JPH05156322A - Production of hydrogen storage alloy and alkaline battery using the alloy - Google Patents

Production of hydrogen storage alloy and alkaline battery using the alloy

Info

Publication number
JPH05156322A
JPH05156322A JP3321622A JP32162291A JPH05156322A JP H05156322 A JPH05156322 A JP H05156322A JP 3321622 A JP3321622 A JP 3321622A JP 32162291 A JP32162291 A JP 32162291A JP H05156322 A JPH05156322 A JP H05156322A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
alloy powder
hydrogen
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3321622A
Other languages
Japanese (ja)
Other versions
JP2924382B2 (en
Inventor
Koji Yuasa
浩次 湯浅
Yasuko Ito
康子 伊藤
Isao Matsumoto
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3321622A priority Critical patent/JP2924382B2/en
Publication of JPH05156322A publication Critical patent/JPH05156322A/en
Application granted granted Critical
Publication of JP2924382B2 publication Critical patent/JP2924382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide an alkaline battery using a hydrogen storage alloy and excellent in charging and discharging life and discharge characteristics by improving the production process of the hydrogen storage alloy. CONSTITUTION:The molten hydrogen storage alloy 1 is blown by a compressed inert gas into an aq. alkaline soln. 7 and rapidly solidified to obtain the fine alloy powder having 1-100mum average grain diameter. An alkaline battery is formed from this fine alloy powder, and the durable alkaline battery excellent in discharge characteristics is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素を電気化学的に吸
蔵・放出可能な水素吸蔵合金の製造法及びその合金粉末
を負極に用いたアルカリ蓄電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen, and an alkaline storage battery using the alloy powder as a negative electrode.

【0002】[0002]

【従来の技術】多量に水素を吸蔵・放出する水素吸蔵合
金は、高エネルギー密度を有する電極材料として注目さ
れ、高容量を目指すアルカリ蓄電池への応用がなされて
いる。
2. Description of the Related Art Hydrogen storage alloys capable of absorbing and releasing a large amount of hydrogen have attracted attention as electrode materials having high energy density, and have been applied to alkaline storage batteries aiming for high capacity.

【0003】水素吸蔵合金は合金塊を適当な粒子径の微
粉末とし、ペースト状として多孔鋼板に塗着、あるいは
発泡状金属などの三次元基板に充填してアルカリ蓄電池
用負極として用いられる。
The hydrogen storage alloy is used as a negative electrode for an alkaline storage battery by making an alloy lump into a fine powder having an appropriate particle size and applying it as a paste onto a porous steel plate or filling a three-dimensional substrate such as foam metal.

【0004】この合金微粉末を得るには、水素ガスの吸
蔵・放出を繰り返して合金を微粉化するか、あるいは合
金塊を機械的に粉砕する方法が一般的である。
In order to obtain this alloy fine powder, a method of pulverizing the alloy by repeating occlusion / release of hydrogen gas or mechanically crushing an alloy lump is generally used.

【0005】[0005]

【発明が解決しようとする課題】しかし、前述した水素
ガスの吸蔵・放出を繰り返す粉砕方法では、粉砕後の合
金中に一部水素が残っていた場合に合金粉末が発火する
危険性がある。また、機械的な粉砕方法では、粉砕粉末
の粒度分布が広くなりすぎ、電池特性に悪影響を及ぼす
恐れがある。
However, in the pulverization method in which the hydrogen gas is repeatedly stored and released as described above, there is a risk that the alloy powder may ignite when some hydrogen remains in the pulverized alloy. Further, in the mechanical pulverization method, the particle size distribution of the pulverized powder becomes too wide, which may adversely affect the battery characteristics.

