逆方向(すなわちメニスカスの方向)
に向うV偏析(以後逆V偏析と称す)が生じる。
適正圧下量とは、V偏析も逆V偏析も生じない圧
下量として定義づけられる。適正圧下量は鋳片の
厚み、幅、冷却条件によつて変化するが、本発明
においては、圧下量が0.5mm/分未満ではV偏析
が生じ、2.5mm/分を越えると逆V偏析が生じる
と共に中心偏析を悪化させるという実験事実に基
づき、0.5〜2.5mm/分と規定した。好ましい範囲
は、通常スラブの場合は0.5ないし1.5mm/分、ブ
ルームもしくはビレツトの場合には1.0ないし2.5
mm/分である。
次に、鋳片を圧下することによる中心偏析改善
効果をより顕著とならしめる方策について述べ
る。前記したように鋳片を圧下することによる偏
析改善効果は、前述のとおり凝固収縮補償による
偏析改善効果と動的アライメント不整を増加させ
ることによる偏析悪化の逆効果との差として得ら
れるものであるから、動的アライメント不整は極
力小さく抑えなければならない。かかるアライメ
ント不整として、ロール間隔の設定誤差やベアリ
ングのガタ等があり、これらは従来より充分低く
管理されていた。本発明者らは、鋳造前に測定し
得るこれらの静的なアライメント不整のほかに、
鋳造中に、ロール間を熱鋳片が通過することによ
つて新たに生じるアライメント不整があることを
知つた。これらを含めた広義のアライメント不整
を動的アライメント不整と称す。それらの内で最
も重要な要因はロールの熱反りである。ロールが
鋳片から受ける熱によつて変形し反る現象(ロー
ル曲りともいう)は古くから知られており、例え
ば特開昭56−111557号公報には冷却スプレーによ
つてロールの熱反りを矯正しつつ鋳造する方法が
開示されている。しかしながら従来はロールの熱
反りが鋳片の中心偏析におよぼす定量的な因果関
係や、影響を及ぼす連鋳機内領域、および鋳片を
圧下することとの関係などが不明であつたため
に、圧下との関係でロールの熱反りを制御するこ
とは行なわれていなかつた。本発明者らはこれら
の関係について調査した結果、ロールの熱反りが
中心偏析に顕著な影響をおよぼすのは、鋳片厚み
中心部が固相率0.1ないし0.3となる時点から固相
線温度となる時点までの領域(ステージ−2お
よびステージ)であり、かつその悪影響は鋳片
圧下量を大きくするほど顕著となること、および
圧下による偏析改善効果を顕著ならしめるために
は、第3図に示すように圧下領域内のロールの熱
反り量を0.5mm未満に抑える必要があることを確
かめた。ロールの熱反り量が0.5mm以上では、圧
下による顕著な偏析改善効果は得られない。従つ
て、本発明においては圧下領域内でのロールの熱
反り量を0.5mm未満と規定した。ロールの熱反り
量を低く抑える方法としては、ロールを間欠的に
冷却する方法のほかにロールを分割し鋳片幅方向
に少なくとも3ケ所以上の軸受け部を設ける方法
などがある。
もう一つの重要な動的アライメント不整の要因
はロール摩耗である。ロール表面は異なつた種々
の幅の鋳片を鋳込む回数が増すにつれてロール胴
長方向に不均一に摩耗し著しい凹凸を有する状態
となる。この凹凸の深さは時に1mm以上に達する
ことがあるが、従来は鋳造方向の前後ロールとの
摩耗量が比較的小さいこと、ロール摩耗を低く抑
えることはロール寿命(ロール改削または新品と
交換するまでの期間)の低下を意味し経済的でな
いこと、およびロール摩耗と中心偏析の因果関係
が不明確であつたことなどの理由からロール摩耗
を厳格に管理するに至つていなかつた。本発明者
らはロール摩耗の実態と中心偏析との関係につい
て調査した結果、ロール摩耗は鋳造方向および幅
方向の不均一圧下による流動を引き起こし中心偏
析を悪化させること、ロール摩耗が中心偏析に顕
著な影響をおよぼすのはステージ−2の領域で
あり、かつその悪影響は鋳片圧下量を大きくする
ほど顕著となることを見出した。第3図に示すよ
うに圧下による偏析改善効果を顕著ならしめるた
めには、ロールの熱反り量を0.5mm未満に抑える
ことが必要である。またこのことに加え、ロール
摩耗量を0.5mm未満に抑えることにより更に大幅
な偏析改善が実現できる。ロールの熱反りおよび
摩耗を前記した範囲に管理すべきロールは、圧下
領域内の全てのロールとする。ここでロール摩耗
量は各ロール一本毎のロール胴長方向の凹凸深さ
で定義づけられる。
次に本発明を実施例により説明する。
表1の組成を目標成分として、転炉で溶製し
Caを添加して成分調整した溶鋼を240mm厚×1580
mm幅のスラブ断面サイズで連続鋳造し次いで厚板
に圧延した。
連続鋳造直後の鋳片からサンプルを採取し、中
心偏析指数、V偏析個数を調査した。また圧延後
の厚板からサンプルを採取し、HICテストを実施
しHIC割れ発生率を調査した。その結果を表2に
まとめて示す。なお中心偏析指数とは、鋼中Mn
のレードル値を基準としてこの値の1.3倍以上の
高濃度部分(偏析スポツト)の厚みを指数化して
示したもので、この値が大きいほど成分の偏析が
大であることを示している。
(Field of Industrial Application) The present invention is aimed at preventing the segregation of impurity elements found in the center of the thickness of continuously cast slabs, such as sulfur, phosphorus, and manganese in the case of steel slabs, and obtaining a homogeneous metal. This relates to a continuous casting method that can be used. (Prior art) In recent years, requirements for material properties for offshore structures, storage tanks, steel pipes for oil and gas transportation, high-tensile wire rods, etc. have become more severe, and providing homogeneous steel materials has become an important issue. There is. Originally, steel should be homogeneous in its cross section, but steel generally contains impurity elements such as sulfur, phosphorus, and manganese, and these segregate and become partially concentrated during the casting process. becomes vulnerable. Particularly in recent years, continuous casting methods have become popular for purposes such as improving productivity and yield and saving energy, but noticeable component segregation is usually observed in the center of the thickness of slabs obtained by continuous casting. . Such component segregation significantly impairs the homogeneity of the final product and causes serious defects such as cracking due to stress acting on the steel during the product usage process and wire drawing process, so there is an urgent need to reduce it. . Such component segregation is caused by the residual molten steel flowing at the final stage of solidification due to solidification contraction force, etc., washing out the concentrated molten steel near the solid-liquid interface, and the residual molten steel progressively evolving. Therefore, in order to prevent component segregation, it is important to eliminate the cause of the flow of residual molten steel. Causes of such molten steel flow include flow caused by solidification shrinkage, slab bulging between rolls, and flow caused by roll misalignment, but the most important cause of these is solidification shrinkage, and segregation is To prevent this, it is necessary to reduce the slab by an amount that compensates for this. Attempts to improve segregation by rolling down slabs have been made for a long time; for example,
As described in Publication No. 16862, during the continuous casting process, the slab is heated at a constant rate greater than the amount that compensates for solidification shrinkage while the temperature at the center of the slab reaches from the liquidus temperature to the solidus temperature. A method of rolling down is known. However, in this case, depending on the conditions, there is a problem that almost no segregation improvement effect is observed, and in some cases, segregation may even worsen, making it difficult to sufficiently improve component segregation. . The present inventors conducted various investigations into the causes of such problems in the conventional method, and found that the reason why the conventional method does not have an effect on improving segregation or causes segregation to worsen is basically due to pressure. It was found that this was due to the inappropriate coagulation timing range, and that the following three facts were not taken into consideration. One of these is that segregation is worsened by mechanical factors such as roll misalignment and roll bending, and the negative effects thereof become more pronounced as the reduction amount increases. The segregation improvement effect of rolling the slab is obtained as the difference between the segregation improvement effect due to solidification shrinkage compensation and the adverse effect due to segregation worsening due to mechanical factors.If the mechanical factor is large, the negative effect is due to solidification shrinkage compensation. This may outweigh the segregation improvement effect and actually worsen the segregation. The second fact is the amount to be reduced. The amount of reduction must be an amount that justly compensates for solidification shrinkage, and if a reduction exceeding this value is applied, segregation will worsen again. Another fact concerns linear segregation. Linear segregation is a type of segregation in which the high-concentration part at the center of the slab in the thickness direction is narrow and continuous in the casting direction when the slab is viewed in a cross section cut parallel to the casting direction. When observed in a plane parallel to the plane, the segregated areas are connected in a mesh pattern. Linear segregation remains in the product after rolling, making the product brittle because continuous high-concentration areas serve as preferential propagation paths for cracks. Linear segregation is a form of segregation that occurs when slabs are reduced excessively at the final stage of solidification.In order to achieve the segregation improvement effect of light reduction, the form of segregation should be avoided to become linear, and dispersed spot-like forms should be avoided. It must be in the form. (Problems to be Solved by the Invention) An object of the present invention is to solve the problems of the conventional method and provide a continuous casting method for obtaining a homogeneous steel material. (Means for solving the problems) The gist of the present invention is as follows. (1) In a continuous casting method for molten metal in which slabs are continuously drawn, roll heat warpage occurs in the area from the point where the solid phase ratio at the center of the slab thickness reaches 0.1 to 0.3 to the point where the solid phase rate reaches the flow limit. A continuous casting method characterized by continuously rolling down the slab at a rate of 0.5 mm/min to 2.5 mm/min using rolls with a volume of less than 0.5 mm. (2) In a continuous casting method for molten metal in which slabs are continuously drawn, roll heat warpage occurs in the area from the point where the solid phase ratio at the center of the slab thickness reaches 0.1 to 0.3 to the point where the solid phase rate reaches the flow limit. A continuous casting method characterized by continuously rolling down slabs at a rate of 0.5 mm/min to 2.5 mm/min using rolls with a rolling weight of less than 0.5 mm and a roll wear amount of less than 0.5 mm. The present invention will be explained in more detail below. Although the light reduction method disclosed in the above-mentioned Japanese Patent Publication No. 59-16862 is an effective method for obtaining slabs without center segregation, the light reduction method is effective according to the findings of the present inventors. What is extremely important in the law is this area to be reduced. That is,
In order to reduce center segregation, the center of the thickness of the slab should solidify in the region from the time when the solid fraction reaches the flow limit solid fraction of 0.1 to 0.3 (hereinafter, this region is referred to as stage-2). It is important to continuously reduce the slab so as to compensate for shrinkage in just the right amount. Here, the flow limit solid fraction is the upper limit solid fraction at which molten steel can flow, and is a value of 0.6 to 0.8. Center segregation occurs due to the flow of molten steel within the solid-liquid coexistence region, that is, the region between the time when the center of the slab reaches the liquidus temperature and the time when the center reaches the solidus temperature. According to their findings, the segregation improvement effect of applying reduction to slabs is large in the downstream region where the central solid fraction is high, and small in the upstream region. This is because the molten steel supplied from the upstream side to compensate for solidification shrinkage on the downstream side is mainly molten steel near the center of the thickness where the flow resistance is the smallest in the thickness direction of the slab, but the concentration of molten steel near the center of the thickness is This is because as the central solid fraction increases, the higher the concentration of molten steel becomes, the lower the downstream region, the more concentrated molten steel is attracted to the final solidification zone, which has a greater adverse effect on center segregation. On the other hand, in the upstream region, the concentration of molten steel in the center is low, so the influence of molten steel flow on center segregation is small, in other words, the effect of reduction on segregation improvement is small. By the way, the present inventors discovered the following fact from numerous experiments. That is, in general, the distance between the upper and lower rolls of a continuous casting machine that forms a pair with each other often deviates from a set value during casting (this deviation is hereinafter referred to as dynamic misalignment). This dynamic misalignment is caused by bearing play, differences in reaction force in the axial direction of the slab, deflection of the rolls, thermal warping of the rolls, etc. The larger the amount of reduction, the larger the amount, which generates new flow,
worsen segregation. The effect of improving segregation by rolling down the slab is obtained as the difference between the effect of improving segregation due to solidification shrinkage compensation and the reverse effect of worsening segregation due to increasing dynamic misalignment. The former's segregation improvement effect is large in the downstream region and small in the upstream region, so if the reduction is applied in the upstream region, the adverse effect of worsening segregation due to dynamic misalignment will exceed the segregation improvement effect due to solidification shrinkage compensation, and the segregation will worsen instead. things happen. The inventors have determined from numerous experiments that the boundary is
This is the point at which the solid phase ratio in the center is 0.1 to 0.3,
It has been found that in a normal industrial-scale continuous casting machine, center segregation may be worsened by rolling down the slab upstream from this point. The degree of deterioration becomes more significant as the continuous casting machine is poorly maintained, the degree of dynamic misalignment is significant, and the reduction amount is large. In other words, in the region upstream from the point at which the solid fraction in the center reaches 0.1 to 0.3 and downstream from the point at which the center reaches the liquidus line (hereinafter this region is referred to as stage-1), center segregation due to light pressure reduction occurs. If the improvement effect is small and the dynamic misalignment is not managed to be extremely small,
Since center segregation may worsen, it is basically better not to carry out the reduction, and if it worsens, it is desirable to reduce the amount of reduction to less than 0.5 mm/min. In addition, in the normal rolling area, it is necessary to have a roll support structure that can withstand the rolling reaction force, which increases equipment costs, so not rolling down the above area has the economic effect of reducing equipment costs. Become. In the area downstream from the point at which the center of the thickness of the slab reaches the flow limit solid phase ratio and upstream from the point at which the center becomes solid (hereinafter referred to as the stage), the unsolidified molten steel at the center of the thickness becomes solid. Since they are isolated from each other and blocked by the phase, molten steel flow due to solidification and compression cannot occur, and therefore there is no need to reduce the steel. On the other hand, if a temperature reduction is applied to the slab in this region, the form of center segregation becomes linear segregation, which is harmful to the product properties. In order to obtain a dispersed, fine, spot-like segregation morphology that is most advantageous for product properties, it is basically preferable not to reduce the material in this region, and if rolling is performed, the amount of reduction should be less than 0.5 mm/min. It is desirable to do so. From the above, in the present invention, the region to be rolled is defined as the region from the time when the solid fraction in the central part of the slab reaches 0.1 to 0.3 to the time when the solid fraction reaches the flow limit. However, if the dynamic misalignment is extremely small and the adverse effect of reduction can be almost ignored, or if the amount of reduction is 0.5
If it is within a range of less than mm/min, it is permissible to reduce the pressure on the upstream side of the region (stage-1) as well. Further, if the linear segregation form is not harmful in terms of product characteristics, or if the reduction amount is within a range of less than 0.5 mm/min, the downstream stage may also be reduced. Stage-1 according to the present invention,
Fig. 1 shows the relationship between the rolled state and the solidified state in each region of -2. Next, the amount to be reduced will be explained. In addition to segregation in the center, continuous cast slabs usually exhibit V-shaped segregation (V-segregation) as shown in FIG. 2. Since this V segregation is caused by solidification shrinkage, by observing the number of occurrences, it can be determined whether the reduction amount is sufficient for the solidification shrinkage amount. The present inventors discovered the following two facts by observing such phenomena.
One of these concerns the concept of rolling reduction. What is important in compensating for solidification shrinkage is not the rolling reduction per roll (unit: mm), but the range of several meters near the crater end (solidification tip). I learned that this is the average rolling speed (mm/min). The rolling speed here refers to the amount by which a given point on the slab is rolled down per unit time during the process of passing between a plurality of rolls. When setting the roll spacing in actual operation, the value obtained by dividing the above rolling speed by the drawing speed,
That is, the amount of reduction per unit length in the casting direction (that is, the amount of narrowing of the roll interval) can be determined from the reduction gradient (unit: mm/m). Another fact concerns the amount of reduction (hereinafter referred to as the appropriate amount of reduction) to compensate for solidification shrinkage in just the right amount.
If the reduction amount is too small compared to the appropriate reduction amount, V segregation will occur in the casting direction, but if the reduction amount is too large, V segregation will occur in the opposite direction to the casting direction (i.e. in the direction of the meniscus).
V segregation toward (hereinafter referred to as inverse V segregation) occurs.
The appropriate rolling reduction amount is defined as the rolling reduction amount at which neither V segregation nor reverse V segregation occurs. The appropriate amount of reduction varies depending on the thickness, width, and cooling conditions of the slab, but in the present invention, when the amount of reduction is less than 0.5 mm/min, V segregation occurs, and when it exceeds 2.5 mm/min, reverse V segregation occurs. Based on the experimental fact that it causes center segregation and worsens center segregation, it is specified to be 0.5 to 2.5 mm/min. Preferred ranges are usually 0.5 to 1.5 mm/min for slabs and 1.0 to 2.5 for blooms or billets.
mm/min. Next, we will discuss measures to make the center segregation improvement effect of rolling the slab more noticeable. As mentioned above, the segregation improvement effect by rolling the slab is obtained as the difference between the segregation improvement effect due to solidification shrinkage compensation and the reverse effect of worsening segregation due to increasing dynamic alignment irregularities. Therefore, dynamic misalignment must be kept as small as possible. Examples of such alignment irregularities include roll spacing setting errors and bearing play, which have been managed to a sufficiently low level than in the past. In addition to these static misalignments that can be measured before casting, we
It was discovered that during casting, new alignment irregularities occur due to the hot slab passing between rolls. Alignment misalignment in a broad sense including these is referred to as dynamic alignment misalignment. The most important factor among them is roll thermal warpage. The phenomenon in which rolls are deformed and warped by the heat they receive from slabs (also called roll bending) has been known for a long time.For example, Japanese Patent Application Laid-open No. 111557/1983 describes a method for reducing heat warping of rolls by using cooling spray. A method of casting while straightening is disclosed. However, until now, it was unclear the quantitative causal relationship between thermal warpage of the rolls and the center segregation of the slab, the area within the continuous caster that affects it, and the relationship with rolling down the slab. For this reason, no effort has been made to control the thermal warping of the rolls. As a result of investigating these relationships, the present inventors found that the thermal warpage of the roll has a significant effect on center segregation when the solidus temperature reaches the solidus temperature at the center of the thickness of the slab, from the point when the solidus fraction reaches 0.1 to 0.3. (Stage-2 and Stage), and its negative effects become more pronounced as the amount of slab reduction increases. As shown, it was confirmed that it was necessary to suppress the amount of thermal warpage of the roll in the rolling area to less than 0.5 mm. If the amount of thermal warpage of the roll is 0.5 mm or more, no significant segregation improvement effect can be obtained by rolling. Therefore, in the present invention, the amount of thermal warpage of the roll in the rolling region is defined as less than 0.5 mm. Methods for suppressing the amount of thermal warpage of the roll include a method of intermittently cooling the roll, and a method of dividing the roll and providing at least three bearings in the width direction of the slab. Another important dynamic misalignment factor is roll wear. As the number of times that slabs of various widths are cast increases, the roll surface wears unevenly in the lengthwise direction of the roll body and becomes extremely uneven. The depth of these irregularities can sometimes reach 1 mm or more, but conventionally, the amount of wear between the front and rear rolls in the casting direction is relatively small, and the key to keeping roll wear low is the lifespan of the roll (roll modification or replacement with a new one). Strict control of roll wear has not been achieved for several reasons, including the fact that it is not economical as it means a decrease in the amount of time required for roll wear and center segregation, and the cause-and-effect relationship between roll wear and center segregation is unclear. The present inventors investigated the relationship between the actual state of roll wear and center segregation, and found that roll wear causes flow due to uneven pressure in the casting direction and width direction, worsening center segregation, and that roll wear is noticeable in center segregation. It has been found that the stage-2 region has a significant influence, and the adverse effect becomes more pronounced as the slab reduction amount increases. As shown in FIG. 3, in order to make the segregation improvement effect by rolling noticeable, it is necessary to suppress the amount of thermal warpage of the roll to less than 0.5 mm. In addition to this, a further significant improvement in segregation can be achieved by suppressing roll wear to less than 0.5 mm. The rolls whose heat warping and wear should be controlled within the above-mentioned ranges are all rolls within the rolling area. Here, the amount of roll wear is defined by the depth of unevenness of each roll in the lengthwise direction of the roll body. Next, the present invention will be explained by examples. Smelting in a converter using the composition shown in Table 1 as the target component.
Molten steel whose composition has been adjusted by adding Ca to 240mm thick x 1580mm
The slab cross-section size of mm width was continuously cast and then rolled into thick plates. Samples were taken from slabs immediately after continuous casting, and the center segregation index and the number of V segregation pieces were investigated. In addition, samples were taken from the rolled plates and HIC tests were conducted to investigate the HIC cracking incidence. The results are summarized in Table 2. The central segregation index refers to Mn in steel.
The index shows the thickness of the high concentration area (segregation spot) with a ladle value of 1.3 times or more of this value as a reference, and the larger the value, the greater the segregation of the component.
【表】【table】
【表】
連続鋳造にあたり、鋳造速度は、中心部固相率
が約0.7となる時点がロールセグメントの境界に
くるように設定し1.0m/とした。また上記ロー
ルセグメント境界から上流側2.2mの領域をステ
ージ−2とし、本発明適用鋼A、Bおよび比較
鋼Cではステージ−2での圧力量が0.85mm/分
となるように鋳造前に予めロール間隔を調整し
た。ステージ−2の領域長さはステージ−1
と−2の境界が中心部固相率0.1ないし0.3とな
るように伝熱計算より定めた。本発明鋼A、Bお
よび比較鋼D、Eではロール熱反り量を低く抑え
るために、3分割ロールにより鋳造した。この際
鋳造中にロール変位を測定した結果ロール熱反り
量はいずれも0.5mm未満であつた。これに対し、
比較鋼Cでは一本ロールを使用したため、ロール
熱反り量は最大1.2mmであつた。比較鋼Dは凝固
収縮流動によりV偏析が発生した例、比較鋼Eは
圧下量が過大で逆V偏析した例でありいずれも
HIC割れ発生率が高い。比較鋼Cは適正圧下によ
り凝固収縮流動は防止できているもののロールの
熱反りによる不均一圧下流動が生じ、圧下による
中心偏析の改善が不充分である。これに対し、本
発明に係る鋼Aは適正圧下とロール熱反り防止の
相乗効果で中心偏析が著しく改善されている。鋼
Aでは比較鋼Cに比べて、中心偏析は著しく改善
されていることがわかる。本発明鋼に係るBは鋼
Aの対策に加えて、ロール使用回数を管理するこ
とによりロール摩耗量を0.4mmに抑えた例であり、
鋼Aに比べて更に偏析が改善されており、ロール
熱反り量を0.5mm未満にすることに加え、ロール
摩耗量を0.5mm未満にすることにより、中心偏析
が更に改善されることが実証された。[Table] During continuous casting, the casting speed was set to 1.0 m/m so that the point at which the solid fraction in the center reached approximately 0.7 was at the boundary of the roll segments. In addition, the area 2.2 m upstream from the roll segment boundary is defined as stage 2, and in the steels A and B to which the present invention and comparative steel C are applied, the pressure amount at stage 2 is set to 0.85 mm/min before casting. Adjusted roll spacing. The area length of stage-2 is that of stage-1
The boundary between -2 and -2 was determined by heat transfer calculations so that the solid fraction in the center was between 0.1 and 0.3. Inventive steels A and B and comparative steels D and E were cast using three-part rolls in order to keep the amount of roll thermal warpage low. At this time, as a result of measuring roll displacement during casting, the amount of roll thermal warpage was less than 0.5 mm in all cases. In contrast,
Comparative Steel C used a single roll, so the maximum amount of roll heat warpage was 1.2 mm. Comparative steel D is an example in which V segregation occurred due to solidification shrinkage flow, and comparative steel E is an example in which reverse V segregation occurred due to excessive rolling reduction.
High incidence of HIC cracking. In Comparative Steel C, solidification shrinkage flow can be prevented by proper rolling, but uneven rolling occurs due to thermal warping of the rolls, and center segregation due to rolling is not sufficiently improved. On the other hand, in Steel A according to the present invention, center segregation is significantly improved due to the synergistic effect of proper rolling reduction and prevention of roll heat warping. It can be seen that steel A has significantly improved center segregation compared to comparative steel C. Inventive steel B is an example in which the amount of roll wear was suppressed to 0.4 mm by controlling the number of rolls used in addition to the measures taken for steel A.
Segregation has been further improved compared to Steel A, and center segregation has been proven to be further improved by reducing roll heat warpage to less than 0.5 mm and roll wear to less than 0.5 mm. Ta.
第1図は本発明に係る各凝固ステージ、圧下す
べき量および範囲の関係を示す図、第2図は連続
鋳造鋳片にみられる中心偏析とV偏析の模式図、
第3図は中心偏析とロールの熱反りおよびロール
摩耗との関係を示す図である。
Fig. 1 is a diagram showing the relationship between each solidification stage, the amount and range to be reduced according to the present invention, and Fig. 2 is a schematic diagram of center segregation and V segregation seen in continuously cast slabs.
FIG. 3 is a diagram showing the relationship between center segregation, roll thermal warping, and roll wear.
Claims (1)
方法において、鋳片厚み中心部が固相率0.1ない
し0.3となる時点から流動限界固相率となる時点
までの領域で、ロール熱反り量が0.5mm未満のロ
ールを用いて0.5mm/分ないし2.5mm/分の割合で
鋳片を連続的に圧下することを特徴とする連続鋳
造方法。 2 鋳片を連続的に引き抜く溶融金属の連続鋳造
方法において、鋳片厚み中心部が固相率0.1ない
し0.3となる時点から流動限界固相率となる時点
までの領域で、ロール熱反り量が0.5mm未満で、
かつロール摩耗量が0.5mm未満のロールを用いて
0.5mm/分ないし2.5mm/分の割合で鋳片を連続的
に圧下することを特徴とする連続鋳造方法。[Scope of Claims] 1. In a continuous casting method for molten metal in which slabs are continuously drawn, in the region from the point where the solid phase ratio at the center of the thickness of the slab reaches 0.1 to 0.3 to the point where the solid phase rate reaches the flow limit. , a continuous casting method characterized in that a slab is continuously rolled down at a rate of 0.5 mm/min to 2.5 mm/min using rolls with a roll heat warpage of less than 0.5 mm. 2. In a continuous casting method for molten metal in which slabs are continuously drawn, the amount of roll heat warpage is determined in the region from the point where the solid phase ratio at the center of the slab thickness reaches 0.1 to 0.3 to the point where the solid phase rate reaches the flow limit. less than 0.5mm,
and using rolls with roll wear of less than 0.5 mm.
A continuous casting method characterized by continuously rolling down slabs at a rate of 0.5 mm/min to 2.5 mm/min.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29877385A JPS62158554A (en) | 1985-12-30 | 1985-12-30 | Continuous casting method |
AU60791/86A AU571787B2 (en) | 1985-08-03 | 1986-08-01 | Continuous casting method |
DE8686110690T DE3676753D1 (en) | 1985-08-03 | 1986-08-01 | CONTINUOUS METHOD. |
ES8601468A ES2001615A6 (en) | 1985-08-03 | 1986-08-01 | Continuous casting method. |
EP86110690A EP0211422B2 (en) | 1985-08-03 | 1986-08-01 | Continuous casting method |
US06/892,075 US4687047A (en) | 1985-08-03 | 1986-08-01 | Continuous casting method |
CA000515167A CA1279462C (en) | 1985-08-03 | 1986-08-01 | Continuous casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29877385A JPS62158554A (en) | 1985-12-30 | 1985-12-30 | Continuous casting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62158554A JPS62158554A (en) | 1987-07-14 |
JPH038863B2 true JPH038863B2 (en) | 1991-02-07 |
Family
ID=17864027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29877385A Granted JPS62158554A (en) | 1985-08-03 | 1985-12-30 | Continuous casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62158554A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0669606B2 (en) * | 1989-05-16 | 1994-09-07 | 新日本製鐵株式会社 | Continuous casting method |
JPH0628789B2 (en) * | 1989-05-17 | 1994-04-20 | 新日本製鐵株式会社 | Continuous casting method |
JP2593377B2 (en) * | 1991-09-26 | 1997-03-26 | 新日本製鐵株式会社 | Continuous casting method |
JP3412670B2 (en) * | 1997-09-10 | 2003-06-03 | 株式会社神戸製鋼所 | Method of setting rolling gradient in continuous casting and continuous casting method |
JP5030385B2 (en) * | 2005-02-10 | 2012-09-19 | 株式会社神戸製鋼所 | Support roll unit replacement method and continuous casting method |
-
1985
- 1985-12-30 JP JP29877385A patent/JPS62158554A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS62158554A (en) | 1987-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0420696B2 (en) | ||
JPH038864B2 (en) | ||
JP3427794B2 (en) | Continuous casting method | |
EP0211422B2 (en) | Continuous casting method | |
JP7047495B2 (en) | Continuous casting method of slabs | |
JPH038863B2 (en) | ||
JPH0422664B2 (en) | ||
JPH0550201A (en) | Light rolling reduction method in continuous casting | |
US20040003875A1 (en) | Method of producing steel strip | |
JPH0628789B2 (en) | Continuous casting method | |
WO2023228796A1 (en) | Continuous casting method and continuous casting machine for steel | |
JP2885881B2 (en) | Continuous casting method | |
JP2990552B2 (en) | Light reduction method in continuous casting | |
JPH078421B2 (en) | Continuous casting method | |
JPH04313453A (en) | Continuous casting method | |
JPH0573506B2 (en) | ||
JPH0530548B2 (en) | ||
JP2593386B2 (en) | Continuous casting method | |
JP2023141391A (en) | Continuous casting method for steal | |
JP2593385B2 (en) | Continuous casting method | |
JPH05220554A (en) | Continuous casting method | |
JP3015985B2 (en) | Continuous casting method | |
JPH05212517A (en) | Method for executing light rolling reduction in continuous casting | |
JP2640399B2 (en) | Continuous casting method | |
JP2021030237A (en) | Continuous casting method of steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |