JPS6070665A - Electrode which can absorb hydrogen - Google Patents

Electrode which can absorb hydrogen

Info

Publication number
JPS6070665A
JPS6070665A JP58178501A JP17850183A JPS6070665A JP S6070665 A JPS6070665 A JP S6070665A JP 58178501 A JP58178501 A JP 58178501A JP 17850183 A JP17850183 A JP 17850183A JP S6070665 A JPS6070665 A JP S6070665A
Authority
JP
Japan
Prior art keywords
alloy
electrode
nickel
hydrogen
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58178501A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawano
川野 博志
Munehisa Ikoma
宗久 生駒
Nobuyuki Yanagihara
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58178501A priority Critical patent/JPS6070665A/en
Publication of JPS6070665A publication Critical patent/JPS6070665A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase the life of an electrode for an alkaline storage battery by using as an alloy powder which can absorb and discharge hydrogen and which has specified grain diameters. CONSTITUTION:An alloy consisting of a Ti-Ni alloy or the like composed of Ti and Ni in an atomic ratio of 2:1 and has the property of electrochemically absorbing and discharging hydrogen is prepared by fusion. The thus prepared alloy is crushed into a powder with grain diameters of 25mum or below. The thus prepared alloy powder is mixed with ethyl alcohol to make a muddy mixture which is then packed into a foamy porous nickel body or the like. The thus obtained body is then dried and pressed before being sintered, thereby making an electrode which can absorb hydrogen. By using this electrode, it is possible to constitute a non-polluting alkaline storage battery of a high energy density.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は負極材料として水素を可逆的に吸蔵。[Detailed description of the invention] Industrial applications The present invention reversibly stores hydrogen as a negative electrode material.

放出する合金を用いた水素吸蔵電極に関するもので、無
公害で高エネルギー密度のアルカリ蓄電池が期待できる
This research relates to a hydrogen storage electrode using a hydrogen-emitting alloy, and is expected to produce a non-polluting, high-energy-density alkaline storage battery.

従来例の構成とその問題点 アルカリ性電解液中で電気化学的に水素を吸蔵。Conventional configuration and its problems Electrochemically absorbs hydrogen in alkaline electrolyte.

放出する合金をアルカリ蓄電池の負極材料として利用す
る方法が提案されてきた。ニッケルーカドミウム蓄電池
、ニッケルー鉄蓄電池などに用いられているニッケル正
極と組みあわせ、ニッケル水素アルカリ蓄電池が考えら
れる。この電池はカド。
A method has been proposed in which the released alloy is used as a negative electrode material for alkaline storage batteries. In combination with the nickel positive electrode used in nickel-cadmium storage batteries, nickel-iron storage batteries, etc., a nickel-hydrogen alkaline storage battery can be created. This battery is cheap.

ミウムを使用しないため製造、使用後の廃棄においても
無公害である。また、充放電により電解液の濃度変化が
少なく長寿命が期待できる。
Because it does not use Mium, it is non-polluting during manufacturing and disposal after use. In addition, there is little change in the concentration of the electrolyte during charging and discharging, and a long life can be expected.

水素吸蔵電極の負極材料としてはチタン−ニッケル系合
金、ランタン−ニッケル系合金などが一般に1吏用され
ている。その製法としては合金粉末と結着剤を混合し、
加圧成形する非焼結弐電愼と真空あるいは不活性雰囲気
で昇温して得られる焼結弐電極がある。いずれの方法を
採用しても、水素吸蔵電極は充放電により水素が吸蔵、
放出を繰りかえし、極板の体積変化を伴う。この結果、
極板に亀裂が生じたり、合金粉末が脱落金起こし、放電
容敏、サイクル寿命の低下の原因となる。
As negative electrode materials for hydrogen storage electrodes, titanium-nickel alloys, lanthanum-nickel alloys, and the like are generally used. The manufacturing method is to mix alloy powder and binder,
There are two types: non-sintered electrodes that are pressure-formed and sintered electrodes that are obtained by heating in a vacuum or inert atmosphere. Regardless of which method is adopted, the hydrogen storage electrode absorbs hydrogen through charging and discharging.
The discharge is repeated, accompanied by a change in the volume of the electrode plate. As a result,
This may cause cracks in the electrode plates, alloy powder falling off, and a decrease in discharge sensitivity and cycle life.

この解決法の−っとして、微細化した合金粉末を′使用
する方法が提案されてきた(特公昭53−103910
号公#)。この方法によると密閉容器に合金を充填し、
加圧、加熱により合金を水素化、脱水素化を繰り返し微
j前化している。したがって、粉砕工程が複雑である。
As a solution to this problem, a method using finely divided alloy powder has been proposed (Japanese Patent Publication No. 53-103910
#). According to this method, a sealed container is filled with alloy,
The alloy is repeatedly hydrogenated and dehydrogenated by pressurization and heating to form a fine hydrogen. Therefore, the grinding process is complicated.

また、一度水素化すると完全に脱水素化することは困難
であり、このような状態で密閉容器から収り出した場合
、微細化された合金粉末は活性で空気中で発火する危険
もあり、取り扱いに十分注意する必要がある。
Additionally, once hydrogenated, it is difficult to completely dehydrogenate, and if removed from a closed container in such a state, the finely divided alloy powder is active and there is a risk of ignition in the air. Care must be taken when handling.

発明の目的 放電容量の大きく、長寿命である水素吸蔵電極を提供し
、高エネルギー密度の電池を可能にするものである。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a hydrogen storage electrode with a large discharge capacity and a long life, thereby enabling a battery with high energy density.

発明の構成 本発明は、たとえばアーク溶解炉、あるいは高周波溶解
炉で均質な水素吸蔵合金を得て、粗粉砕後、圧縮空気を
送り超音速で粉末を衝突板に噴射させることより得られ
る26μm以下の粒子径を持った合金粉末を用いた水素
吸蔵電極である。
Components of the Invention The present invention obtains a homogeneous hydrogen storage alloy in an arc melting furnace or a high frequency melting furnace, coarsely crushes the alloy, and then sends compressed air to inject the powder onto a collision plate at supersonic speed. This is a hydrogen storage electrode using an alloy powder with a particle size of .

実施例の説明 市販の棒状チタン(純度99.5%)と市販のニッケル
(純度995係以上)を重量比で62対38の割合にそ
れぞれ秤量して合金組成として、原子比でチタン対ニッ
ケルが2対1になるようにする。
Description of Examples Commercially available rod-shaped titanium (purity 99.5%) and commercially available nickel (purity 995 or higher) were weighed at a weight ratio of 62:38, and an alloy composition was obtained in which the atomic ratio of titanium to nickel was Make it 2 to 1.

この試料をアルゴン雰囲気中のアーク溶解炉で均質な合
金に合成する。その後、1oメツシユ以下に粗粉砕し、
市販の超音速ジェットミルにより圧縮空気を送シ微粉化
した。この装置にょシ得られた合金粉末は第1図に示す
ような粒度分布になっていた。また、比較のために機械
的粉砕機の一種である振動式粉砕機で粉砕した合金粉末
の粒度分布の一例も示す。
This sample is synthesized into a homogeneous alloy in an arc melting furnace in an argon atmosphere. After that, it is coarsely ground to less than 1 o mesh,
Compressed air was sent through a commercially available supersonic jet mill to pulverize the mixture. The alloy powder obtained using this apparatus had a particle size distribution as shown in FIG. For comparison, an example of the particle size distribution of an alloy powder pulverized by a vibratory pulverizer, which is a type of mechanical pulverizer, is also shown.

これらの粉末を用いて、表に示すような粒子径の合金粉
末a−eの6段階に篩分した。
These powders were sieved into six grades of alloy powders a to e with particle sizes shown in the table.

表 一方、あらかじめニッケルリード板を溶接した発泡状ニ
ッケル多孔体(大きさ50X60mm、厚さ1.0mm
、空孔率95チ)に上記5種類の粉末を各々約6yをエ
チルアルコールで泥状として、充填した。乾燥、加圧後
、960℃で1時間、真空焼結を行なって、水素吸蔵電
極上した。
On the other hand, a foamed nickel porous body with a nickel lead plate welded in advance (size 50 x 60 mm, thickness 1.0 mm)
, a porosity of 95 cm) was filled with about 6 y of each of the above five types of powders by slurrying them with ethyl alcohol. After drying and pressurizing, vacuum sintering was performed at 960° C. for 1 hour, and the product was placed on a hydrogen storage electrode.

これらの水素吸蔵電極と公知のニッケル正極とを組みあ
わせ、ニッケルー水素蓄電池を構成し、合金粉末a −
eを使用した電極から得られた電池をA〜Eとした。な
お、これらの電池は水素吸蔵電極で容量低下が起こるよ
うに、ニッケル正極はsAhの実容量を持った電極で、
屯解液は比重1、^性カリ水溶液を使用した。
These hydrogen storage electrodes and a known nickel positive electrode are combined to form a nickel-hydrogen storage battery, and alloy powder a-
Batteries obtained from electrodes using e were designated as A to E. In addition, in these batteries, the nickel positive electrode is an electrode with an actual capacity of sAh, so that the capacity decrease occurs at the hydrogen storage electrode.
As the solution, an aqueous potassium solution with a specific gravity of 1 was used.

つぎに、これらの電池を充電電流4o o mAで10
時間、放電電流も40077ZAで電池電圧が0.9■
まで放電を続けた。この条件で充放電を繰りかえした時
の充放電サイクル数と使用した合金の1y当りの放電容
量の変化を第2図に示す。この結果から明らかなように
、利かい粒子を用いた電池Aの放電容量が大きく、さら
に充放電による容量低下が少ない。
Next, these batteries were charged at a charging current of 4 o mA for 10
The time and discharge current are 40077ZA and the battery voltage is 0.9■
The discharge continued until FIG. 2 shows the number of charging/discharging cycles and the change in discharge capacity per y of the alloy used when charging and discharging were repeated under these conditions. As is clear from these results, the discharge capacity of the battery A using the active particles is large, and the capacity decrease due to charging and discharging is small.

細かい合金粉末を用いて得られた電池への放電容量が大
きくなった理由は比表面積が大きくなり、水素の吸蔵量
、放出量が増大したと考えられる。
The reason why the discharge capacity of the battery obtained using the fine alloy powder was increased is considered to be that the specific surface area was increased, and the amount of hydrogen absorbed and released was increased.

さらに、空気中で微細化したことにより、合金表面の一
部が酸化されたものと考えられる。この酸化を受けた合
金表面が初充電により、電気化学的に還元され、比表面
積が大きく活性度の高い合金に変化したものと考えられ
る。また、測かい合金粉末を用いた電極の容量低下が少
なかった理由も微細化によるものと推察できる。
Furthermore, it is considered that part of the alloy surface was oxidized due to the micronization in the air. It is thought that this oxidized alloy surface was electrochemically reduced by the initial charge and changed into an alloy with a large specific surface area and high activity. Furthermore, it can be inferred that the reason why the capacity reduction of the electrode using the gauge alloy powder was small is due to the miniaturization.

通常、この種の電極を充放電すると合金粉末は微細化す
る。これが原因で起こる極板に亀裂の発生、さらには合
金粉末の脱落現象などを軽減できるのは、最初から微細
化したものを使用することで、充放電による微細化の度
合を軽減できることによるものと考えられる。さらに、
微細化したことにより、同一焼結条件下では焼結の度合
が進み強固な焼結体が得られたことが容量低下に効果的
であった一つの要因と考えられる。
Normally, when this type of electrode is charged and discharged, the alloy powder becomes finer. The reason why this can reduce the occurrence of cracks in the electrode plate and the phenomenon of alloy powder falling off is that by using a material that has been refined from the beginning, the degree of refinement due to charging and discharging can be reduced. Conceivable. moreover,
It is thought that one of the factors that was effective in reducing the capacity was that due to the miniaturization, the degree of sintering progressed and a strong sintered body was obtained under the same sintering conditions.

市販のランタン金属とニッケル金属を重量比で32.1
対67.9の割合でそれぞれ秤量した。以下T i2 
N iの場合と同様な方法により原子比でランタン対ニ
ッケルが1対50割合の合金を得、粉砕して表に示した
粒度範囲に篩分した。電極の製造法もTi2Niの説明
と同様にして、合金粉末f〜jを用い水素吸蔵電極を得
、ニッケルー水素蓄電池F、Jを作製し、充放電を行な
った。その結果を第3図に示す。
The weight ratio of commercially available lanthanum metal and nickel metal is 32.1.
Each was weighed at a ratio of 67.9 to 67.9. Below T i2
An alloy having an atomic ratio of lanthanum to nickel of 1:50 was obtained in the same manner as in the case of Ni, which was pulverized and sieved to the particle size range shown in the table. The electrode manufacturing method was similar to that described for Ti2Ni, and hydrogen storage electrodes were obtained using alloy powders f to j, and nickel-hydrogen storage batteries F and J were produced and charged and discharged. The results are shown in FIG.

さらに、市販のカルシウム金属とニッケル金属を重量比
で12対88の割合で秤量し、アルコン雰囲気中で高周
波溶解炉により溶解させカルシウムとニッケルの原子比
で1:5の合金を得た。この合金を用いて、Ti2Ni
の説明で示した方法により、6段階に篩分しに〜0の合
金粉末を寿だ。
Further, commercially available calcium metal and nickel metal were weighed at a weight ratio of 12:88, and melted in a high frequency melting furnace in an Alcon atmosphere to obtain an alloy with an atomic ratio of calcium and nickel of 1:5. Using this alloy, Ti2Ni
According to the method described above, the ~0 alloy powder was sieved into 6 stages.

これらを用い水素吸蔵電極とし、ニッケルー水素蓄電池
に一0’i作成した。これらの覗池も同様な条件で充放
電した結果を第4図に示す。
These were used as hydrogen storage electrodes, and 10'i of nickel-hydrogen storage batteries were fabricated. Figure 4 shows the results of charging and discharging these ponds under similar conditions.

これらの結果より、LaNi5.CaNi5の合金を使
用した水素吸蔵電極は、実施列の説明(1)に示したT
 12 N 1合金を使用した電極と同様に微細化した
ものほど放電容量が大きく、ザイクル特性のすぐれた電
極が得られた。これは実施例の説明(1)で記載した内
容と同じ理由で特性が向」ニジたものと推察できる。
From these results, LaNi5. The hydrogen storage electrode using an alloy of CaNi5 has T shown in the explanation (1) of the implementation column.
Similar to the electrode using the 12N1 alloy, the finer the electrode, the larger the discharge capacity and the better the cycle characteristic. It can be inferred that this is because the characteristics were changed for the same reason as described in the explanation (1) of the embodiment.

なお、実施例の説明においては、圧縮空気を送り、合金
を微細化する方法を示したが、窒素、炭酸ガスなどの不
活性ガスを使用することもできる。
In addition, in the description of the embodiment, a method was shown in which compressed air was sent to make the alloy fine, but an inert gas such as nitrogen or carbon dioxide gas may also be used.

この方法によれば、さらに高速で粒子を噴射しても、空
気中のように微細化による発火の危険性もない。したが
って、さらに微細化が可能になり、水素吸蔵電極として
の特性も向上した。
According to this method, even if particles are injected at higher speeds, there is no danger of ignition due to atomization as in air. Therefore, further miniaturization became possible and the properties as a hydrogen storage electrode were improved.

発すノlの効果 以上の結果より、本発明はアルカリ電N液中で充放電に
より水素を吸蔵、放出する水素吸蔵電極において、合金
を簡単な空気中で微細化することにより得られた粉末を
電極材料として使用し、優れた電極特性を有する水素吸
蔵電極陰#会≠を提9(するもので、工業的価値は太き
い。
Based on the above results, the present invention has developed a hydrogen storage electrode that stores and releases hydrogen by charging and discharging in an alkaline N solution, using a powder obtained by simply pulverizing an alloy in air. It is used as an electrode material and has great industrial value because it has a hydrogen storage electrode structure with excellent electrode properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は合金粉末の粒形分布図、第2図から第4図は異
なる材料の水素吸蔵電極を用いたアルカリ蓄電池の充放
電曲線である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名W、
 1 図TizN;)n8’l布 主立子筏011”) 第2図 Ti2 Niの充放電特性。 充倣党すイクル軟 第3図 LaNt’sの充放覚特性 克放覚サイクル数
FIG. 1 is a particle size distribution diagram of alloy powder, and FIGS. 2 to 4 are charging and discharging curves of alkaline storage batteries using hydrogen storage electrodes made of different materials. Name of agent: Patent attorney Toshio Nakao and one other person W,
1 Fig.TizN;)n8'lN8'lN8'lN8'lN8'lN8'lN8'lN8'lN8'lN8'lNunshuTachiko011'') Fig.2 Charging and discharging characteristics of Ti2Ni. Charging and discharging characteristics of LaNt's

Claims (3)

【特許請求の範囲】[Claims] (1)粒子径25μm以下の電気化学的に水素を吸蔵、
放出する合金粉末を使用する水素吸蔵電極。
(1) Electrochemically absorbing hydrogen with a particle size of 25 μm or less,
A hydrogen storage electrode that uses a releasing alloy powder.
(2)合金がチタンとニッケルで構成され、その組成は
原子比でチタン対ニッケルの比率が2対1で示される特
許請求の範囲第1項記載の水素吸蔵′電極。
(2) The hydrogen storage electrode according to claim 1, wherein the alloy is composed of titanium and nickel, and its composition is represented by an atomic ratio of titanium to nickel of 2:1.
(3)合金がランタンまたはカルシウムとニッケルで構
成され、その組成は原子比でランタン対ニッケルおよび
カルシウム対ニッケルの比率が1対5で示される合金で
ある特許請求の範囲第1項記載の水素吸蔵電極0
(3) The hydrogen storage storage according to claim 1, wherein the alloy is composed of lanthanum or calcium and nickel, and the composition thereof is an alloy in which the atomic ratio of lanthanum to nickel and calcium to nickel is 1 to 5. electrode 0
JP58178501A 1983-09-27 1983-09-27 Electrode which can absorb hydrogen Pending JPS6070665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58178501A JPS6070665A (en) 1983-09-27 1983-09-27 Electrode which can absorb hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58178501A JPS6070665A (en) 1983-09-27 1983-09-27 Electrode which can absorb hydrogen

Publications (1)

Publication Number Publication Date
JPS6070665A true JPS6070665A (en) 1985-04-22

Family

ID=16049562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58178501A Pending JPS6070665A (en) 1983-09-27 1983-09-27 Electrode which can absorb hydrogen

Country Status (1)

Country Link
JP (1) JPS6070665A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02220356A (en) * 1989-02-21 1990-09-03 Sanyo Electric Co Ltd Hydrogen storage alloy electrode for alkaline battery and manufacture thereof
US6258482B1 (en) 1998-05-19 2001-07-10 Sanyo Electric Co., Ltd. Hydrogen storage alloy electrode and method for fabrication thereof
US6395424B1 (en) 1999-03-15 2002-05-28 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy for alkali storage battery, hydrogen absorbing alloy electrode for alkali storage battery, and alkali storage battery
WO2005038967A1 (en) * 2003-10-21 2005-04-28 Revolt Technology As Electrode, method of its production, metal-air fuel cell and metal hydride cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02220356A (en) * 1989-02-21 1990-09-03 Sanyo Electric Co Ltd Hydrogen storage alloy electrode for alkaline battery and manufacture thereof
US6258482B1 (en) 1998-05-19 2001-07-10 Sanyo Electric Co., Ltd. Hydrogen storage alloy electrode and method for fabrication thereof
US6395424B1 (en) 1999-03-15 2002-05-28 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy for alkali storage battery, hydrogen absorbing alloy electrode for alkali storage battery, and alkali storage battery
WO2005038967A1 (en) * 2003-10-21 2005-04-28 Revolt Technology As Electrode, method of its production, metal-air fuel cell and metal hydride cell
EA011752B1 (en) * 2003-10-21 2009-06-30 Револт Текнолоджи Лтд. Electrode, method of its production, metal-air fuel cell and metal hydride cell

Similar Documents

Publication Publication Date Title
JPS6070665A (en) Electrode which can absorb hydrogen
JP2752970B2 (en) Hydrogen storage electrode
JPS5931829B2 (en) Manufacturing method of hydrogen storage electrode
JP2645889B2 (en) Method for producing hydrogen storage alloy electrode for alkaline storage battery
JPH04318106A (en) Production of hydrogen storage alloy powder
JP3307176B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage alloy electrode using the same
JP3373989B2 (en) Hydrogen storage alloy powder and manufacturing method
JPS6164068A (en) Manufacture of hydrogen-absorbing electrode
JPS60119079A (en) Hydrogen absorption electrode
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JPH03295165A (en) Manufacture of hydrogen storage alloy electrode for alkaline storage battery
JP2002231235A (en) Molding for carbon powder-containing nickel-hydrogen battery and method of manufacturing the same
JP3013412B2 (en) Negative electrode for metal hydride battery and method for producing the same
JPS61168871A (en) Hydrogen occlusion electrode
JPH01132049A (en) Hydrogen storage electrode
JPS63314764A (en) Hydrogen absorbing electrode
JPH0320966A (en) Manufacture of hydrogen storage alloy electrode
JPS63264868A (en) Manufacture of hydrogen storage electrode
JPH0812777B2 (en) Manufacturing method of hydrogen storage electrode
JPH0959733A (en) Hydrogen storage alloy
JPH0748602A (en) Production of hydrogen storage alloy powder
JPS60198056A (en) Hydrogen-absorbing alloy electrode
JPH04280066A (en) Hydrogen storage electrode and manufacture thereof
JPS6119060A (en) Hydrogen occlusion electrode
JPH05156322A (en) Production of hydrogen storage alloy and alkaline battery using the alloy