【0006】即ち、直径100μm以上の活物質粉末と
しては粗い粒子を多数含んでいると、合金の表面積が低
下するため放電時の電池電圧が低下する。また、逆に、
1μm以下の微粒子を多数含んでいると、合金の表面積
が大きくなりすぎるためアルカリ電解液中での耐食性が
低下する結果、電池の充放電寿命特性に悪影響を与え
る。
That is, when the active material powder having a diameter of 100 μm or more contains a large number of coarse particles, the surface area of the alloy is reduced and the battery voltage during discharge is reduced. On the contrary,
If a large number of fine particles of 1 μm or less are included, the surface area of the alloy becomes too large, and the corrosion resistance in the alkaline electrolyte decreases, resulting in a negative effect on the charge / discharge life characteristics of the battery.

【0007】本発明は、このような課題を解決するもの
で、比較的簡易な方法で粒子径が均一で、アルカリ電解
液中で安定な合金粉末と、それを用いたアルカリ蓄電池
を提供することを目的とするものである。
The present invention solves such problems, and provides an alloy powder having a uniform particle size and stable in an alkaline electrolyte by a relatively simple method, and an alkaline storage battery using the same. The purpose is.

【0008】[0008]

【課題を解決するための手段】これらの課題を解決する
ために本発明は、水素吸蔵合金の溶湯を、加圧した不活
性ガスでアルカリ水溶液中に吹き出し供給して急速に凝
固させる合金の製造法およびこの製造法で得られた平均
粒子径1〜100μmの微粉末を用いたアルカリ蓄電池
を提供するものである。
In order to solve these problems, the present invention is directed to the production of an alloy in which a molten hydrogen-absorbing alloy is blown into an alkaline aqueous solution with a pressurized inert gas and rapidly solidified. The present invention provides an alkaline storage battery using the method and fine powder having an average particle diameter of 1 to 100 μm obtained by this production method.

【0009】[0009]

【作用】本発明は、上記した製造法により効率よく水素
吸蔵合金粉末を得ることができ、その粉末を用いること
で放電時の電池電圧が低下せず、かつ長寿命のアルカリ
蓄電池を提供することが可能となる。
The present invention provides an alkaline storage battery which can efficiently obtain a hydrogen storage alloy powder by the above-described manufacturing method, and by using the powder, the battery voltage during discharge does not decrease and the life is long. Is possible.

【0010】即ち、水素吸蔵合金溶湯を、不活性ガス雰
囲気内でアルカリ水溶液中に供給して急速凝固させるこ
とにより、粒子径の揃った合金粉末を速やかに得ること
が可能となる。そのため、100μm以上及び、1μm
以下の粉末の割合が低下する結果、これを負極に用いた
電池は放電時の電圧が低下せず、かつ長寿命となる。
That is, by supplying the molten hydrogen-absorbing alloy to an alkaline aqueous solution in an inert gas atmosphere and rapidly solidifying it, it is possible to quickly obtain an alloy powder having a uniform particle size. Therefore, 100 μm or more and 1 μm
As a result of the decrease in the ratio of the powders below, the battery using this powder for the negative electrode does not decrease the voltage during discharge and has a long life.

【0011】さらに、合金溶湯をアルカリ水溶液中に供
給することにより、急速凝固と同時に合金表面のアルカ
リに溶解し易い成分を合金粉末から除去することができ
る結果、電池の長寿命を助長できる。
Further, by supplying the molten alloy to the alkaline aqueous solution, it is possible to remove the components which are easily dissolved in the alkali on the surface of the alloy from the alloy powder at the same time as the rapid solidification, so that the long life of the battery can be promoted.

【0012】[0012]

【実施例】以下、本発明の詳細を図面とともに説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the drawings.

【0013】活物質である水素を電気化学的に吸蔵・放
出する水素吸蔵合金粉末は、以下の方法で作成した。
A hydrogen storage alloy powder that electrochemically stores and releases hydrogen as an active material was prepared by the following method.

【0014】セリウム約40wt%、ランタン約30w
t%、ネオジウム約13wt%を主成分とするミッシュ
メタル(以下Mmと称す)、ニッケル、コバルト、アル
ミニウムおよびマンガンをそれぞれ原子比で1:3.5
5:0.75:0.3:0.4となるように秤量する。
これを図1に示した合金粉末製造装置を用い、CaCu
5型の結晶構造を有する、MmNi3.55Mn0.4Al0.3
Co0.75の水素吸蔵合金粉末を作成した。
Cerium about 40 wt%, lanthanum about 30 w
The atomic ratio of misch metal (hereinafter referred to as Mm) containing t% and neodymium of about 13 wt% as main components, nickel, cobalt, aluminum and manganese is 1: 3.5.
Weigh to be 5: 0.75: 0.3: 0.4.
Using the alloy powder manufacturing apparatus shown in FIG.
MmNi 3.55 Mn 0.4 Al 0.3 having a 5- type crystal structure
A hydrogen storage alloy powder of Co 0.75 was prepared.

【0015】図1の合金粉体製造装置において、装置に
投入された金属原料は、溶解炉3の周囲に設けられたヒ
ーター2によって加熱溶解され、合金溶湯1となる。溶
湯1を確保した後溶解炉3に高圧アルゴンガスを供給す
ると、合金溶湯1の液面が加圧され、溶解炉3の下部に
設けられた注湯ノズル4の先端部から溶湯1が噴霧され
る。噴霧された溶湯は、溶湯溜6のアルカリ水溶液7中
に吹き出されて急速凝固され、水素吸蔵合金粉末8が製
造される。図中5は、上下動して注湯ノズル4を開閉す
る開閉弁である。
In the alloy powder manufacturing apparatus of FIG. 1, the metal raw material charged into the apparatus is heated and melted by the heater 2 provided around the melting furnace 3 to form the molten alloy 1. When the high-pressure argon gas is supplied to the melting furnace 3 after the molten metal 1 is secured, the liquid surface of the molten alloy 1 is pressurized, and the molten metal 1 is sprayed from the tip of the pouring nozzle 4 provided in the lower portion of the melting furnace 3. It The sprayed molten metal is blown into the alkaline aqueous solution 7 in the molten metal reservoir 6 and rapidly solidified to produce the hydrogen storage alloy powder 8. Reference numeral 5 in the figure denotes an on-off valve that moves up and down to open and close the pouring nozzle 4.

【0016】上記合金粉体製造装置において、注湯ノズ
ル4のノズル径、加圧源である高圧アルゴンガスの供給
量を変更することにより、平均粒子径の異なる水素吸蔵
合金粉末を作成した。
In the above alloy powder production apparatus, the hydrogen storage alloy powders having different average particle diameters were prepared by changing the nozzle diameter of the pouring nozzle 4 and the supply amount of the high pressure argon gas as the pressure source.

【0017】以上のようにして得た水素吸蔵合金粉末を
用い、以下に示す処方で、幅39mm、長さ80mm、充放
電可能容量1600mAhの3種類の水素吸蔵合金電極
を作成した。
Using the hydrogen storage alloy powder obtained as described above, three types of hydrogen storage alloy electrodes having a width of 39 mm, a length of 80 mm and a chargeable / dischargeable capacity of 1600 mAh were prepared according to the following formulation.

【0018】(例1)上記の合金粉体製造装置において
作成した、平均粒子径20μmの水素吸蔵合金粉末に、
ポリビニルアルコール(以下PVAと称す)水溶液をP
VA樹脂量で0.15wt%混合してペースト状にす
る。これを多孔度95%の発泡状ニッケル基板へ充填し
た後、加圧し上記の寸法に切断した。
(Example 1) A hydrogen storage alloy powder having an average particle diameter of 20 μm prepared in the above-mentioned alloy powder manufacturing apparatus was used.
A polyvinyl alcohol (hereinafter referred to as PVA) aqueous solution is added to P
0.15 wt% of VA resin is mixed to form a paste. This was filled in a foamed nickel substrate having a porosity of 95%, and then pressed to cut it into the above size.

【0019】(例2)上記の合金粉体製造装置におい
て、溶湯を溶湯溜6のアルカリ水溶液中に投入せず、ア
ルゴンガスによって冷却して得た平均粒子径20μmの
水素吸蔵合金粉末に、PVA水溶液をPVA樹脂量とし
て0.15wt%混合してペースト状にする。そしてこ
のペーストを多孔度95%の発泡状ニッケル基板へ充填
した後、加圧し上記の寸法に切断した。
(Example 2) In the above alloy powder production apparatus, the hydrogen storage alloy powder having an average particle size of 20 μm obtained by cooling with an argon gas without pouring the molten metal into the alkaline aqueous solution in the molten metal reservoir 6 was added to PVA. The aqueous solution was mixed in a PVA resin amount of 0.15 wt% to form a paste. Then, this paste was filled in a foamed nickel substrate having a porosity of 95%, and then pressed to cut into the above size.

【0020】(例3)高周波溶解炉で溶解し、自然冷却
した水素吸蔵合金インゴットを、粉砕機で平均粒子径2
0μmに粉砕し、PVA水溶液をPVA樹脂量として
0.15wt%これに混合してペースト状にする。そし
てこのペーストを多孔度95%の発泡状ニッケル基板へ
充填した後、加圧して上記の寸法に切断した。
(Example 3) A hydrogen storage alloy ingot melted in a high frequency melting furnace and naturally cooled was averaged to a particle size of 2 with a crusher.
It is ground to 0 μm, and the PVA aqueous solution is mixed in 0.15 wt% as the PVA resin amount to form a paste. Then, this paste was filled in a foamed nickel substrate having a porosity of 95%, and then pressed to be cut into the above size.

【0021】上記3種類の水素吸蔵合金電極を負極と
し、容量が1000mAhの公知の発泡メタル式ニッケ
ル正極とポリプロピレン不織布をスルフォン化したスル
フォン化ポリプロピレン不織布のセパレータとを用いて
渦巻状電極群を構成する。ついでこの電極群を金属ケー
スに挿入し、ついで7.1規定のKOH水溶液2.2cm
3注液した後、封口してAA(IEC規格R6)サイズ
の電池を試作した。
The above three kinds of hydrogen storage alloy electrodes are used as a negative electrode.
Well-known metal foam nickel with a capacity of 1000 mAh
Sulfonated positive electrode and polypropylene non-woven fabric
Using a phonated polypropylene nonwoven fabric separator
A spiral electrode group is formed. Then, attach this electrode group to the metal case.
Insert into a space, then 7.1 cm KOH aqueous solution 2.2 cm
3After injecting liquid, seal it and seal it with AA (IEC standard R6) size
The prototype battery was manufactured.

【0022】この電池を用い、寿命試験および放電試験
を行った。寿命試験は20℃の雰囲気下で、充電を電流
値1Aで1.5時間行った後、放電を電流値1Aで終止
電圧0.8Vまで行う操作を繰り返した。また、放電試
験は20℃の雰囲気下で、電流値100mAで15時間
充電を行った後、電流値3Aで放電を行った。
Using this battery, a life test and a discharge test were conducted. In the life test, charging was carried out at a current value of 1 A for 1.5 hours in an atmosphere of 20 ° C., and then discharging was repeated at a current value of 1 A to a final voltage of 0.8 V. In the discharge test, charging was performed at a current value of 100 mA for 15 hours in an atmosphere of 20 ° C., and then discharging was performed at a current value of 3 A.

【0023】図2に、例1〜例3の電池を用い寿命試験
を行った際の、充放電サイクル数と放電容量との関係を
示す。図3から明らかなように、例1は500回の充放
電サイクルを繰り返した後も放電容量は900mAh以
上を維持しており良好な結果を示した。しかし、例2,
例3はそれぞれ300回、及び50回の充放電サイクル
を繰り返した時点で、放電容量は初期容量の60%程度
となった。
FIG. 2 shows the relationship between the number of charge / discharge cycles and the discharge capacity when a life test was conducted using the batteries of Examples 1 to 3. As is clear from FIG. 3, in Example 1, the discharge capacity was maintained at 900 mAh or more even after repeating the charge / discharge cycle of 500 times, which was a good result. But example 2,
In Example 3, the discharge capacity was about 60% of the initial capacity when the charge and discharge cycles were repeated 300 times and 50 times, respectively.

【0024】例1で充放電サイクル寿命が向上したの
は、 (1)本発明の合金粉末の製造法により、1μm以下の
微細粒子の占める割合が、通常の機械的粉砕品よりも減
少した。
The improvement of the charge / discharge cycle life in Example 1 is that (1) the proportion of fine particles of 1 μm or less is reduced as compared with the usual mechanically crushed product by the method for producing the alloy powder of the present invention.

【0025】(2)さらに、溶湯をアルカリ水溶液中に
投入して急速に凝固処理するため、凝固と同時に生成さ
れる合金粉末表面のアルカリに溶解し易い成分が合金粉
末から除去された。 の2点の理由のため、合金のアルカリ電解液中での耐食
性が向上したためと推定される。
(2) Further, since the molten metal is put into an alkaline aqueous solution for rapid solidification treatment, a component easily dissolved in alkali on the surface of the alloy powder produced at the time of solidification is removed from the alloy powder. It is presumed that the corrosion resistance of the alloy in the alkaline electrolyte is improved for the following two reasons.

【0026】図3に、例1の電極の水素吸蔵合金粉末の
平均粒子径を変更した際の、合金平均粒子径と放電容量
が初期容量の60%となるまでのサイクル数との関係を
示す。図3から合金粉末の平均粒子径が1μm以上であ
れば、400回の充放電サイクルを繰り返した後も放電
容量は初期容量の60%以上を維持し、良好な結果を示
した。このことから、充放電サイクル寿命の観点から
は、合金の平均粒子径は1μm以上が好ましい。
FIG. 3 shows the relationship between the alloy average particle size and the number of cycles until the discharge capacity reaches 60% of the initial capacity when the average particle size of the hydrogen storage alloy powder of the electrode of Example 1 is changed. .. As shown in FIG. 3, when the average particle diameter of the alloy powder was 1 μm or more, the discharge capacity was maintained at 60% or more of the initial capacity even after repeating 400 charge / discharge cycles, which was a good result. From this, the average particle diameter of the alloy is preferably 1 μm or more from the viewpoint of charge / discharge cycle life.

【0027】図4には例1の電極の水素吸蔵合金粉末の
平均粒子径を変更した際の、合金粉末平均粒子径と、2
0℃において電流値3Aで終止電圧0.8Vまで放電し
た時の放電容量の中間点における電池電圧(以後、中間
電圧と称す)との関係を示す。
FIG. 4 shows the average particle size of the alloy powder when the average particle size of the hydrogen storage alloy powder of the electrode of Example 1 was changed, and 2
The relationship with the battery voltage (hereinafter referred to as the intermediate voltage) at the intermediate point of the discharge capacity when discharged to a final voltage of 0.8 V at a current value of 3 A at 0 ° C. is shown.

【0028】図4より、合金粉末の平均粒子径が小さく
なるにつれ、放電時の中間電圧が上昇していることがわ
かる。そして、平均粒子径が100μm以下であれば、
20℃での3A放電時の中間電圧が1.05V以上と良
好であった。このことから、放電電圧の観点からは合金
の平均粒子径は100μm以下が好ましい。
It can be seen from FIG. 4 that the intermediate voltage during discharge rises as the average particle size of the alloy powder becomes smaller. If the average particle size is 100 μm or less,
The intermediate voltage during 3 A discharge at 20 ° C. was 1.05 V or more, which was good. From this, from the viewpoint of discharge voltage, the average particle diameter of the alloy is preferably 100 μm or less.

【0029】以上は、ニッケル・水素蓄電池を例として
記述したが、二酸化マンガン・水素蓄電池など水素吸蔵
合金を負極に用いた他のアルカリ蓄電池においても同様
な効果が得られることは言うまでもない。
Although the nickel-hydrogen storage battery has been described above as an example, it goes without saying that the same effect can be obtained in other alkaline storage batteries using a hydrogen storage alloy such as a manganese dioxide-hydrogen storage battery in the negative electrode.

【0030】[0030]

【発明の効果】以上のように、本発明によれば水素吸蔵
合金溶湯を、加圧した不活性ガスでアルカリ水溶液中に
吹き出し供給して急速凝固した平均粒子径1〜100μ
mの微粉末を作成し、これを用いてアルカリ蓄電池を構
成することにより、長寿命で、放電特性にも優れたアル
カリ蓄電池を提供できるという効果がある。
As described above, according to the present invention, the molten hydrogen storage alloy is rapidly solidified by being blown into an alkaline aqueous solution with a pressurized inert gas and having an average particle size of 1 to 100 μm.
By producing a fine powder of m and forming an alkaline storage battery using the fine powder, it is possible to provide an alkaline storage battery having a long life and excellent discharge characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】合金粉体製造装置を示す概略図FIG. 1 is a schematic view showing an alloy powder manufacturing apparatus.

【図2】充放電サイクル数と放電容量との関係を示す図FIG. 2 is a diagram showing the relationship between the number of charge / discharge cycles and the discharge capacity.

【図3】合金平均粒子径と放電容量が初期容量の60%
となるまでのサイクル数との関係を示す図
FIG. 3 Alloy average particle size and discharge capacity are 60% of initial capacity
Diagram showing the relationship with the number of cycles until

【図4】合金平均粒子径と20℃、電流値3Aで0.8
Vまで放電した時の放電容量の中間点における電池電圧
との関係を示す図
Fig. 4 Average alloy particle size and 20 ° C, 0.8 at current value 3A
The figure which shows the relationship with the battery voltage in the middle point of the discharge capacity at the time of discharging to V.

【符号の説明】[Explanation of symbols]

1 溶湯 2 ヒーター 3 溶解炉 4 注湯ノズル 5 注湯ノズル4開閉弁 6 溶湯溜 7 アルカリ水溶液 8 水素吸蔵合金粉末 1 molten metal 2 heater 3 melting furnace 4 pouring nozzle 5 pouring nozzle 4 opening / closing valve 6 molten metal reservoir 7 alkaline aqueous solution 8 hydrogen storage alloy powder

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】水素吸蔵合金溶湯を、不活性ガスで加圧
し、アルカリ水溶液中に吹き出し供給して急速に凝固さ
せ、微粉末を得ることを特徴とする水素吸蔵合金の製造
法。
1. A method for producing a hydrogen-absorbing alloy, which comprises pressurizing a molten hydrogen-absorbing alloy with an inert gas, blowing it into an alkaline aqueous solution, and rapidly solidifying it to obtain fine powder.
【請求項2】金属酸化物を主体とする正極と、活物質で
ある水素を電気化学的に吸蔵・放出することが可能な水
素吸蔵合金粉末を主構成材料とする負極と、セパレータ
と、アルカリ電解液とからなるアルカリ蓄電池におい
て、負極に前記請求項1の製造法で得られた水素吸蔵合
金粉末を用いたことを特徴とするアルカリ蓄電池。
2. A positive electrode mainly composed of a metal oxide, a negative electrode mainly composed of a hydrogen storage alloy powder capable of electrochemically storing and releasing hydrogen as an active material, a separator, and an alkali. An alkaline storage battery comprising an electrolytic solution, wherein the hydrogen storage alloy powder obtained by the manufacturing method according to claim 1 is used for a negative electrode.
【請求項3】水素吸蔵合金粉末の平均粒子径が1〜10
0μmであることを特徴とする特許請求の範囲第2項記
載のアルカリ蓄電池。
3. The hydrogen storage alloy powder has an average particle diameter of 1 to 10.
It is 0 micrometer, The alkaline storage battery of Claim 2 characterized by the above-mentioned.
JP3321622A 1991-12-05 1991-12-05 Method for producing hydrogen storage alloy and alkaline storage battery using the alloy Expired - Fee Related JP2924382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3321622A JP2924382B2 (en) 1991-12-05 1991-12-05 Method for producing hydrogen storage alloy and alkaline storage battery using the alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3321622A JP2924382B2 (en) 1991-12-05 1991-12-05 Method for producing hydrogen storage alloy and alkaline storage battery using the alloy

Publications (2)

Publication Number Publication Date
JPH05156322A true JPH05156322A (en) 1993-06-22
JP2924382B2 JP2924382B2 (en) 1999-07-26

Family

ID=18134571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3321622A Expired - Fee Related JP2924382B2 (en) 1991-12-05 1991-12-05 Method for producing hydrogen storage alloy and alkaline storage battery using the alloy

Country Status (1)

Country Link
JP (1) JP2924382B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118711A (en) * 1993-10-25 1995-05-09 Matsushita Electric Ind Co Ltd Hydrogen storage alloy powder, nickel-hydrogen battery having the powder in negative-electrode active material and production of the powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100109A (en) * 1986-10-14 1988-05-02 Kubota Ltd Method for molding powder of al and mg series metal solidified by rapid cooling
JPH03223408A (en) * 1990-01-25 1991-10-02 Sanyo Electric Co Ltd Manufacture of hydrogen storage alloy for alkaline battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100109A (en) * 1986-10-14 1988-05-02 Kubota Ltd Method for molding powder of al and mg series metal solidified by rapid cooling
JPH03223408A (en) * 1990-01-25 1991-10-02 Sanyo Electric Co Ltd Manufacture of hydrogen storage alloy for alkaline battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118711A (en) * 1993-10-25 1995-05-09 Matsushita Electric Ind Co Ltd Hydrogen storage alloy powder, nickel-hydrogen battery having the powder in negative-electrode active material and production of the powder

Also Published As

Publication number Publication date
JP2924382B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
JP2980328B2 (en) Hydrogen storage alloy for battery, method for producing the same, and nickel-metal hydride secondary battery
US5605585A (en) Method for producing hydrogen storage alloy particles and sealed-type nickel-metal hydride storage battery using the same
JP2924382B2 (en) Method for producing hydrogen storage alloy and alkaline storage battery using the alloy
JP3215235B2 (en) Method for producing hydrogen storage alloy powder and hydrogen storage alloy powder
JP2920343B2 (en) Hydrogen storage alloy powder, nickel-metal hydride battery having the hydrogen storage alloy powder as negative electrode active material, and method for producing hydrogen storage alloy powder
JPH0837004A (en) Hydrogen storage alloy electrode for metal-hydride alkaline storage battery
JP2983426B2 (en) Production method and electrode for hydrogen storage alloy
JP3417980B2 (en) Hydrogen storage alloy powder for electrode and method for producing the same
JPH053031A (en) Manufacture of alkaline storage battery and its negative electrode
JP3553708B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH0748602A (en) Production of hydrogen storage alloy powder
JPS6070665A (en) Electrode which can absorb hydrogen
JP3370071B2 (en) Hydrogen storage alloy electrode and nickel-metal hydride storage battery using this electrode
JP3416448B2 (en) Method for producing hydrogen storage alloy particles
JP3198896B2 (en) Nickel-metal hydride battery
JP2983564B2 (en) Hydrogen storage alloy electrode
JP3676137B2 (en) Hydrogen storage alloy electrode for nickel metal hydride storage battery and method for producing the same
JP3398070B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2957741B2 (en) Method for producing metal-hydrogen alkaline storage battery
JPH07192729A (en) Manufacture of hydrogen storage alloy electrode
CN118389907A (en) Rare earth hydrogen storage alloy, electrode, battery, preparation method and heat treatment method thereof
JPH04328252A (en) Hydrogen storage alloy electrode
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
JPH1197002A (en) Hydrogen storage alloy electrode for alkaline storage battery
JP2001307719A (en) Hydrogen storage alloy electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees