JP2885880B2 - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JP2885880B2
JP2885880B2 JP12309390A JP12309390A JP2885880B2 JP 2885880 B2 JP2885880 B2 JP 2885880B2 JP 12309390 A JP12309390 A JP 12309390A JP 12309390 A JP12309390 A JP 12309390A JP 2885880 B2 JP2885880 B2 JP 2885880B2
Authority
JP
Japan
Prior art keywords
roll
solidification
equation
rolling
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12309390A
Other languages
Japanese (ja)
Other versions
JPH0422551A (en
Inventor
光雄 内村
成章 荻林
保雄 丸木
英昭 後藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14852034&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2885880(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12309390A priority Critical patent/JP2885880B2/en
Publication of JPH0422551A publication Critical patent/JPH0422551A/en
Application granted granted Critical
Publication of JP2885880B2 publication Critical patent/JP2885880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は連続鋳造の厚み中心部に見られる不純物元
素、即ち鋼鋳片の場合には硫黄、燐、マンガン等の偏析
を防止し、均質な金属を得ることのできる連続鋳造法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention prevents the segregation of impurity elements found in the center of the thickness of continuous casting, that is, in the case of steel slab, sulfur, phosphorus, manganese, etc. The present invention relates to a continuous casting method capable of obtaining a suitable metal.

〔従来の技術〕[Conventional technology]

近年、海洋構造物、貯槽、石油およびガス運搬用鋼
管、高張力線材などの材質特性に対する要求は厳しさを
ましており、均質な鋼材を提供することが重要課題とな
っている。元来鋼材は断面内において均質であるべきも
のであるが、鋼は一般に硫黄、燐、マンガン等の不純物
元素を含有しており、これらが鋳造過程において偏析し
部分的に濃化するため鋼が脆弱となる。特に近年、生産
性や歩留向上および省エネルギー等の目的のために連続
鋳造法が一般に普及しているが、連続鋳造により得られ
る鋳片の厚み中心部には通常顕著な成分偏析が観察され
る。
In recent years, requirements for material properties of marine structures, storage tanks, steel pipes for oil and gas transportation, high-strength wires, and the like have become more stringent, and providing a homogeneous steel material has become an important issue. Originally, steel materials should be homogeneous within the cross section, but steel generally contains impurity elements such as sulfur, phosphorus, and manganese, which segregate and partially concentrate in the casting process, and steel Vulnerable. In particular, in recent years, the continuous casting method has been widely used for the purpose of improving productivity, yield improvement, energy saving, and the like. However, remarkable component segregation is usually observed in the center of the thickness of a slab obtained by continuous casting. .

上記した成分偏析は最終成品の均質性を著しく損な
い、製品の使用過程や線材の線引き工程等で鋼に作用す
る応力により亀裂が発生するなど重大欠陥の原因になる
ため、その低減が切望されている。かかる成分偏析は凝
固末期に残溶鋼が凝固収縮力等により流動し、固液界面
近傍の濃化溶鋼を洗いだし、残溶鋼が累進的に濃化して
いくことによって生じる。従って、成分偏析を防止する
には残溶鋼の流動原因を取り除くことが肝要である。こ
のような流動原因としては、凝固収縮のほかロール間の
鋳片バルジングやロールアライメント不整等があるが、
これらのうち最も重大な原因は凝固収縮であり、偏析を
防止するにはこれを補償する量だけ鋳片を圧下すること
が必要である。
The above-mentioned segregation of components significantly impairs the homogeneity of the final product, and causes serious defects such as cracks due to stress acting on the steel during the use process of the product or the wire drawing process of the wire rod. I have. Such component segregation is caused by the residual molten steel flowing due to the solidification shrinkage force or the like at the end of solidification, washing out the concentrated molten steel in the vicinity of the solid-liquid interface, and the residual molten steel progressively becoming concentrated. Therefore, in order to prevent segregation of components, it is important to remove the cause of the flow of the residual molten steel. Causes of such flow include slab bulging between rolls and improper roll alignment, in addition to solidification shrinkage,
The most significant of these is solidification shrinkage, and to prevent segregation, it is necessary to reduce the slab by an amount that compensates for this.

鋳片を圧下することにより偏析を改善する試みは従来
より行われており、連続鋳造工程において鋳片中心部温
度が液相線温度から固相線温度に至るまでの間鋳片の凝
固収縮を補償する量以上の一定割合で圧下する方法で知
られている。
Attempts to improve segregation by rolling down the slab have been made in the past, and in the continuous casting process, the solidification shrinkage of the slab was reduced until the temperature of the slab center reached the liquidus temperature to the solidus temperature. It is known as a method of reducing the pressure at a fixed rate greater than the amount to be compensated.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、従来の連続鋳造方法は、条件によって
は偏析改善効果が殆ど認められなかったり、場合によっ
ては偏析がかえって悪化する等の問題があり、成分偏析
を充分に改善することは困難であった。
However, the conventional continuous casting method has a problem that the segregation improving effect is hardly recognized depending on the conditions or the segregation worsens in some cases, and it is difficult to sufficiently improve the component segregation.

本発明者等はかかる従来法の問題の発生原因について
種々調査した結果、偏析改善効果が認められなかったり
あるいは偏析がかえって悪化するのは、基本的に圧下す
べき凝固時期とその範囲が不適正なためであることを突
き止めた。
The present inventors conducted various investigations on the cause of the problem of the conventional method, and found that the effect of improving segregation was not recognized or the segregation was worsened because the solidification time to be reduced and the range thereof were basically inappropriate. I figured out why.

すでに、特開昭62−275556号公報において、鋳片の中
心部が固相率0.1ないし0.3に相当する温度となる時点か
ら流動限界固相率に相当する温度となる時点までの領域
を単位時間当り0.5mm/分以上2.5mm/分未満の割合で連続
的に圧下し、鋳片中心部が流動限界固相率に相当する温
度となる時点から固相線温度となるまでの領域は実質的
に圧下を加えないようにした連続鋳造方法が開示されて
いる。
In Japanese Patent Application Laid-Open No. 62-275556, the area from the point in time when the center of the slab reaches a temperature corresponding to the solid fraction of 0.1 to 0.3 to the point in time when the temperature reaches the temperature corresponding to the flow limit solid fraction is unit time The area from the point when the center of the slab reaches the temperature corresponding to the flow limit solid fraction to the temperature at the solidus line is substantially reduced by continuously lowering at a rate of 0.5 mm / min or more and less than 2.5 mm / min. There is disclosed a continuous casting method in which no reduction is applied to the steel.

さらに本発明者は数多くの実験を推進した結果、軽圧
下による偏析改善効果を確実にするためにはロール毎の
圧下時期と圧下量を定量化し、圧下時期と圧下量が適正
になるように制御することが不可欠であることを認識し
た。
Furthermore, as a result of promoting a number of experiments, the inventor quantified the reduction timing and reduction amount of each roll to ensure the effect of improving segregation by light reduction, and controlled the reduction timing and reduction amount to be appropriate. Realized that it was essential.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の要旨は、凝固末期に少なくとも1対のロール
により鋳片を圧下しつつ引き抜く溶融金属の連続鋳造法
において、凝固時期が異なる鋳片をそれぞれ圧下してい
るロールを1組合とし2組以上のロールの組を作り、各
組の全圧下量を用いて(1)式におけるAが最小になる
ようにa、mを決定し、(4)式から計算したロール毎
の短辺凝固幅Biの値によりロール毎の圧下凝固時期を定
量化し、適正な圧下時期になるように圧下ロール位置を
変更することを特徴とする連続鋳造法である。
The gist of the present invention is that in a continuous casting method of molten metal, in which a slab is drawn down by at least one pair of rolls at the end of solidification, two or more sets of rolls in which slabs having different solidification times are respectively reduced are taken as one combination. And a and m are determined using the total rolling amount of each set so that A in equation (1) is minimized, and the short side solidification width Bi of each roll calculated from equation (4) The continuous casting method is characterized in that the rolling solidification timing of each roll is quantified by the value of, and the position of the rolling roll is changed so as to obtain an appropriate rolling timing.

A=Σ(K′・B′−K・B)2 (1) K・Bは(2)式により、K′・B′は(3)式により
与える。
A = Σ (K ′ · B′−KB) 2 (1) K · B is given by equation (2), and K ′ · B ′ is given by equation (3).

P:ロール反力(kg)、 K:変形抵抗(kg/mm2)、 B:短辺凝固幅(mm)2×D、 D:短辺凝固厚(mm)、 R:ロール半径(mm)、 ΔH:1ロールの圧下量あるいは各組の全圧下量(mm)、 添字i:各ロールNo.、 t:モールドメニスカスからの経過時間(分) K・B:多本数のロールの平均値 〔作用〕 本発明者は、300×500mm鋳片の場合について、多本数
ロールの全圧下量とロール反力との間に(2)式の関係
が成立することを知見した。この結果に基づくと、バル
ジング等が無視できる場合、ロール毎の圧下量は(5)
式となる。(2)式におけるiロール位置の短辺凝固幅
Biはメニスカスからの経過時間の関数であり、Bi=A・
tiMと近似できる。
P: Roll reaction force (kg), K: Deformation resistance (kg / mm 2 ), B: Short side solidification width (mm) 2 × D, D: Short side solidification thickness (mm), R: Roll radius (mm) , ΔH: Roll reduction amount of each roll or total reduction amount of each group (mm), Subscript i: Roll number, t: Elapsed time (minute) from mold meniscus K ・ B: Average value of multiple rolls [ Action] The present inventor has found that, in the case of a 300 × 500 mm slab, the relationship of the formula (2) is established between the total reduction amount of the multiple rolls and the roll reaction force. Based on this result, if bulging or the like can be ignored, the rolling reduction for each roll is (5)
It becomes an expression. Short-side solidification width at i-roll position in equation (2)
Bi is a function of the time elapsed from the meniscus, and Bi = A ·
It can be approximated as ti M.

Δhi=(Pi2/Ri)・(1/Ki・Bi)2 (5) ΔH=ΣΔhi P:ロール反力(kg),K:変形抵抗(kg/mm2),B:短辺凝固
幅(mm)2×D,D:短辺凝固厚(mm)、 R:ロール半径(mm)、Δh:1ロール当たりの圧下量(m
m),添字i:各ロールNo., K:圧下帯の平均変形抵抗(kg/mm2) そこで各ロール位置のKi・Biと凝固時間(ti)との関
係を(4)式の如く近似し、多本数ロールの各ロールの
圧下力(ロール反力)およびロール半径を一定とすれ
ば、(1)式で示した多本数ロールの場合のK・Bはti
を用いて(3)式で示すことができる。一方、多本数ロ
ールにおける実測K・Bは測定した各セグメントの圧下
量から(1)式により逆算できるので、(2)、(3)
式の定数aおよびmは実測K・Bと(3)式で表わされ
るK′・B′の差の二乗の和が最小になるようにするこ
とで決定できる。a,mの値が明らかになれば、各ロール
位置のKi・Biは鋳片のモールドメニスカスから当該ロー
ルまで移動するに要した時間tiを用いて(4)式により
決定できる。(4)式において、Kiの値は伝熱計算によ
り算出したBiと本手法で算出した(4)式により予め決
定しておけば、a,m,Kiを用いてBiが算出できる。このよ
うに測定算出した短辺凝固幅Biは、あらかじめ伝熱計算
により算出したBiと鋳片の厚み中心固相率fsの関係から
鋳片の厚み中心固相率fsに換算することができる。本発
明により、軽圧下における圧下ロール毎の圧下時期を定
量的に把握することが可能になり、この各ロールの圧下
凝固時期の値を用いることにより、鋳造速度や冷却条件
が鋳造中に変動しても、圧下時期が適正になるよう圧下
ロールを変更することにより偏析のない均質な鋼材を安
定して得ることが可能となる。
Δhi = (Pi 2 / Ri) · (1 / Ki · Bi) 2 (5) ΔH = ΣΔhi P: roll reaction force (kg), K: deformation resistance (kg / mm 2 ), B: short side solidification width ( mm) 2 × D, D: Short side solidification thickness (mm), R: Roll radius (mm), Δh: Reduction amount per roll (m
m), subscript i: each roll No., K: average deformation resistance of rolling zone (kg / mm 2 ) Therefore, the relationship between Ki / Bi at each roll position and solidification time (ti) is approximated as in equation (4). Assuming that the rolling force (roll reaction force) and the roll radius of each roll of the multiple rolls are constant, the KB in the case of the multiple rolls represented by Expression (1) is ti.
And can be expressed by equation (3). On the other hand, since the actual measurement KB for a large number of rolls can be calculated back from the measured amount of reduction of each segment by the formula (1), (2), (3)
The constants a and m in the equation can be determined by minimizing the sum of the squares of the difference between the actually measured KB and K'B 'expressed by the equation (3). If the values of a and m become clear, Ki and Bi at each roll position can be determined by equation (4) using the time ti required to move from the mold meniscus of the slab to the roll. In the equation (4), if the value of Ki is determined in advance by Bi calculated by the heat transfer calculation and the equation (4) calculated by the present method, Bi can be calculated using a, m, and Ki. The short-side solidification width Bi measured and calculated in this way can be converted into the thickness center solid phase ratio fs of the slab from the relationship between Bi calculated in advance by heat transfer calculation and the thickness center solid phase ratio fs of the slab. According to the present invention, it is possible to quantitatively grasp the rolling timing of each rolling roll under light rolling, and by using the value of the rolling solidification timing of each roll, the casting speed and cooling conditions fluctuate during casting. Even so, it is possible to stably obtain a homogeneous steel material without segregation by changing the rolling roll so that the rolling timing is appropriate.

〔実施例〕〔Example〕

実施例1 試験を実施した連鋳機の概略を第1図に示し、鋳造し
た溶鋼組成の代表例を表1に示す。試験連鋳機はセグメ
ント圧下方式である。多本数ロールの圧下量は連続する
3セグメントについて第2図に示すようにフレーム3の
変位をダイヤルゲージ5により測定した。得られたK・
Bはモールドからの経過時間tの関数として(6)式に
示す。短辺凝固幅Biは(6)式と予め測定したKとtの
関係(7)式を用いて算出しておく。Biは(6)、
(7)式を用いて計算することができ、Biは第3図に示
す伝熱計算により算出したBiと厚み中心固相率の関係か
ら、鋳辺の厚み中心固相率に換算できる。
Example 1 An outline of a continuous caster on which a test was performed is shown in FIG. 1, and a typical example of a molten steel composition cast is shown in Table 1. The test continuous caster is of a segment reduction type. The amount of reduction of the number of rolls was measured by measuring the displacement of the frame 3 with a dial gauge 5 for three continuous segments as shown in FIG. The obtained K
B is shown in equation (6) as a function of the elapsed time t from the mold. The short side solidification width Bi is calculated using the equation (6) and the relation between the previously measured K and t (7). Bi is (6),
The Bi can be calculated using the equation (7), and Bi can be converted into the thickness center solid phase ratio of the casting side from the relationship between Bi calculated by the heat transfer calculation shown in FIG. 3 and the thickness center solid phase ratio.

K・B=27.2t1.62 (6) K=11.3・t0.15 (7) 以上のごとく測定した鋳片の厚み中心固相率と各圧下
ロール位置との関係を第4図に示す。
K · B = 27.2 t 1.62 (6) K = 11.3 · t 0.15 (7) FIG. 4 shows the relationship between the thickness center solid fraction of the slab measured as described above and the position of each reduction roll.

実施例2 試験を実施した連鋳機および溶鋼組成の概略は実施例
1と同じである。本試験では電磁撹拌により凝固組織を
改善し、上面等軸晶率5%以上を確保している。本法で
測定した圧下帯入口ロールの鋳片厚み中心固相率が0.1
より小さくならないように圧下セグメントを圧下セグメ
ントの圧下油圧を変えることにより変更した。このよう
に鋳造した鋳片の鋳造方向7mピッチでカットサンプルを
採取し、鋳片の偏析レベルを本法と従来法と比べ第5図
に示す。本法は従来法と比べ偏析が悪い鋳片部分がなく
なり、偏析のない均質な鋳片が安定して得られることが
分る。
Example 2 The outline of the continuous caster and the molten steel composition in which the test was performed is the same as in Example 1. In this test, the solidification structure was improved by electromagnetic stirring, and the upper surface equiaxed crystal ratio was 5% or more. The slab thickness center solid phase ratio of the reduction zone entrance roll measured by this method is 0.1
The rolling segment was changed by changing the rolling oil pressure of the rolling segment so as not to be smaller. Cut samples of the slab thus cast were taken at a pitch of 7 m in the casting direction, and the segregation level of the slab is shown in FIG. 5 in comparison with the present method and the conventional method. It can be seen that the present method eliminates a slab portion having poor segregation as compared with the conventional method, and a stable slab without segregation can be obtained.

実施例3 試験を実施した連鋳機および溶鋼組成の概略は実施例
1と同じである。本試験では高温鋳造により等軸晶はな
く、上面等軸晶率ゼロ%である。本法で測定した圧下帯
入口ロールの鋳片厚み中心固相率が0.25より小さくなら
ないように、圧下ロールのロール間隔にスペーサーを出
し入れすることにより圧下ロールを変更した。本法によ
り得られた鋳片の偏析レベルを従来法と比べ第6図に示
す。本法は従来法に比べ鋳片鋳造方向の偏析のバラツキ
が小さく、偏析の悪い鋳片部位がなくなり、偏析のない
均質な鋳片が安定して得られることが分る。
Example 3 The outline of the continuous caster and the molten steel composition in which the test was performed is the same as in Example 1. In this test, there is no equiaxed crystal due to high-temperature casting, and the equiaxed crystal ratio of the upper surface is 0%. The rolling roll was changed by inserting and removing spacers between the rolls of the rolling roll so that the slab thickness center solid phase ratio of the rolling band entrance roll measured by this method did not become smaller than 0.25. FIG. 6 shows the segregation level of the slab obtained by the present method in comparison with the conventional method. It can be seen that the present method has less variation in the segregation in the direction of casting of the slab than the conventional method, eliminates the slab portion with poor segregation, and stably obtains a homogeneous slab without segregation.

〔発明の効果〕〔The invention's effect〕

以上のごとく、本法により圧下ロール毎の圧下凝固時
期を判定し、圧下時期が適正になるように圧下ロール位
置を変更することにより偏析の悪い鋳片部位がなくな
り、偏析のない均質な鋳片が安定して得られる。
As described above, the reduction solidification timing of each reduction roll is determined by the present method, and the position of the reduction roll is changed so that the reduction timing is appropriate. Is obtained stably.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実験を実施した連鋳機の概略を示す図、 第2図は測定方法の概略を示す図、 第3図は短辺凝固幅と鋳片の厚み中心固相率の関係を示
す図、 第4図は測定した各ロール位置の鋳片厚みの中心固相率
を示す図、 第5図および第6図は従来法と本法の偏析レベルの比較
を示す図である。 1…モールド、2…セグメント、3…フレーム、4…支
柱、5…ダイヤルゲージ、6…変位計設置位置。
FIG. 1 is a view schematically showing a continuous caster in which an experiment was performed, FIG. 2 is a view schematically showing a measurement method, and FIG. 3 is a view showing a relationship between a short-side solidification width and a thickness center solid phase ratio of a slab. Fig. 4 is a diagram showing the measured center solid fraction of the thickness of the slab at each roll position, and Figs. 5 and 6 are diagrams showing a comparison of the segregation level between the conventional method and the present method. 1 ... mold, 2 ... segment, 3 ... frame, 4 ... post, 5 ... dial gauge, 6 ... displacement gauge installation position.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤田 英昭 千葉県君津市君津1 新日本製鐡株式会 社君津製鐡所内 (56)参考文献 特開 平1−271047(JP,A) (58)調査した分野(Int.Cl.6,DB名) B22D 11/00 - 11/22 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Hideaki Gotota 1 Kimitsu, Kimitsu City, Chiba Prefecture Inside the Kimitsu Works, Nippon Steel Corporation (56) References JP-A-1-271047 (JP, A) (58) Field surveyed (Int.Cl. 6 , DB name) B22D 11/00-11/22

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】凝固末期に少なくとも1対のロールにより
鋳片を圧下しつつ引き抜く溶融金属の連続鋳造法におい
て、凝固時期が異なる鋳片をそれぞれ圧下しているロー
ルを1組として2組以上のロールの組を作り、各組の全
圧下量を用いて(1)式におけるAが最小になるように
a、mを決定し、(4)式から計算したロール毎の短辺
凝固幅Biの値によりロール毎の圧下凝固時期を定量化
し、適正な圧下時期になるように圧下ロール位置を変更
することを特徴とする連続鋳造法。 A=Σ(K′・B′−K・B)2 (1) K・Bは(2)式により、K′・B′は(3)式により
与える。 P:ロール反力(kg)、 K:変形抵抗(kg/mm2)、 B:短辺凝固幅(mm)2×D、 D:短辺凝固厚(mm)、 R:ロール半径(mm)、 ΔH:1ロールの圧下量あるいは各組の全圧下量(mm)、 添字i:各ロールNo.、 t:モールドメニスカスからの経過時間(分)
In a continuous casting method for a molten metal, in which a slab is drawn down while being rolled down by at least one pair of rolls at the end of solidification, two or more sets of rolls each of which rolls down slabs having different solidification times are set. A set of rolls is prepared, and a and m are determined using the total reduction amount of each set so that A in equation (1) is minimized, and the short-side solidification width Bi of each roll calculated from equation (4) is determined. A continuous casting method characterized in that the rolling solidification timing of each roll is quantified based on the value, and the position of the rolling roll is changed so as to obtain an appropriate rolling timing. A = Σ (K ′ · B′−KB) 2 (1) K · B is given by equation (2), and K ′ · B ′ is given by equation (3). P: Roll reaction force (kg), K: Deformation resistance (kg / mm 2 ), B: Short side solidification width (mm) 2 × D, D: Short side solidification thickness (mm), R: Roll radius (mm) , ΔH: Roll reduction amount of each roll or total reduction amount of each set (mm), Subscript i: Roll number, t: Elapsed time from mold meniscus (minutes)
JP12309390A 1990-05-15 1990-05-15 Continuous casting method Expired - Fee Related JP2885880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12309390A JP2885880B2 (en) 1990-05-15 1990-05-15 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12309390A JP2885880B2 (en) 1990-05-15 1990-05-15 Continuous casting method

Publications (2)

Publication Number Publication Date
JPH0422551A JPH0422551A (en) 1992-01-27
JP2885880B2 true JP2885880B2 (en) 1999-04-26

Family

ID=14852034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12309390A Expired - Fee Related JP2885880B2 (en) 1990-05-15 1990-05-15 Continuous casting method

Country Status (1)

Country Link
JP (1) JP2885880B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5790449B2 (en) * 2011-11-30 2015-10-07 Jfeスチール株式会社 Quality judgment method for continuous cast slabs

Also Published As

Publication number Publication date
JPH0422551A (en) 1992-01-27

Similar Documents

Publication Publication Date Title
JPH0220650A (en) Continuous casting rolling method
JPH038864B2 (en)
JPH036855B2 (en)
JP2885880B2 (en) Continuous casting method
JP2885881B2 (en) Continuous casting method
JP2920836B2 (en) Continuous casting method
AU639332B2 (en) An as-continuously cast beam blank
JPH0628789B2 (en) Continuous casting method
JPH0550201A (en) Light rolling reduction method in continuous casting
JPH0422664B2 (en)
JPH078421B2 (en) Continuous casting method
JP2823085B2 (en) Continuous casting method
JPH0628790B2 (en) Continuous casting method
JP3091924B2 (en) Continuous casting method
JP2867299B2 (en) Continuous casting method
JPH038863B2 (en)
JPH07102437B2 (en) Continuous casting method
JP2593386B2 (en) Continuous casting method
JP2640399B2 (en) Continuous casting method
JP2990552B2 (en) Light reduction method in continuous casting
JP2944476B2 (en) Continuous forging method that prevents surface cracks in slabs
JP2593384B2 (en) Continuous casting method
JPH0390259A (en) Continuous casting method
JP2593385B2 (en) Continuous casting method
JP3015985B2 (en) Continuous casting method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080212

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090212

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100212

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees