JP2020521053A - Bearing steel for automobile hub and manufacturing method thereof - Google Patents

Bearing steel for automobile hub and manufacturing method thereof Download PDF

Info

Publication number
JP2020521053A
JP2020521053A JP2019565185A JP2019565185A JP2020521053A JP 2020521053 A JP2020521053 A JP 2020521053A JP 2019565185 A JP2019565185 A JP 2019565185A JP 2019565185 A JP2019565185 A JP 2019565185A JP 2020521053 A JP2020521053 A JP 2020521053A
Authority
JP
Japan
Prior art keywords
bearing steel
hub bearing
automobile hub
minutes
steel according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019565185A
Other languages
Japanese (ja)
Other versions
JP6862578B2 (en
Inventor
湘 江 劉
湘 江 劉
根 節 万
根 節 万
宗 澤 黄
宗 澤 黄
強 馬
強 馬
紀 鵬 韓
紀 鵬 韓
Original Assignee
宝山鋼鉄股▲分▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山鋼鉄股▲分▼有限公司 filed Critical 宝山鋼鉄股▲分▼有限公司
Publication of JP2020521053A publication Critical patent/JP2020521053A/en
Application granted granted Critical
Publication of JP6862578B2 publication Critical patent/JP6862578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Steel (AREA)
  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

化学成分が重量百分率で:炭素:0.58〜0.61%;ケイ素≦0.15%;マンガン:0.87〜0.95%;銅:0.10〜0.25%;モリブデン:0.12〜0.18%;クロム:0.10〜0.20%;硫黄≦0.015%;リン≦0.015%;アルミニウム:0.008〜0.015%;酸素≦0.0006%;窒素:0.006〜0.015%;水素≦0.0001%;チタン≦0.0015%;残部は鉄および不可避不純物であり、且つC%+Mn%/3=0.87〜0.95、Al/N=0.85〜1.15を同時に満たす自動車ハブ軸受鋼およびその製造方法。本発明にかかる軸受鋼は、耐食性を有し、結晶粒が微細で、純度が高く、タフネス性が優れるなどの特徴を有する;軸受鋼は、引張強度が800〜900MPaであり、高周波焼入されたレース面の硬度が730〜780HVに達し、レース面の焼入硬化層深さが2.0〜3.5mmに達することを保証できる。Chemical composition in percentage by weight: carbon: 0.58 to 0.61%; silicon ≤ 0.15%; manganese: 0.87 to 0.95%; copper: 0.10 to 0.25%; molybdenum: 0 12 to 0.18%; Chromium: 0.10 to 0.20%; Sulfur ≤ 0.015%; Phosphorus ≤ 0.015%; Aluminum: 0.008 to 0.015%; Oxygen ≤ 0.0006% Nitrogen: 0.006 to 0.015%; Hydrogen ≤ 0.0001%; Titanium ≤ 0.0015%; The balance is iron and inevitable impurities, and C% + Mn%/3 = 0.87 to 0.95. , Al/N=0.85 to 1.15 at the same time, and an automobile hub bearing steel and a manufacturing method thereof. The bearing steel according to the present invention has features such as corrosion resistance, fine crystal grains, high purity, and excellent toughness; bearing steel has a tensile strength of 800 to 900 MPa and is induction hardened. It can be guaranteed that the hardness of the race surface reaches 730 to 780 HV and the quench hardened layer depth of the race surface reaches 2.0 to 3.5 mm.

Description

本発明は軸受鋼に関し、特に自動車ハブ用軸受鋼およびその製造方法に関する。 The present invention relates to a bearing steel, and more particularly to a bearing steel for an automobile hub and a manufacturing method thereof.

自動車ハブ軸受は、ボディを支持する作用およびホイール回転を導く作用を奏し、アキシアル荷重もラジアル荷重も受ける。自動車ハブ軸受ユニットは、その使用範囲と使用量がますます増えることに従い、現在、3世代目まで発展しており、1世代目は複列アンギュラ軸受からなるものである;2世代目は、アウターレースには軸受を固定するためのフランジがあり、軸受をホイールスピンドルに外挿してナットで簡単に固定できる;3世代目のハブ軸受ユニットは、軸受ユニットによってアンチロック・ブレーキ・システム(ABS)と連動している。ハブユニットは、インナーフランジとアウターフランジがあるように設計され、インナーフランジはボルトで駆動軸に固定され、アウターフランジは軸受を全体的に装着している。3世代目のハブ軸受の出現で、ハブ軸受けの取り付けとメンテナンスはより便利になるが、ハブ軸受鋼の性能に対する要求もますます高くなる。 The automobile hub bearing has a function of supporting the body and a function of guiding the wheel rotation, and receives an axial load and a radial load. Automotive hub bearing units are currently developing up to the third generation, with the range of usage and usage increasing, the first generation consisting of double-row angular bearings; the second generation is outer. The race has a flange for fixing the bearing, and the bearing can be externally attached to the wheel spindle and easily fixed with nuts; the third generation hub bearing unit has an anti-lock braking system (ABS) by the bearing unit. It works together. The hub unit is designed to have an inner flange and an outer flange, the inner flange is fixed to the drive shaft with bolts, and the outer flange is entirely equipped with bearings. With the advent of the third generation hub bearings, the installation and maintenance of hub bearings will become more convenient, but the demands on the performance of the hub bearing steel will also increase.

自動車ハブ軸受を製造するための軸受鋼は普通、中炭素軸受鋼であり、例えばS55Cが採用され、その化学成分は:C:0.52〜0.58%、Si:0.15〜0.35%、Mn:0.60〜0.90%、Cr≦0.20%、P≦0.030%、S≦0.035%、Ni≦0.20%、Cu≦0.30%、Ni+Cr≦0.35%である。 The bearing steel for manufacturing automobile hub bearings is usually medium carbon bearing steel, for example S55C is adopted, the chemical composition of which is: C: 0.52-0.58%, Si: 0.15-0. 35%, Mn: 0.60 to 0.90%, Cr≦0.20%, P≦0.030%, S≦0.035%, Ni≦0.20%, Cu≦0.30%, Ni+Cr ≦0.35%.

鍛造技術の発展に従い、自動車ハブブランクは、普通の加熱炉による加熱(加熱媒体:天然ガス若しくはガス)+自由鍛造の生産プロセスから、マルチステーション高速据え込み鍛造プレス機によって軸受スリーブブランクの熱間鍛造を行う生産プロセスに発展した。 In accordance with the development of forging technology, automobile hub blanks are heated from a normal heating furnace (heating medium: natural gas or gas) + free forging production process, and hot forged bearing sleeve blanks by a multi-station high-speed upset forging press. Has evolved into a production process.

新規高速据え込み鍛造プロセスには、中周波誘導加熱炉による加熱およびタワーフォージング(tower forging)プロセスが採用され、タワーフォージングプロセスとは、単品に圧延し、太く据え込んでから、タワーフォージングを行い、次に外輪と内輪に分離し、外輪を圧延し、内輪に抜き穴加工をする。新規高速据え込み鍛造プロセスを採用すると、生産効率が高く、寸法精度が高く、材料の歩留まりが高く、金属の鍛流線の分布が良好で、結晶粒が微細化し、金属の内部組織が改善されるが、自動車ハブの軸受の鋼材に対する要求がより厳しくなる。さらに、ある自動車合弁事業で市場から返品されたハブ不良品を解析・分類したところ、ハブ軸受に多発する破壊のパターンは、疲労破壊、摩耗、腐食、電食、塑性変形、クラックという5種類を含む。よって、ハブ軸受鋼は、微細な結晶粒、均一な硬度、耐食性能、高い純度(非金属介在物、残留元素と気体を含む)を備えなければならないと共に、良好な据え込み鍛造性能と金型寿命を有すべきであり、特に後続工程である高周波焼入において、レース面で730〜780HVの硬度を得るだけでなく、ある程度の焼入層深さも要求される。 The new high-speed upsetting forging process employs a heating by a medium-frequency induction heating furnace and a tower forging process. The tower forging process is a process of rolling into a single piece, upsetting thickly, and then tower forging. Then, the outer ring and the inner ring are separated, the outer ring is rolled, and the inner ring is perforated. Adopting the new high-speed upset forging process, the production efficiency is high, the dimensional accuracy is high, the material yield is high, the metal grain flow distribution is good, the crystal grains are fine, and the internal structure of metal is improved. However, the requirements for steel materials for bearings of automobile hubs become more stringent. Furthermore, when a defective hub product returned from the market in an automobile joint venture was analyzed and classified, five types of fracture patterns frequently occurring in hub bearings were fatigue fracture, wear, corrosion, electrolytic corrosion, plastic deformation, and cracks. Including. Therefore, the hub bearing steel must have fine crystal grains, uniform hardness, corrosion resistance, and high purity (including non-metallic inclusions, residual elements and gases), as well as good upsetting forging performance and die. It should have a long life, and especially in the subsequent step of induction hardening, not only a hardness of 730 to 780 HV is obtained on the race surface, but also a certain hardening layer depth is required.

中国特許出願番号200710045281.2および中国特許出願番号201610001624.4は、自動車ハブ用の軸受鋼の発明特許である。中国特許出願番号200710045281.2は、S55Cに基づいて最適化した中炭素軸受鋼であり、レース面硬度差を小さくするように炭素含有量の範囲を狭くし、結晶粒サイズを微細化し且つAl2O3系介在物を低減するためにAl含有量を限定すると共に、有害元素のTiを制御した。特許出願番号201610001624.4は、微量合金セダン炭素ハブ軸受鋼であり、用途に対する限定以外に、主にAl元素を添加することで結晶粒を微細化する。 Chinese Patent Application No. 200710045281.2 and Chinese Patent Application No. 201610001624.4 are invention patents of bearing steel for automobile hubs. Chinese Patent Application No. 200710045281.2 is a medium carbon bearing steel optimized based on S55C, in which the carbon content range is narrowed so as to reduce the difference in hardness of the race surface, the grain size is refined, and the Al2O3 series is used. The Al content was limited to reduce inclusions, and the harmful element Ti was controlled. Patent application No. 2016100001624.4 is a microalloy sedan carbon hub bearing steel, and the grain size is refined mainly by adding Al element in addition to the limitation to the application.

しかしながら、単にAlを添加して結晶粒を微細化しようとすると、相応の結晶粒微細化効果を達成できない場合が多い;従来の自動車ハブ軸受鋼は、炭素含有量が比較的に低いため、ハブ軸受レース面の硬度を有効に改善することができず、ハブ軸受鋼の棒材も相応に、中心部と周辺部の炭素のばらつきが大きすぎることにより、ハブ軸受レース面の硬度のばらつきが>50HVである;従来のハブ軸受鋼の純度がよく制御されず、特に酸素含有量、チタン含有量が高いことにより、球形の酸化物と窒化チタン系介在物が単粒で27μmを超え、ハブ軸受レース面の早期な剥離と破壊に繋がる。 However, simply adding Al to refine the crystal grains often fails to achieve the corresponding grain refinement effect; conventional automobile hub bearing steels have a relatively low carbon content, so The hardness of the bearing race surface cannot be effectively improved, and the hub bearing steel bar material has a corresponding variation in the hardness of the hub bearing race surface due to too large variations in the carbon in the center and peripheral areas. 50 HV; the purity of the conventional hub bearing steel is not well controlled, and due to the high oxygen content and titanium content in particular, spherical oxide and titanium nitride-based inclusions exceed 27 μm in a single grain, and hub bearing This will lead to early peeling and destruction of the race surface.

発明の内容
本発明は、耐食性を有し、結晶粒が微細で、純度が高く、タフネス性が優れるなどの特徴を有する軸受鋼であって、引張強度が800〜900MPaであり、高周波焼入されたレース面の硬度が730〜780HVに達し、レース面の焼入硬化層深さが2.0〜3.5mmに達することを保証できる自動車ハブ軸受鋼、およびその製造方法を提供することを目的とする。
The present invention is a bearing steel having features such as corrosion resistance, fine crystal grains, high purity, and excellent toughness, a tensile strength of 800 to 900 MPa, and induction hardening. An object of the present invention is to provide an automobile hub bearing steel capable of ensuring that the hardness of the race surface reaches 730 to 780 HV and the quench hardened layer depth of the race surface reaches 2.0 to 3.5 mm, and a manufacturing method thereof. And

上記目的を果たすために、本発明の技術方案は:
自動車ハブ軸受は、レース面の高周波焼入された後の硬度が730〜780HVと要求され、レース面の焼入硬化層深さが2.0〜3.5mmに達し(研削部分を除く)、硬度のばらつきが≦50HVである。以上のような技術的指標を安定に達成するためには、焼入硬化層深さと組織の均一性を制御する必要がある。成分設計において、主要な合金元素CとMnを(焼入硬化層深さと耐磨耗性能を考慮して)合理的に合わせると共に、焼入性元素Moを増加させ、結晶粒界におけるAlNの散在析出を制御し、結晶粒の成長を抑えながらAlとTiN系介在物の出現を防止するように、AlとN元素を制御する。MnとCu元素を添加する合金設計は、ハブ軸受の耐食性能のためでもあり、局在的な孔食による作業面の剥離を防止する。結晶粒サイズを微細化するための設計は、さらに、Nb元素を選択して添加することも含み、ハブの鍛造過程における二次結晶粒の微細化と合わせて、最終的に結晶粒が微細な組織を獲得できる。
To achieve the above object, the technical solution of the present invention is:
Automotive hub bearings are required to have a hardness of 730 to 780 HV after induction-quenching of the race surface, the quench hardened layer depth of the race surface reaches 2.0 to 3.5 mm (excluding the ground portion), The hardness variation is ≦50 HV. In order to achieve the above technical index stably, it is necessary to control the depth of the quench hardened layer and the uniformity of the structure. In the component design, the main alloying elements C and Mn are rationally matched (taking into consideration the quench hardening layer depth and wear resistance performance), the hardenable element Mo is increased, and AlN is scattered in the grain boundaries. The Al and N elements are controlled so as to control the precipitation and prevent the appearance of Al 2 O 3 and TiN-based inclusions while suppressing the growth of crystal grains. The alloy design in which Mn and Cu elements are added is also for the corrosion resistance performance of the hub bearing, and prevents peeling of the work surface due to localized pitting corrosion. The design for refining the crystal grain size further includes selecting and adding an Nb element, and in addition to refining the secondary crystal grains in the forging process of the hub, the crystal grains are finally refined. You can acquire an organization.

具体的には、本発明は、化学成分が重量百分率で:炭素:0.58〜0.61%;ケイ素≦0.15%;マンガン:0.87〜0.95%;銅:0.10〜0.25%;モリブデン:0.12〜0.18%;クロム:0.10〜0.20%;硫黄≦0.015%;リン≦0.015%;アルミニウム:0.008〜0.015%;酸素≦0.0006%;窒素:0.006〜0.015%;水素≦0.0001%;チタン≦0.0015%;残部は鉄および不可避不純物であり、且つC%+Mn%/3=0.87〜0.95、Al/N=0.85〜1.15を同時に満たす自動車ハブ軸受鋼である。 Specifically, the present invention is based on the weight percentage of chemical components: carbon: 0.58 to 0.61%; silicon ≤ 0.15%; manganese: 0.87 to 0.95%; copper: 0.10. ~0.25%; molybdenum: 0.12 to 0.18%; chromium: 0.10 to 0.20%; sulfur ≤ 0.015%; phosphorus ≤ 0.015%; aluminum: 0.008 to 0. 015%; oxygen ≤ 0.0006%; nitrogen: 0.006 to 0.015%; hydrogen ≤ 0.0001%; titanium ≤ 0.0015%; balance is iron and inevitable impurities, and C% + Mn%/ It is an automobile hub bearing steel that simultaneously satisfies 3=0.87 to 0.95 and Al/N=0.85 to 1.15.

さらに、ニオブ:0.020〜0.040%を含む。
また、前記不純物は、Pb≦0.002%、As≦0.04%、Sn≦0.005%、Sb≦0.004%又はCa≦0.0010%を含む。
Further, it contains niobium: 0.020 to 0.040%.
Further, the impurities include Pb≦0.002%, As≦0.04%, Sn≦0.005%, Sb≦0.004% or Ca≦0.0010%.

本発明にかかる鋼の成分設計において:
炭素:炭素元素は靭性を劣化させるが、軸受鋼の強度と耐摩耗性能を保つ重要な元素であり、自動車ハブ軸受鋼において、高周波焼入されたレース面の硬度が730〜780HVに達し、レース面の焼入硬化層深さが2.0〜3.5mmに達することを保証するために、炭素含有量は0.58〜0.61%に制御されなければならない。
In the composition design of the steel according to the present invention:
Carbon: Carbon element deteriorates the toughness, but is an important element to maintain the strength and wear resistance of the bearing steel. In the automobile hub bearing steel, the hardness of the induction-hardened race surface reaches 730-780HV, The carbon content should be controlled to 0.58-0.61% to ensure that the quench hardened layer depth of the surface reaches 2.0-3.5 mm.

ケイ素:ケイ素はフェライトとオーステナイトに溶解して、鋼の硬度と強度を向上させることができるが、本鋼種において、高い含有量のケイ素はフェライト結晶粒の粗大化を促進できる。本発明にかかる鋼において、ケイ素は≦0.15%に制御される。 Silicon: Silicon dissolves in ferrite and austenite to improve the hardness and strength of the steel, but in this steel type, a high content of silicon can promote coarsening of ferrite crystal grains. In the steel according to the invention, silicon is controlled to ≤0.15%.

マンガン:マンガンはクロムを部分的に入れ替えて強度を保持することができ、且つ焼入性を顕著に向上させる主要な元素である。しかし、マンガンは鋼においてオーステナイト化結晶粒の成長を促進する欠点を有するから、マンガンの含有量を制御すべきである。本発明にかかる鋼において、鋼に添加されるマンガンの含有量は0.87〜0.95%であり、且つ炭素元素と合わせて、高周波焼入されたレース面の硬度が730〜780HVに達し、レース面の焼入硬化層深さが2.0〜3.5mmに達することを保証する主要な元素として働く。 Manganese: Manganese is a main element that can partially replace chromium to maintain strength and significantly improve hardenability. However, manganese has the drawback of promoting the growth of austenitized grains in steel, so the manganese content should be controlled. In the steel according to the present invention, the content of manganese added to the steel is 0.87 to 0.95%, and the hardness of the induction-hardened race surface reaches 730 to 780 HV together with the carbon element. , Acts as a main element to ensure that the quench hardened layer depth of the race surface reaches 2.0 to 3.5 mm.

MnはFeと固溶体を形成すると共に、フェライトとオーステナイトの強度を向上させる;Mnは組織を均一にする弱炭化物形成元素であり、セメンタイトに入って一部のFe原子を置換する。また、Mnは耐摩耗性を向上させる作用も有する。従って、相の組織の計算および実験の研究により、Mn含有量が0.87〜0.95%に制御され且つ他の元素と合わせると、発明において相応の作用を発揮することができる。 Mn forms a solid solution with Fe and improves the strength of ferrite and austenite; Mn is a weak carbide forming element that makes the structure uniform, and enters cementite to replace some Fe atoms. In addition, Mn also has the function of improving wear resistance. Therefore, according to the calculation of the structure of the phase and the research of the experiment, the Mn content is controlled to be 0.87 to 0.95% and combined with other elements, the corresponding action in the invention can be exerted.

クロム:クロムは強度、硬度および耐摩耗性を顕著に向上できるが、可塑性と靭性を低下させる。クロムは鋼の耐酸化性と耐食性を向上させることもでき、本発明にかかる鋼にクロムを0.10〜0.20%添加する。 Chromium: Chromium can significantly improve strength, hardness and wear resistance, but reduces plasticity and toughness. Chromium can also improve the oxidation resistance and corrosion resistance of steel, and 0.10 to 0.20% of chromium is added to the steel according to the present invention.

アルミニウム:アルミニウムは脱酸剤で、結晶粒を微細化する元素であるが、試験によれば、多すぎるAlはAl系非金属介在物を形成する場合が多く、これらの変形しにくい非金属介在物はよく疲労き裂の源となり、軸受の耐衝撃性能に影響を与える。本鋼種において、製品を0.010〜0.015%に制御することは、顕著な技術的特徴である。 Aluminum: Aluminum is a deoxidizing agent and is an element for refining crystal grains. According to the test, too much Al often forms Al 2 O 3 -based nonmetallic inclusions, and these are difficult to deform. Non-metallic inclusions are often the source of fatigue cracks and affect the impact resistance of bearings. In this steel type, controlling the product to be 0.010 to 0.015% is a remarkable technical feature.

ニオブ:典型的な結晶粒微細化元素であり、0.020〜0.040%のニオブを選択して添加することで、鋼材の結晶粒サイズを改善し、良好な靭性を獲得することができる。しかし、多すぎるニオブは、相応の炭化物の集積に繋がり、靭性の低下を招く場合が多い。 Niobium: A typical grain refining element, and by selecting and adding 0.020 to 0.040% niobium, it is possible to improve the grain size of the steel material and obtain good toughness. .. However, too much niobium often leads to the accumulation of corresponding carbides, often leading to a decrease in toughness.

窒素:窒素は本発明にかかる鋼にとって重要な合金元素であり、アルミニウムと窒素で形成されるAlNや、ニオブと窒素で形成されるNbCN等の結晶粒微細化元素は結晶粒界で析出してレベル7〜9の結晶粒サイズを得て、窒素含有量は0.0060〜0.015%に制御される。 Nitrogen: Nitrogen is an important alloying element for the steel according to the present invention, and AlN formed by aluminum and nitrogen, and NbCN formed by niobium and nitrogen, etc., are refined at the crystal grain boundaries. Grain sizes of levels 7-9 are obtained and the nitrogen content is controlled to 0.0060-0.015%.

銅:銅の欠点は熱間加工時に熱脆化を発生しやすいことであり、特に銅含有量が0.5%を超えると、可塑性が顕著に低下することから、銅元素は通常、有害元素として制御される。製錬手段の相違により、アーク炉製錬(原料が主に廃鋼)では、銅含有量が0.10〜0.20%である場合が多く、特に制御する必要がないが、転炉製錬(原料が主に高炉溶鉄)では、銅含有量が0.05%未満である場合が多く、銅合金を追加して添加する必要がある。本発明にかかる鋼に0.10〜0.25%の量で添加すると、強度と靭性を向上させ、特に大気腐食性能を向上させることができる。実験室で複数回の実験によって分かるように、0.10〜0.25%の銅は、自動車ハブ軸受の耐食性能を有効に向上させ、特に大気での孔食を低減し、軸受の表面剥離を低減することができる。 Copper: The drawback of copper is that it is prone to thermal embrittlement during hot working. Especially, when the copper content exceeds 0.5%, the plasticity remarkably decreases, so the copper element is usually a harmful element. Controlled as. In the arc furnace smelting (raw material is mainly waste steel), the copper content is often 0.10 to 0.20% due to the difference in the smelting means, and it is not necessary to control the copper content. In smelting (the raw material is mainly blast furnace molten iron), the copper content is often less than 0.05%, and it is necessary to add a copper alloy additionally. When it is added to the steel according to the present invention in an amount of 0.10 to 0.25%, strength and toughness can be improved, and particularly atmospheric corrosion performance can be improved. As can be seen in multiple experiments in the laboratory, 0.10-0.25% copper effectively improves the corrosion resistance performance of automobile hub bearings, especially reduces atmospheric pitting corrosion and results in bearing delamination. Can be reduced.

モリブデン:モリブデン元素は、鋼の結晶粒を微細化し、焼入性を向上させ、また機械的性能を向上させることができる。さらに、合金鋼の火による脆さを抑制できる。レース面の焼入硬化層深さを2.0〜3.5mmに制御するために、本発明において、モリブデンを0.12〜0.18%に制御することで、相応の作用を発揮できる。 Molybdenum: Elemental molybdenum can refine the crystal grains of steel, improve hardenability, and improve mechanical performance. Further, brittleness of alloy steel due to fire can be suppressed. In order to control the quench hardened layer depth of the race surface to be 2.0 to 3.5 mm, in the present invention, by controlling molybdenum to be 0.12 to 0.18%, a corresponding action can be exhibited.

リン、硫黄、チタン:鋼中の不純物元素であり、鋼の可塑性と靭性を顕著に低下させる。特にリン、チタンによる損害が最も大きく、硫黄≦0.015%、リン≦0.010%≦、チタン≦0.0015%である。それと共に、鉛、アンチモン、ビスマス、酸素は鋼中の不純物元素であり、技術的に許容される場合、それらの含有量をなるべく低減すべきである。 Phosphorus, sulfur, titanium: Impurity elements in steel, which significantly reduce the plasticity and toughness of steel. In particular, the damage caused by phosphorus and titanium is the largest, with sulfur ≤ 0.015%, phosphorus ≤ 0.010% ≤, and titanium ≤ 0.0015%. At the same time, lead, antimony, bismuth, and oxygen are impurity elements in the steel, and if technically allowed, their contents should be reduced as much as possible.

本発明にかかる自動車ハブ軸受鋼の製造方法は、下記の工程を含むことを特徴とする:
1) 製錬・鋳造
上記の成分に応じて、アーク炉若しくは転炉を用いて製錬し、取鍋精錬し、連続鋳造し、インゴットを鋳込む;
2) 圧延
インゴットを加熱し、加熱炉温度を600〜900℃にし、インゴットを炉に入れて20〜40分間保温する;120分間〜200分間経ってから、1180〜1220℃に昇温し、80〜180分間保温する;
分塊圧延機で圧延し、インゴットをビレットに分塊圧延する;
普通の圧延でビレットを棒材に圧延する;
ビレットの加熱温度を1160〜1200℃にし、加熱時間を80分間〜120分間にする;普通に圧延し、仕上げ圧延温度を760〜900℃にする。
The method for manufacturing an automobile hub bearing steel according to the present invention is characterized by including the following steps:
1) Smelting/casting Smelting using an arc furnace or converter, smelting ladle, continuous casting, casting ingot according to the above components;
2) The rolling ingot is heated, the heating furnace temperature is set to 600 to 900° C., the ingot is put in the furnace and kept warm for 20 to 40 minutes; after 120 minutes to 200 minutes, the temperature is raised to 1180 to 1220° C., and 80 Keep warm for ~180 minutes;
Roll in a slab and slab the ingot into a billet;
Roll the billet into bars with normal rolling;
The billet heating temperature is set to 1160 to 1200° C. and the heating time is set to 80 minutes to 120 minutes; normal rolling and finish rolling temperature are set to 760 to 900° C.

好ましくは、前記取鍋精錬において、二次精錬炉の取鍋に低塩基度合成スラグを1.5〜3kg/t溶鋼の量で入れ、造滓し、Al粒子で沈殿脱酸し、Si−Cパウダーでスラグ表面脱酸を行い、15分おきに1バッチを入れ、2〜3バッチを添加し,バッチ毎の添加量を0.2〜0.8kg/t溶鋼にする;二次精錬炉でトップスラグの塩基度を2〜4に制御する。 Preferably, in the ladle refining, low basicity synthetic slag is put in a ladle of a secondary refining furnace in an amount of 1.5 to 3 kg/t of molten steel, smelted, precipitated and deoxidized with Al particles, and Si- Degreasing the slag surface with C powder, adding 1 batch every 15 minutes, adding 2 to 3 batches, and adding each batch to 0.2 to 0.8 kg/t molten steel; secondary refining furnace The basicity of top slag is controlled to 2 to 4.

好ましくは、前記二次精錬において低塩基度合成スラグを採用し、合成スラグの成分は重量百分率で:CaO 51〜53%、MgO 15〜19%、Al 5〜11%、SiO 22〜24%、P≦0.10%、S≦0.05%、HO≦0.6%、CaO/SiO 2.08〜2.44であり;合成スラグの粒度は5〜20mmである。 Preferably, a low basicity synthetic slag is adopted in the secondary refining, and the components of the synthetic slag are in weight percentage: CaO 51 to 53%, MgO 15 to 19%, Al 2 O 3 5 to 11%, SiO 2 22 2. ˜24%, P 2 O 5 ≦0.10%, S ≦0.05%, H 2 O ≦0.6%, CaO/SiO 2 2.08 to 2.44; the particle size of the synthetic slag is 5 Is about 20 mm.

好ましくは、真空脱気に入る前に、溶鋼温度を1580〜1610℃にする;真空脱気前に窒化クロムワイヤーをフィードし、窒素含有量を60〜150ppmに調整し、アルミニウムワイヤーをフィードしてアルミニウムを0.015〜0.025%に補充する。 Preferably, before entering the vacuum degassing, the molten steel temperature is set to 1580 to 1610° C.; before the vacuum degassing, the chromium nitride wire is fed, the nitrogen content is adjusted to 60 to 150 ppm, and the aluminum wire is fed to feed the aluminum. Replenish to 0.015-0.025%.

好ましくは、真空精錬が終了した後、取鍋を40分間以上静置し、Arをソフトブローし、溶鋼を連続鋳込み、過熱度を≦35℃に制御し、凝固末期軽圧下および電磁攪拌技術によって鋼材の偏析を改善する。 Preferably, after the vacuum refining is completed, the ladle is allowed to stand for 40 minutes or more, Ar is soft blown, molten steel is continuously cast, the superheat degree is controlled to ≦35° C., the final solidification light pressure reduction and the electromagnetic stirring technique are used. Improve the segregation of steel materials.

ハブ軸受は、作業において大きな荷重を受け、ハブ軸受鋼における非変形性の介在物に非常に敏感であり、製錬過程において、O、Ti、S、P、H等の残留元素が所定の含量以下に低減されるように制御する必要がある以外に、単粒の非変形性の球形介在物を制御する必要もあり、特に最大サイズは27μmを超えてはいけない。本発明によれば、カスタマイズした精錬プロセスと精錬スラグ系が設計され、非変形性の介在物のサイズと数が制御される。 Hub bearings are subjected to heavy loads during operation and are very sensitive to non-deformable inclusions in the hub bearing steel, and in the smelting process, residual elements such as O, Ti, S, P and H are contained in a predetermined content. Besides being controlled to be reduced below, it is also necessary to control single-grain, non-deformable spherical inclusions, in particular the maximum size should not exceed 27 μm. According to the present invention, a customized refining process and refining slag system are designed to control the size and number of non-deformable inclusions.

本発明の有利な効果は、
1、本発明は鋼にケイ素、マンガン、モリブデン、銅、窒素等の合金元素を添加し、且つ相応の成分設計を行った。自動車ハブ軸受鋼に、低塩基度合成スラグを用いて精錬することで、酸化物と窒化物系の単粒介在物のサイズは有効に制御される;軽圧下および電磁攪拌等のプロセスによって、偏析は有効に改善した。
The advantageous effects of the present invention are
1. In the present invention, alloying elements such as silicon, manganese, molybdenum, copper and nitrogen are added to steel, and corresponding components are designed. By refining automobile hub bearing steel with low basicity synthetic slag, the size of single-grain oxide and nitride inclusions is effectively controlled; segregation by processes such as light pressure reduction and electromagnetic stirring Improved effectively.

2、自動車ハブ軸受鋼には、最新の高速据え込み鍛造がふさわしく、高周波焼入されたレース面の硬度が730〜780HVに達し、レース面の焼入硬化層深さが2.0〜3.5mmに達し、引張強度が800〜900MPaであることを保証できる。 2. The latest high-speed upset forging is suitable for automobile hub bearing steel, the hardness of the induction-hardened race surface reaches 730-780HV, and the quench-hardened layer depth of the race surface is 2.0-3. It can be guaranteed that it reaches 5 mm and the tensile strength is 800-900 MPa.

3、自動車ハブ軸受鋼の結晶粒度はレベル7〜9である。
4、自動車ハブ軸受鋼は、純度が高く、単粒の介在物の最大サイズが≦27μmで、酸素含有量が≦6ppmで、チタン含有量が≦0.0015%である。
3. The grain size of automobile hub bearing steel is level 7-9.
4. Automotive hub bearing steel is high in purity, the maximum size of single-grained inclusions is ≦27 μm, the oxygen content is ≦6 ppm, and the titanium content is ≦0.0015%.

具体的な実施形態
以下、実施例に基づいて本発明をさらに説明する。
Specific Embodiment Hereinafter, the present invention will be further described based on Examples.

本発明にかかる鋼の実施例の成分は表1、表2に、実施例の鋼の性能パラメータは表3に示す。 The components of the examples of the steel according to the present invention are shown in Tables 1 and 2, and the performance parameters of the steels of the examples are shown in Table 3.

本発明にかかる製造方法が、2段階プロセスを採用する:第1段階は、アーク炉(若しくは転炉)一次製錬→取鍋炉真空精錬→インゴット鋳造であり;第2段階は、圧延機で熱間加工して鋼材を圧延する。 The manufacturing method according to the present invention adopts a two-step process: the first step is arc furnace (or converter) primary smelting → ladle furnace vacuum refining → ingot casting; the second step is heat treatment in a rolling mill. The steel material is rolled by hot working.

第1段階:150トンのアーク炉中で溶鋼の一次製錬を行った;相応のトン数で取鍋精錬した;連続鋳造した;化学成分が基準に合致する320mm×425mmのインゴットを生産した。 First stage: Primary smelting of molten steel was carried out in a 150 ton arc furnace; Ladle refining was carried out at a corresponding tonnage; Continuous casting; 320 mm x 425 mm ingot with chemical composition meeting the standard was produced.

(1)一次製錬炉:一次製錬炉をアーク炉にした。一次製錬炉から出鋼した溶鋼は[P]≦0.015%,[C]≧0.10%に達し、T≧1630℃になる時点から出鋼し始まり、出鋼の後期に適量の合成スラグを入れた。出鋼の時に、取鍋にマンガン・アルミニウム合金(Al含有量が22%)を入れ、Mnを100%の回収率で製品成分の上限まで加えた。 (1) Primary smelting furnace: The primary smelting furnace was an arc furnace. The molten steel tapped from the primary smelting furnace reaches [P]≦0.015% and [C]≧0.10%, and starts tapping when T≧1630° C. Added synthetic slag. At the time of tapping, a manganese-aluminum alloy (Al content: 22%) was put in a ladle, and Mn was added at a recovery rate of 100% up to the upper limit of product components.

(2)取鍋精錬炉:二次精錬炉(LF)で加工部位を加熱し、取鍋に低塩基度合成スラグを2kg/t入れて造滓し、Al粒子で沈殿脱酸し、Si−Cパウダーでスラグ表面脱酸を行い、スラグの状況および鋼におけるケイ素含有量の状況に応じて添加量および添加バッチ数を調整し、普通は15分おきに1バッチを入れ、精錬過程において脱酸を常に良好にするように、使用量を0.2〜0.8kg/tにした。 (2) Ladle refining furnace: The processed portion is heated in a secondary refining furnace (LF), 2 kg/t of low basicity synthetic slag is put into the ladle, and it is slagged. The slag surface is deoxidized with C powder, and the addition amount and the number of addition batches are adjusted according to the slag condition and the silicon content condition in the steel. Usually, one batch is added every 15 minutes to deoxidize the slag during the refining process. The amount used was 0.2 to 0.8 kg/t so that

LF初期の低塩基度スラグを調整し、精錬炉トップスラグの塩基度を3〜4に制御した。 The basicity of the smelting furnace top slag was controlled to 3 to 4 by adjusting the low basicity slag in the initial stage of LF.

真空脱気前に窒化クロムワイヤーを(窒素含有量を60−150ppmに調整するように)フィードし、アルミニウムワイヤーをフィードしてアルミニウムを0.015〜0.025%に補充した;真空脱気に入る前に、溶鋼温度を1580〜1610℃にし、真空脱気において低い真空度(≦0.3kPa)を制御し、且つ保持時間を15minにした;真空終了後の温度を1530〜1560℃にした。 Before vacuum degassing, chromium nitride wire was fed (to adjust the nitrogen content to 60-150 ppm) and aluminum wire was fed to replenish the aluminum to 0.015-0.025%; before entering vacuum degassing. In addition, the molten steel temperature was set to 1580 to 1610° C., the low degree of vacuum (≦0.3 kPa) was controlled in vacuum deaeration, and the holding time was set to 15 min; the temperature after completion of the vacuum was set to 1530 to 1560° C.

(3)鋳込み:真空精錬が終了した後、取鍋を40分間以上静置し、Arをソフトブローした(Ar圧力流量は、好適に、液面を僅かに揺らす程度である)。溶鋼を連続鋳込み、過熱度を≦35℃に制御し、凝固末期軽圧下および電磁攪拌技術によって鋼材の偏析を改善した。 (3) Casting: After the vacuum refining was completed, the ladle was allowed to stand still for 40 minutes or more to softly blow Ar (Ar pressure flow rate is preferably such that the liquid surface slightly fluctuates). Molten steel was continuously cast, the degree of superheat was controlled to ≤35°C, and the segregation of the steel material was improved by light reduction at the end of solidification and electromagnetic stirring technology.

第2段階:インゴットを加熱炉に熱間輸送し、炉進入温度を860℃にし、35分間保温した;160分間経ってから、1260〜1280℃に昇温した;160分間保温した;分塊圧延機で普通の圧延プロセスにより、分塊圧延機を用いて合格のインゴットを200mm×200mmのビレットに分塊圧延した;ビレットを圧延機に転移し、加熱炉の加熱温度を1140℃にし、加熱時間を130分間にした;仕上げ圧延温度を835℃にした。 Second stage: The ingot was hot-transported to the heating furnace, the furnace entrance temperature was 860° C., and the temperature was kept for 35 minutes; after 160 minutes, the temperature was raised to 1260 to 1280° C.; the temperature was kept for 160 minutes; The ingot that passed was slab-rolled into a billet of 200 mm x 200 mm by a slab mill by a conventional rolling process; the billet was transferred to a rolling mill, the heating temperature of the heating furnace was set to 1140°C, and the heating time was changed. For 130 minutes; the finishing rolling temperature was 835°C.

本発明を実施して生産した自動車ハブ軸受鋼棒材を自動車ハブ軸受に囲うし、ある自動車合弁事業によってある有名なモデルに装着し、テストしたところ、各性能はいずれも実用の要求を満たし、寿命はS55C等の従来の中炭素軸受鋼より優れた。 An automobile hub bearing steel rod produced by carrying out the present invention was surrounded by an automobile hub bearing, mounted on a famous model by an automobile joint venture, and tested, and each performance satisfies practical requirements, The service life is superior to conventional medium carbon bearing steel such as S55C.

Figure 2020521053
Figure 2020521053

Figure 2020521053
Figure 2020521053

Figure 2020521053
Figure 2020521053

Claims (10)

化学成分が重量百分率で:
炭素:0.58〜0.61%;
ケイ素:≦0.15%;
マンガン:0.87〜0.95%;
銅:0.10〜0.25%;
モリブデン:0.12〜0.18%;
クロム:0.10〜0.20%;
硫黄:≦0.015%;
リン:≦0.015%;
アルミニウム:0.008〜0.015%;
酸素:≦0.0006%;
窒素:0.006〜0.015%;
水素:≦0.0001%;
チタン:≦0.0015%;
残部は鉄および不可避不純物であり、且つC%+Mn%/3=0.87〜0.95、Al/N=0.85〜1.15を同時に満たす、
自動車ハブ軸受鋼。
Chemical composition by weight percentage:
Carbon: 0.58 to 0.61%;
Silicon: ≤0.15%;
Manganese: 0.87-0.95%;
Copper: 0.10-0.25%;
Molybdenum: 0.12-0.18%;
Chromium: 0.10 to 0.20%;
Sulfur: ≤0.015%;
Phosphorus: ≤0.015%;
Aluminum: 0.008 to 0.015%;
Oxygen: ≤0.0006%;
Nitrogen: 0.006-0.015%;
Hydrogen: ≤ 0.0001%;
Titanium: ≤0.0015%;
The balance is iron and unavoidable impurities, and simultaneously satisfies C%+Mn%/3=0.87-0.95, Al/N=0.85-1.15,
Automotive hub bearing steel.
さらに、ニオブ:0.020〜0.040%を含むことを特徴とする、請求項1に記載の自動車ハブ軸受鋼。 The automobile hub bearing steel according to claim 1, further comprising niobium: 0.020 to 0.040%. 前記不純物は、Pb≦0.002%、As≦0.04%、Sn≦0.005%、Sb≦0.004%又はCa≦0.0010%を含むことを特徴とする、請求項1又は2に記載の自動車ハブ軸受鋼。 2. The impurity according to claim 1, wherein Pb≦0.002%, As≦0.04%, Sn≦0.005%, Sb≦0.004% or Ca≦0.0010%. 2. Automotive hub bearing steel according to 2. 前記自動車ハブ軸受鋼は、引張強度が800〜900MPaであり、高周波焼入されたレース面の硬度が730〜780HVに達し、レース面の焼入硬化層深さが2.0〜3.5mmに達することを保証できることを特徴とする、請求項1〜3のいずれかに記載の自動車ハブ軸受鋼。 The automobile hub bearing steel has a tensile strength of 800 to 900 MPa, the hardness of the induction hardened race surface reaches 730 to 780 HV, and the quench hardened layer depth of the race surface is 2.0 to 3.5 mm. Automotive hub bearing steel according to any of claims 1 to 3, characterized in that it can be guaranteed to reach. 下記の工程を含むことを特徴とする、請求項1又は2に記載の自動車ハブ軸受鋼の製造方法。
(1) 製錬・鋳造
請求項1又は2に記載の成分に応じて、アーク炉若しくは転炉を用いて製錬し、取鍋精錬し、連続鋳造し、インゴットを鋳込む;
(2) 圧延
インゴットを加熱し、加熱炉温度を600〜900℃にし、インゴットを炉に入れて20〜40分間保温する;120分間〜200分間経ってから、1180〜1220℃に昇温し、80〜180分間保温する;
分塊圧延機で圧延し、インゴットをビレットに分塊圧延する;
普通の圧延でビレットを棒材に圧延する;
ビレットの加熱温度を1160〜1200℃にし、加熱時間を80〜120分間にする;普通に圧延し、仕上げ圧延温度を760〜900℃にする。
The method for producing an automobile hub bearing steel according to claim 1 or 2, comprising the following steps.
(1) Smelting/casting According to the composition of claim 1 or 2, smelting using an arc furnace or a converter, smelting ladle, continuous casting, casting ingot;
(2) The rolling ingot is heated, the heating furnace temperature is set to 600 to 900° C., the ingot is placed in the furnace and kept warm for 20 to 40 minutes; after 120 minutes to 200 minutes, the temperature is raised to 1180 to 1220° C., Incubate for 80-180 minutes;
Roll in a slab and slab the ingot into a billet;
Roll the billet into bars with normal rolling;
The billet heating temperature is set to 1160 to 1200° C. and the heating time is set to 80 to 120 minutes; rolling is performed normally, and the finish rolling temperature is set to 760 to 900° C.
前記取鍋精錬において、二次精錬炉の取鍋に低塩基度合成スラグを1.5〜3kg/t溶鋼の量で入れ、造滓し、Al粒子で沈殿脱酸し、Si−Cパウダーでスラグ表面脱酸を行い、15分おきに1バッチを入れ、2〜3バッチを添加し,バッチ毎の添加量を0.2〜0.8kg/t溶鋼にする;二次精錬炉でトップスラグの塩基度を2〜4に制御することを特徴とする、請求項5に記載の自動車ハブ軸受鋼の製造方法。 In the ladle refining, a low basicity synthetic slag was put in a ladle of a secondary refining furnace in an amount of 1.5 to 3 kg/t molten steel, smelted, precipitated and deoxidized with Al particles, and Si-C powder was used. Perform slag surface deoxidation, add 1 batch every 15 minutes, add 2 to 3 batches, add 0.2 to 0.8 kg/t molten steel per batch; top slag in secondary refining furnace The method for producing an automobile hub bearing steel according to claim 5, wherein the basicity is controlled to 2 to 4. 前記二次精錬において低塩基度合成スラグを採用し、合成スラグの成分は重量百分率で:CaO 51〜53%、MgO 15〜19%、Al 5〜11%、SiO 22〜24%、P≦0.10%、S≦0.05%、HO≦0.6%、CaO/SiO 2.08〜2.44であり;合成スラグの粒度は5〜20mmであることを特徴とする、請求項5に記載の自動車ハブ軸受鋼の製造方法。 Low basicity synthetic slag is adopted in the secondary refining, and the components of the synthetic slag are in weight percentage: CaO 51-53%, MgO 15-19%, Al 2 O 3 5-11%, SiO 2 22-24%. , P 2 O 5 ≦0.10%, S≦0.05%, H 2 O≦0.6%, CaO/SiO 2 2.08 to 2.44; the particle size of the synthetic slag is 5 to 20 mm. The method for manufacturing automobile hub bearing steel according to claim 5, wherein 真空脱気に入る前に、溶鋼温度を1580〜1610℃にする;真空脱気前に窒化クロムワイヤーをフィードし、窒素含有量を60〜150ppmに調整し、アルミニウムワイヤーをフィードしてアルミニウムを0.015〜0.025%に補充することを特徴とする、請求項5に記載の自動車ハブ軸受鋼の製造方法。 Before entering the vacuum degassing, bring the molten steel temperature to 1580 to 1610°C; feed the chromium nitride wire before vacuum degassing, adjust the nitrogen content to 60 to 150ppm, and feed the aluminum wire to 0.015 aluminum. The method for manufacturing an automobile hub bearing steel according to claim 5, wherein the supplementation is 0.025%. 真空精錬が終了した後、取鍋を40分間以上静置し、Arをソフトブローし、溶鋼を連続鋳込み、過熱度を≦35℃に制御し、凝固末期軽圧下および電磁攪拌技術によって鋼材の偏析を改善することを特徴とする、請求項5に記載の自動車ハブ軸受鋼の製造方法。 After the vacuum refining is completed, the ladle is allowed to stand for 40 minutes or longer, Ar is soft blown, molten steel is continuously cast, the superheat degree is controlled to ≤35°C, segregation of steel materials by light pressure at the end of solidification and electromagnetic stirring technology. The method for manufacturing an automobile hub bearing steel according to claim 5, characterized in that 前記自動車ハブ軸受鋼は、引張強度が800〜900MPaであり、高周波焼入されたレース面の硬度が730〜780HVに達し、レース面の焼入硬化層深さが2.0〜3.5mmに達することを保証できることを特徴とする、請求項5に記載の自動車ハブ軸受鋼の製造方法。 The automobile hub bearing steel has a tensile strength of 800 to 900 MPa, the hardness of the induction hardened race surface reaches 730 to 780 HV, and the quench hardened layer depth of the race surface is 2.0 to 3.5 mm. The method for manufacturing an automobile hub bearing steel according to claim 5, characterized in that it can be guaranteed to reach.
JP2019565185A 2017-05-26 2018-05-22 Bearing steel for automobile hubs and its manufacturing method Active JP6862578B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201710383386.2A CN108929997B (en) 2017-05-26 2017-05-26 Bearing steel for automobile hub and manufacturing method thereof
CN201710383386.2 2017-05-26
PCT/CN2018/087792 WO2018214863A1 (en) 2017-05-26 2018-05-22 Bearing steel for use in automobile wheels and manufacturing process therefor

Publications (2)

Publication Number Publication Date
JP2020521053A true JP2020521053A (en) 2020-07-16
JP6862578B2 JP6862578B2 (en) 2021-04-21

Family

ID=64395281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019565185A Active JP6862578B2 (en) 2017-05-26 2018-05-22 Bearing steel for automobile hubs and its manufacturing method

Country Status (5)

Country Link
JP (1) JP6862578B2 (en)
KR (1) KR102314171B1 (en)
CN (1) CN108929997B (en)
DE (1) DE112018002705T5 (en)
WO (1) WO2018214863A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110218846A (en) * 2019-06-27 2019-09-10 洛阳Lyc轴承有限公司 A kind of high-carbon-chromium bearing steel emulsion normalizing processing method
CN112662944A (en) * 2020-12-03 2021-04-16 宝钢特钢韶关有限公司 Bearing steel and preparation method thereof
CN112680666A (en) * 2020-12-17 2021-04-20 本钢板材股份有限公司 Steel HZ55Cr for ultra-low titanium car hub bearing and preparation method thereof
CN112708728B (en) * 2020-12-21 2022-09-20 辽宁科技大学 Method for improving plasticity of non-metallic inclusion in aluminum deoxidized steel/aluminum-containing steel
CN113088623B (en) * 2021-03-31 2022-11-01 安徽富凯特材有限公司 Preparation method of ultrapure G102Cr18Mo stainless bearing steel
CN115011871A (en) * 2022-05-06 2022-09-06 本钢板材股份有限公司 Preparation method of Cu-containing ultralow-titanium bearing steel
CN115323255B (en) * 2022-08-19 2023-04-25 建龙北满特殊钢有限责任公司 Preparation method of 200-square continuous casting blank for high-quality and high-homogeneity bearing steel wire rod
CN118516619A (en) * 2023-02-17 2024-08-20 宝山钢铁股份有限公司 Bearing steel for vehicle hub and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50114333A (en) * 1974-02-18 1975-09-08
JPS594943A (en) * 1982-06-30 1984-01-11 Nippon Kokan Kk <Nkk> Production of continuous casting ingot having no semimacro segregation
JP2008088478A (en) * 2006-09-29 2008-04-17 Jfe Steel Kk Steel component for bearing having excellent fatigue property
CN101376948A (en) * 2007-08-27 2009-03-04 宝山钢铁股份有限公司 Low-cost high-purity medium carbon bearing steel for automobile hub and manufacturing method thereof
WO2010082685A1 (en) * 2009-01-16 2010-07-22 新日本製鐵株式会社 Steel for surface hardening for machine structural use, and component for machine structural use
JP2012214832A (en) * 2011-03-31 2012-11-08 Jfe Steel Corp Steel for machine structure and method for producing the same
JP2013185250A (en) * 2012-03-12 2013-09-19 Nippon Steel & Sumitomo Metal Corp Steel material for induction hardening

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3512873B2 (en) * 1994-11-24 2004-03-31 新日本製鐵株式会社 High life induction hardened bearing steel
JP4812220B2 (en) * 2002-05-10 2011-11-09 株式会社小松製作所 High hardness and toughness steel
WO2004067790A1 (en) * 2003-01-30 2004-08-12 Sumitomo Metal Industries, Ltd. Steel pipe for bearing elements, and methods for producing and cutting the same
JP4631617B2 (en) * 2005-08-31 2011-02-16 Jfeスチール株式会社 Manufacturing method of steel parts for bearings with excellent fatigue characteristics
CN105568134A (en) * 2016-01-05 2016-05-11 江阴兴澄特种钢铁有限公司 Steel for carbon hub bearing of microalloying car and production method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50114333A (en) * 1974-02-18 1975-09-08
JPS594943A (en) * 1982-06-30 1984-01-11 Nippon Kokan Kk <Nkk> Production of continuous casting ingot having no semimacro segregation
JP2008088478A (en) * 2006-09-29 2008-04-17 Jfe Steel Kk Steel component for bearing having excellent fatigue property
CN101376948A (en) * 2007-08-27 2009-03-04 宝山钢铁股份有限公司 Low-cost high-purity medium carbon bearing steel for automobile hub and manufacturing method thereof
WO2010082685A1 (en) * 2009-01-16 2010-07-22 新日本製鐵株式会社 Steel for surface hardening for machine structural use, and component for machine structural use
US20110274578A1 (en) * 2009-01-16 2011-11-10 Atsushi Mizuno Steel for surface hardening for machine structural use and part for machine structural use
JP2012214832A (en) * 2011-03-31 2012-11-08 Jfe Steel Corp Steel for machine structure and method for producing the same
JP2013185250A (en) * 2012-03-12 2013-09-19 Nippon Steel & Sumitomo Metal Corp Steel material for induction hardening

Also Published As

Publication number Publication date
WO2018214863A1 (en) 2018-11-29
JP6862578B2 (en) 2021-04-21
CN108929997A (en) 2018-12-04
KR102314171B1 (en) 2021-10-19
KR20200003176A (en) 2020-01-08
CN108929997B (en) 2021-08-17
DE112018002705T5 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
JP6862578B2 (en) Bearing steel for automobile hubs and its manufacturing method
CN103160729B (en) Medium-carbon microalloyed steel for engineering machinery caterpillar chain piece and production process thereof
CN101768698B (en) Low cost yield strength 700MPA level non-tempering processing high strength steel plate and manufacturing method thereof
CN111304517B (en) High-strength high-yield-ratio non-quenched and tempered steel for automobile engine cracking connecting rod and production method thereof
CN105803308B (en) A kind of the 45MnVS easy-cutting untempered steels and its manufacturing method of the calcium containing magnesium
CN107904492A (en) A kind of low silicon high-carbon-chromium bearing steel and its hot rolling production method
WO2022160536A1 (en) Steel for inner raceway of constant velocity universal joint and production method therefor
CN108929986B (en) High-strength wear-resistant hot rolled steel plate for automobile braking and production process thereof
JP2018525520A (en) Microalloying passenger car carbon hub bearing steel and manufacturing method thereof
WO2022160720A1 (en) Steel for ball-cage type universal joint retainer and production method therefor
CN111961988B (en) Production process and forging method of medium-carbon non-quenched and tempered steel for automobile expansion fracture connecting rod
TWI589710B (en) Rolled steel bar and rolled wire rod for cold forged parts
JP6160611B2 (en) Manufacturing method of steel for mold, steel material for mold, manufacturing method of pre-hardened material for mold, and pre-hardened material for mold
CN113957321A (en) Non-quenched and tempered steel for transmission shaft and preparation method of forging of non-quenched and tempered steel
CN108315656A (en) A kind of 8.8 grades of fastener cold-forging steels and its manufacturing method for exempting from heat treatment
CN114672723A (en) 46MnVS series steel for expansion-fracture connecting rod and manufacturing method thereof
CN106811684A (en) Yield strength 750Mpa grades of container hot rolled steel plate and its manufacture method
CN108342645B (en) Steel for hypereutectoid grinding ball and preparation method thereof
CN108642375B (en) Non-quenched and tempered microalloyed steel pipe and method for manufacturing non-quenched and tempered microalloyed steel pipe
CN110205542A (en) A kind of cold roll tool steel and preparation method thereof
CN112899572A (en) High-performance QGLZ-X steel for non-quenched and tempered plastic machine tie bar and production method thereof
CN106167881A (en) Microalloyed steel for forging waste heat quenching
CN110964984B (en) Steel SAE4160M for middle and large automobile shaft sleeve and production process thereof
CN115449704B (en) New energy automobile hub bearing steel and production method thereof
CN100366777C (en) High-temperature creep resistant furnace shell material and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210331

R150 Certificate of patent or registration of utility model

Ref document number: 6862578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250