JPH07118711A - Hydrogen storage alloy powder, nickel-hydrogen battery having the powder in negative-electrode active material and production of the powder - Google Patents

Hydrogen storage alloy powder, nickel-hydrogen battery having the powder in negative-electrode active material and production of the powder

Info

Publication number
JPH07118711A
JPH07118711A JP5265329A JP26532993A JPH07118711A JP H07118711 A JPH07118711 A JP H07118711A JP 5265329 A JP5265329 A JP 5265329A JP 26532993 A JP26532993 A JP 26532993A JP H07118711 A JPH07118711 A JP H07118711A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alloy powder
powder
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5265329A
Other languages
Japanese (ja)
Other versions
JP2920343B2 (en
Inventor
Toru Yamamoto
徹 山本
Katsunori Komori
克典 児守
Gohei Suzuki
剛平 鈴木
Seiji Yamaguchi
誠二 山口
Tadao Kimura
忠雄 木村
Yoshinori Toyoguchi
吉徳 豊口
Munehisa Ikoma
宗久 生駒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5265329A priority Critical patent/JP2920343B2/en
Priority to US08/271,826 priority patent/US5605585A/en
Publication of JPH07118711A publication Critical patent/JPH07118711A/en
Application granted granted Critical
Publication of JP2920343B2 publication Critical patent/JP2920343B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce an inexpensive and durable hydrogen storage alloy powder by carrying out pulverization to alkali treatment in one step. CONSTITUTION:A hydrogen storage alloy is firstly melted in a high-frequency melting furnace 11 to form the molten melt 12, which is poured into a holding furnace 10. The melt 12, is then injected from an injection nozzle 16 into an alkali-resistant collecting tank 15 filled with gaseous nitrogen supplied from a nitrogen cylinder 14. At this time, aq. alkali is injected from around the nozzle with a high-pressure pump 17 to atomize the melt 12, and a hydrogen storage alloy powder 18 is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はニッケル水素電池などに
用いられる水素吸蔵合金粉末およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy powder used in nickel hydrogen batteries and the like and a method for producing the same.

【0002】[0002]

【従来の技術】近年、可逆的に水素を吸蔵・放出する水
素吸蔵合金粉末を負極に用いたニッケル水素電池が、原
理的に短絡の原因となるデンドライトの生成がないため
充放電サイクル寿命が長く、エネルギー密度が高い二次
電池として注目されている。
2. Description of the Related Art In recent years, a nickel-hydrogen battery using a hydrogen-absorbing alloy powder that reversibly absorbs and desorbs hydrogen as a negative electrode has a long charge-discharge cycle life because there is no generation of dendrite that causes a short circuit in principle. , Has attracted attention as a secondary battery with high energy density.

【0003】その代表的な水素吸蔵合金粉末の製造工程
は以下のようなものである。まず水素吸蔵合金の各成分
金属を所定量秤量し、高周波溶解炉などで溶解し、溶湯
を水冷された鋳型に流し込み水素吸蔵合金インゴットを
作製する。次に真空中またはアルゴン中で焼鈍処理(以
下アニール処理という)を行った後、粉砕機で平均粒径
が20μm〜30μm程度になるまで機械的粉砕を行
い、その後合金表面の活性化のために合金粉末を数時
間、高温のアルカリ液に浸漬してニッケル水素電池用の
水素吸蔵合金粉末を作製していた。
The typical manufacturing process of the hydrogen storage alloy powder is as follows. First, a predetermined amount of each component metal of the hydrogen storage alloy is weighed, melted in a high frequency melting furnace or the like, and the molten metal is poured into a water-cooled mold to produce a hydrogen storage alloy ingot. Next, after performing annealing treatment (hereinafter referred to as annealing treatment) in vacuum or argon, mechanical pulverization is performed by a pulverizer until the average particle size becomes about 20 μm to 30 μm, and then for activation of the alloy surface. The alloy powder was immersed in a high temperature alkaline solution for several hours to prepare a hydrogen storage alloy powder for a nickel hydrogen battery.

【0004】[0004]

【発明が解決しようとする課題】しかし、この水素吸蔵
合金粉末の製造工程において鋳造工程のタクト時間が長
く、さらに粉砕工程やアルカリ処理工程を要するため製
造コストが高くつく。また粉砕工程時に活物質としてほ
とんど機能しない粒径が7μm〜8μm以下の微粉末は
表面が非常に活性で強固な酸化被膜が生成されるため不
活性となり水素の吸脱が行えないものでその微粉末が相
当量生成されるため原料の歩留りも悪く、コストアップ
につながる課題を有している。
However, in the manufacturing process of this hydrogen storage alloy powder, the takt time of the casting process is long, and further the crushing process and the alkali treatment process are required, so that the manufacturing cost is high. Further, the fine powder having a particle size of 7 μm to 8 μm or less, which hardly functions as an active material during the pulverizing step, is very active on the surface and forms a strong oxide film, which is inactive and cannot absorb and desorb hydrogen. Since a considerable amount is generated, the yield of raw materials is poor, and there is a problem that leads to cost increase.

【0005】さらにこれを用いたニッケル水素電池の充
放電サイクル寿命試験での劣化原因として水素吸蔵合金
粉末の微粉化が挙げられるが、粉砕品は機械的な破断面
を有し多角形体をしており、充放電時の体積の膨脹、収
縮により角部から微粉化を起こし易い欠点を有する。
Further, as a cause of deterioration in a charge / discharge cycle life test of a nickel-hydrogen battery using this, pulverization of the hydrogen-absorbing alloy powder can be mentioned, but the crushed product has a mechanical fracture surface and forms a polygonal body. However, there is a drawback that the corners are likely to be pulverized due to expansion and contraction of the volume during charge and discharge.

【0006】これらの欠点を解決するため、従来ガスア
トマイズ法などによる微粉化工法が考えられ、たとえ
ば、特開平2−253558号公報や特開平3−116
655号公報などに記載されている。
In order to solve these drawbacks, a pulverizing method such as a gas atomizing method has been considered in the past. For example, JP-A-2-253558 and JP-A-3-116 are available.
No. 655, etc.

【0007】しかし、ガスアトマイズ法の場合は、高価
なアルゴン(Ar)ガスなどの不活性ガスを使用し、合
金粉末の粒径も50μm程度までしか細かくならないた
め微粉砕工程を要し、コスト的には大幅な低下は見込め
ない。また、機械的に微粉化をされるため合金粉末は鋭
角的な破断面を有し、充放電サイクル時によって微粉化
をおこし、これを用いた電池が短寿命となる課題を有し
ている。粒径の大きな合金粉末では、高率放電特性が極
端に悪くなる。
However, in the case of the gas atomizing method, an expensive inert gas such as argon (Ar) gas is used, and since the grain size of the alloy powder is only finely down to about 50 μm, a fine pulverization step is required, which is costly. Is not expected to drop significantly. Further, since the alloy powder has a sharp fracture surface because it is mechanically pulverized, there is a problem that the pulverization occurs due to charge / discharge cycles, and the battery using this has a short life. In the case of alloy powder having a large particle size, the high rate discharge characteristics are extremely deteriorated.

【0008】水アトマイズ法は微粉化まで一気に行え、
生産性が高く、高価な不活性ガスも用いないため優れた
製造方法であるが、作製された合金表面が酸化され易
く、複雑な活性化処理を要する欠点がある。
[0008] The water atomizing method can be performed at once in a fine powder,
Although it is an excellent manufacturing method because it has high productivity and does not use expensive inert gas, it has a drawback that the produced alloy surface is easily oxidized and requires complicated activation treatment.

【0009】本発明は上記従来の課題を解決するもの
で、充放電サイクル寿命特性に優れた電池が得られる水
素吸蔵合金粉末および生産性に優れた低コストの水素吸
蔵合金粉末の製造方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and provides a hydrogen storage alloy powder capable of obtaining a battery having excellent charge / discharge cycle life characteristics and a method of producing a low cost hydrogen storage alloy powder having excellent productivity. The purpose is to do.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明の水素吸蔵合金粉末およびその製造方法は、
ニッケル水素電池の負極活物質として用いる水素吸蔵合
金粉末およびその製造方法として水素吸蔵合金からなる
溶湯をアルカリ水溶液を用いた水アトマイズ法で、一気
に20μm〜50μm程度まで微粉化した水素吸蔵合金
粉末またはこの合金粉末を真空中またはアルゴンガス中
でアニール処理した水素吸蔵合金粉末およびその製造方
法を提供するものである。なお、アルカリ水溶液はKO
HまたはNaOHでpH10〜pH13であり、微粉化
を行った後、5分間以上1時間以内にアルカリ水溶液か
ら水素吸蔵合金粉末を取り出し、水洗しアルカリを除去
する。
In order to achieve the above object, the hydrogen storage alloy powder of the present invention and a method for producing the same are
Hydrogen storage alloy powder used as a negative electrode active material for a nickel-hydrogen battery, and as a method for producing the same, a hydrogen storage alloy powder or a hydrogen storage alloy powder finely pulverized at a stretch to about 20 μm to 50 μm by a water atomization method using an alkaline aqueous solution. The present invention provides a hydrogen storage alloy powder obtained by annealing the alloy powder in vacuum or in argon gas, and a method for producing the same. The alkaline solution is KO
The pH is 10 to 13 with H or NaOH, and after pulverization, the hydrogen storage alloy powder is taken out from the aqueous alkali solution within 5 minutes or more and within 1 hour and washed with water to remove the alkali.

【0011】以上のようにアルカリ水溶液を用いた水ア
トマイズ法で一気に水素吸蔵合金を微粉化することで機
械的な破断面がなく表面活性な球状体およびそれに類し
た形状の水素吸蔵合金粉末を得ることができ、これを負
極活物質として用いることによって低コスト、長寿命の
ニッケル水素電池を提供するものである。
As described above, by pulverizing the hydrogen-absorbing alloy at once by the water atomizing method using the alkaline aqueous solution, a surface-active spherical body having no mechanical fracture surface and a hydrogen-absorbing alloy powder having a similar shape are obtained. By using this as a negative electrode active material, a nickel hydrogen battery with low cost and long life is provided.

【0012】[0012]

【作用】本発明は前記のように水素吸蔵合金の溶湯をア
ルカリ水溶液を用いた水アトマイズ法で微粉化すること
によって、従来の鋳造、粉砕法およびガスアトマイズ法
にない以下の特徴を有している。1番目としてガスアト
マイズ法に比べて溶湯の粉砕能力が高く、20μm程度
までの微粉化が一気に行え、微粉砕工程さらにアルカリ
処理工程が簡略化でき大幅な低コスト化が可能となり、
また7μm〜8μm粒径の不活性な粉末もほとんど生成
されず、さらにガスアトマイズ法に比べ高価なアルゴン
ガスなどの不活性ガスを用いないため製造コストが安く
なる。2番目として粉砕工程がないため水素吸蔵合金粉
末は従来粉末のような機械的な破断面がなく球状体およ
びそれに類した形状をしているため、充放電サイクル時
での微細化が起こりにくく長寿命となる。3番目として
は、微粉化に際してアルカリ水溶液で合金表面の活性化
まで行えるため高放電容量化が図れるなどの利点を有す
る。
The present invention has the following features which are not present in the conventional casting, crushing method and gas atomizing method by atomizing the molten metal of the hydrogen storage alloy by the water atomizing method using the alkaline aqueous solution as described above. . Firstly, the ability to pulverize the molten metal is higher than that of the gas atomizing method, and it is possible to atomize up to about 20 μm at once, simplifying the pulverization process and the alkali treatment process, and significantly reducing the cost.
In addition, almost no inactive powder having a particle size of 7 μm to 8 μm is produced, and moreover, an expensive inert gas such as argon gas is not used as compared with the gas atomization method, so that the manufacturing cost is reduced. Secondly, since there is no crushing process, the hydrogen storage alloy powder does not have a mechanical fracture surface like conventional powder and has a spherical shape and similar shape, so it is difficult to reduce the size during charge / discharge cycles. It will be the end of life. Thirdly, there is an advantage that the discharge capacity can be increased because the alloy surface can be activated with an alkaline aqueous solution at the time of pulverization.

【0013】従来のガスアトマイズ法では溶湯の粉砕能
力が小さく平均粒径が50μm以上のものしか作製でき
ない。一方、水アトマイズ法では水圧を1500kg/
cm 2 程度までかけることができ平均粒径数μm程度の
細かいものまで作製できる。一般にニッケル水素電池の
負極活物質としては平均粒径が20μm〜30μm程度
が望ましいとされているが、水アトマイズ法を用いるこ
とによって水圧調整によって粉砕工程なしで微粉化まで
もって行ける利点がある。
In the conventional gas atomizing method, the ability to grind molten metal
Only small force and average particle size of 50μm or more can be produced.
Absent. On the other hand, in the water atomizing method, the water pressure is 1500 kg /
cm 2The average particle size is about several μm
It is possible to make even fine things. Generally for nickel metal hydride batteries
The average particle size of the negative electrode active material is about 20 μm to 30 μm.
Is preferred, but the water atomization method should be used.
By adjusting the water pressure to fine powder without crushing process
There is an advantage that you can take it.

【0014】ただし、通常の水アトマイズ法の場合、合
金粉末表面に酸化膜が形成され、水素吸蔵能力が大幅に
低下する。そこで、pH10〜pH13程度のKOHま
たはNaOHからなるアルカリ水溶液でアトマイズする
ことによって酸化膜の生成を少くし、表面活性にするこ
とができた。処理時間としては5分間以上1時間以内が
適当で、あまり長時間アルカリ水溶液に浸漬していると
表面が酸化され、かえって放電容量の低下をもたらす。
従来アルカリ処理は80℃の高温で数時間かけて行って
きたが、本発明のように非常に高温の溶湯に直接アルカ
リ水溶液を噴霧することでアルカリ処理時間の大幅な短
縮が図れる。合金粉末の平均粒子径としては20μm〜
50μmが電池の放電容量および高率放電特性の点から
適している。
However, in the case of the usual water atomizing method, an oxide film is formed on the surface of the alloy powder, and the hydrogen storage capacity is significantly reduced. Therefore, it was possible to reduce the formation of an oxide film and make it surface active by atomizing with an alkaline aqueous solution of KOH or NaOH having a pH of about 10 to 13. A treatment time of 5 minutes or more and 1 hour or less is suitable, and if it is immersed in an alkaline aqueous solution for a too long time, the surface is oxidized and the discharge capacity is rather lowered.
Conventionally, alkali treatment has been carried out at a high temperature of 80 ° C. for several hours, but by spraying an alkaline aqueous solution directly onto a very high temperature molten metal as in the present invention, the alkali treatment time can be greatly shortened. The average particle size of the alloy powder is 20 μm
50 μm is suitable from the viewpoint of the discharge capacity and high rate discharge characteristics of the battery.

【0015】そして、高放電容量化のためにこの合金粉
末を真空中またはアルゴンガス中でアニール処理するこ
とによって合金粉末の結晶化が進み水素吸蔵能力が向上
し、高容量となる。
Then, the alloy powder is annealed in vacuum or in an argon gas in order to increase the discharge capacity, so that the alloy powder is crystallized and the hydrogen storage capacity is improved, resulting in a high capacity.

【0016】[0016]

【実施例】【Example】

(実施例1)以下に本発明の実施例1の水素吸蔵合金粉
末およびその製造方法を図面を参照して説明する。
(Embodiment 1) Hereinafter, a hydrogen storage alloy powder of Embodiment 1 of the present invention and a method for producing the same will be described with reference to the drawings.

【0017】水素吸蔵合金としてはランタン(La)を
30重量%含むミッシュメタル(Mm)、ニッケル(N
i)、マンガン(Mn)、アルミニウム(Al)、コバ
ルト(Co)を所定の割合で混合し、図1に示すように
高周波溶解炉11にて溶解してMmNi3.55Mn0.4
0.3 Co0.75の組成の水素吸蔵合金の溶湯12をまず
作製し、この水素吸蔵合金の溶湯12を保持炉13に流
し込む。次に窒素ガスボンベ14から供給された窒素ガ
スで満たされた耐アルカリ性に優れた捕集用タンク15
に向かって噴出ノズル16より水素吸蔵合金の溶湯12
を噴出させる。この時、高圧ポンプ17を用いて図2に
示すように噴出圧800kg/cm2 でpH13のKO
Hのアルカリ水溶液21を噴出ノズル22の周囲から噴
射させ水素吸蔵合金の溶湯23を微粉化(アトマイズ)
させ、水素吸蔵合金粉末24(図1では18)を作製し
た。
Hydrogen storage alloys include misch metal (Mm) containing 30% by weight of lanthanum (La), nickel (N).
i), manganese (Mn), aluminum (Al), and cobalt (Co) are mixed at a predetermined ratio and melted in a high frequency melting furnace 11 as shown in FIG. 1 to obtain MmNi 3.55 Mn 0.4 A
First, a melt 12 of a hydrogen storage alloy having a composition of 0.3 Co 0.75 is prepared, and the melt 12 of the hydrogen storage alloy is poured into a holding furnace 13. Next, a collection tank 15 filled with nitrogen gas supplied from the nitrogen gas cylinder 14 and having excellent alkali resistance
From the jet nozzle 16 toward the molten metal 12 of hydrogen storage alloy
Squirt out. At this time, the high pressure pump 17 was used to eject KO of pH 13 at a jet pressure of 800 kg / cm 2 as shown in FIG.
An alkaline aqueous solution 21 of H is jetted from around the jet nozzle 22, and the molten metal 23 of the hydrogen storage alloy is atomized (atomized).
Then, the hydrogen storage alloy powder 24 (18 in FIG. 1) was produced.

【0018】このようにしてできあがった水素吸蔵合金
粉末を捕集用タンク15から5分間経過後に取り出し十
分水洗をした後、乾燥させた。この水素吸蔵合金粉末1
8,24の形状は球状に近いものから瓢箪形状のものな
ど種々のものがあったが、いずれも角はなく曲面で構成
されていた。その表面はMmおよびNiの針状酸化物で
覆われていた。粒度分布測定をした結果、平均粒径が2
2μmで粒径は8μmから60μmに分布し、10μm
以下の粒子の含有量が0.5wt%以下であることがわ
かった。
The hydrogen-absorbing alloy powder thus produced was taken out of the collecting tank 15 after 5 minutes, washed thoroughly with water, and then dried. This hydrogen storage alloy powder 1
The shapes of 8, 24 were various, such as a shape close to a sphere to a shape of a gourd, but each of them had a curved surface without corners. The surface was covered with needle-shaped oxides of Mm and Ni. As a result of particle size distribution measurement, the average particle size is 2
At 2 μm, the particle size is distributed from 8 μm to 60 μm, 10 μm
It was found that the content of the following particles was 0.5 wt% or less.

【0019】次に、この水素吸蔵合金粉末100重量部
と合成ゴム粒子(結着剤)0.5重量部と、カルボキシ
メチルセルロース(CMC:増粘剤)0.2重量部と、
カーボンブラック(導電材)0.2重量部に、水を16
重量部加えて負極用ペーストを作製した。このペースト
3gをリードを取り付けた無数の孔を有するニッケル製
の集電体(芯材)に充填、乾燥後、ローラープレス法に
て加圧一体化し負極板を作製した。一方、正極としては
水酸化ニッケルを主成分とする従来の正極合剤2.2g
を発泡ニッケルよりなる集電体に充填し正極板を作製し
た。
Next, 100 parts by weight of the hydrogen storage alloy powder, 0.5 parts by weight of synthetic rubber particles (binder), 0.2 parts by weight of carboxymethyl cellulose (CMC: thickener),
Water is added to 0.2 parts by weight of carbon black (conductive material).
By adding parts by weight, a negative electrode paste was prepared. 3 g of this paste was filled in a nickel current collector (core material) having innumerable holes to which leads were attached, dried, and then pressure-integrated by a roller press method to prepare a negative electrode plate. On the other hand, for the positive electrode, 2.2 g of a conventional positive electrode mixture containing nickel hydroxide as a main component
Was filled in a collector made of foamed nickel to produce a positive electrode plate.

【0020】上記のようにして作製した負極板1枚、正
極板4枚を厚さ0.2mmのポリプロピレン(PP)製
の袋状のセパレータに挿入し、負極板を各2枚の正極が
挟むようにアクリル板で狭持し、リード部を細孔を有す
るPP製の蓋に接続された極柱に溶接した後、円筒形ア
クリル製の電槽に入れ、水酸化カリウム水溶液(密度
1.30g/cm3 )を主成分とする電解液を細孔部か
ら多量(300g)に注液し、その後一旦真空にして脱
泡を行い、電解液リッチの負極規制の評価電池を作製し
た。
One negative electrode plate and four positive electrode plates prepared as described above are inserted into a polypropylene (PP) bag-shaped separator having a thickness of 0.2 mm, and the negative electrode plate is sandwiched between two positive electrodes. As shown in the figure, after sandwiching it with an acrylic plate and welding the lead part to a pole that is connected to a PP lid with pores, it is placed in a cylindrical acrylic battery case and an aqueous potassium hydroxide solution (density 1.30 g A large amount (300 g) of an electrolytic solution containing / cm 3 ) as the main component was poured from the pores, and then vacuumed to defoam to prepare an electrolytic solution-rich negative electrode regulation evaluation battery.

【0021】(実施例2)以下に実施例2の水素吸蔵合
金粉末およびその製造方法について、図面を参照して説
明する。まず実施例1と同様の図1,図2に示す水アト
マイズの装置においてpH10のNaOH水溶液を用い
て噴出圧を少し下げて(700kg/cm 2 )アトマイ
ズを行った。1時間後に捕集用タンクからこの合金粉末
を取り出し水洗、乾燥させ平均粒径48μmの水素吸蔵
合金微粉末を作製した。次に、この合金粉末を真空アニ
ール炉に入れ、10-6torr以下まで真空に引き、1
000℃で3時間加熱した後、8時間かけて室温まで徐
冷を行いアニール処理を行った。アニール条件としては
保持温度800℃以上1000℃以下、保持時間2時間
以上が等温線図測定(以下PCT測定という)から必要
なことがわかった。1000℃以上では合金粒子が溶着
してしまった。このようにしてアニール処理した水素吸
蔵合金粉末を負極活物質として実施例1と同様の方法で
評価電池を作製した。
(Embodiment 2) The hydrogen absorption and storage of Embodiment 2 will be described below.
Gold powder and its manufacturing method are explained with reference to the drawings.
Reveal First, the water outlet shown in FIGS. 1 and 2 similar to the first embodiment.
Use a pH 10 NaOH solution in Mize's equipment
A little lower the ejection pressure (700 kg / cm 2) Atomai
I went out. This alloy powder from the collection tank after 1 hour
Take out, wash with water, dry and store hydrogen with an average particle size of 48 μm
A fine alloy powder was prepared. Next, this alloy powder is vacuum annealed.
Place in a furnace for 10-6Evacuate below torr to 1
After heating at 000 ℃ for 3 hours, slowly cool to room temperature over 8 hours.
It was cooled and annealed. The annealing conditions
Holding temperature 800 ℃ to 1000 ℃, holding time 2 hours
The above is necessary from the isotherm measurement (hereinafter referred to as PCT measurement)
I found out. Alloy particles are welded above 1000 ° C
have done. The hydrogen absorption annealed in this way
By using the same alloy powder as the negative electrode active material in the same manner as in Example 1.
An evaluation battery was produced.

【0022】比較例として実施例1と同一組成の水素吸
蔵合金を高周波溶解炉で作製し、1100℃3時間真空
アニール後、スタンプミルで粗粉砕、さらにジェットミ
ル粉砕機で平均粒径25μmまで微粉砕した。このよう
にして作製した水素吸蔵合金粉末を負極活物質として実
施例1と同様の方法、構成で評価電池を作製した。な
お、この水素吸蔵合金粉末の粒度分布測定の結果から1
0μm以下の粒子の含有量が約12wt%あることがわ
かった。
As a comparative example, a hydrogen storage alloy having the same composition as in Example 1 was produced in a high frequency melting furnace, vacuum annealed at 1100 ° C. for 3 hours, coarsely pulverized with a stamp mill, and further finely pulverized with a jet mill to an average particle size of 25 μm. Crushed. The hydrogen storage alloy powder thus produced was used as a negative electrode active material, and an evaluation battery was produced in the same manner and configuration as in Example 1. From the result of particle size distribution measurement of this hydrogen storage alloy powder, 1
It was found that the content of particles of 0 μm or less was about 12 wt%.

【0023】図3に前記液リッチ負極規制の評価電池で
充放電サイクル試験を行った時の負極放電容量の変化を
示す。充放電サイクル試験時の充電条件はPCT測定よ
り算出される電気量より2C(約1.7A)で、放電電
気量に対して充電電気量100%、放電条件は2C、
0.9Vカット放電深度(DOD)100%で行った。
一方、容量確認は100サイクルごとに充電条件0.1
C、12時間充電電気量120%、放電条件は0.1
C、0.9Vカットで行った。
FIG. 3 shows changes in the negative electrode discharge capacity when a charge / discharge cycle test was conducted on the liquid-rich negative electrode regulation evaluation battery. The charging condition during the charge / discharge cycle test is 2C (about 1.7A) from the amount of electricity calculated by PCT measurement, the amount of electricity charged is 100% of the amount of electricity discharged, and the discharge condition is 2C.
It was performed at a 0.9 V cut depth of discharge (DOD) of 100%.
On the other hand, the capacity is confirmed by charging condition 0.1 every 100 cycles.
C, 12 hours charge electricity 120%, discharge condition 0.1
C, 0.9 V cut was performed.

【0024】図3より負極の初期放電容量は実施例1の
ものが280mAh/g、実施例2のものが290mA
h/g、比較例のものが285mAh/gとあまり変わ
らなかった。充放電サイクル試験の結果、実施例1では
1800サイクル、実施例2では1500サイクル、比
較例の場合は1100サイクルで初期容量の80%を切
ることがわかった。これは比較例の電池は粉砕工程で多
量(約12wt%)の7μm〜8μm以下の電池反応に
寄与しない微粉末が生成されるため初期容量(負極利用
率)があまり高くならず、かつ粉体形状が多角形体で角
部を有するため充放電サイクル中に割れ易く微粉化し易
いためと考えられる。一方、本実施例のものは8μm以
下の微粉末が少ない利点を有する反面、表面が酸化被膜
で若干覆われているため容量的には比較例とほぼ同等の
初期容量であるが、合金粉末形状が球形に近く機械的な
破断面を持たないため微粉化が起こりにくく、充放電サ
イクル特性の点で優れるものと考えられる。
From FIG. 3, the initial discharge capacity of the negative electrode was 280 mAh / g in Example 1 and 290 mA in Example 2.
h / g, that of the comparative example was 285 mAh / g, which was not so different. As a result of the charge / discharge cycle test, it was found that the initial capacity was reduced to 80% at 1800 cycles in Example 1, 1500 cycles in Example 2 and 1100 cycles in Comparative Example. In the comparative battery, a large amount (about 12 wt%) of 7 μm to 8 μm or less of fine powder that does not contribute to the battery reaction is generated in the crushing process, and thus the initial capacity (negative electrode utilization rate) is not so high, and It is considered that this is because the shape is a polygonal body and has corners, so that it is easily cracked and pulverized during a charge / discharge cycle. On the other hand, the powder of this example has the advantage that the amount of fine powder of 8 μm or less is small, but on the other hand, the surface is slightly covered with an oxide film, so the capacity is almost the same as that of the comparative example. Is close to a sphere and has no mechanical fracture surface, so pulverization is unlikely to occur, and it is thought that it is excellent in charge-discharge cycle characteristics.

【0025】コスト面では比較例の従来品では鋳造、冷
却工程および粉砕工程を必要とするが、本実施例では冷
却速度が速く微粉化まで連続的に一気にできるため工数
が大幅に省け、実施例1で比較例と比べ60%程度のコ
ストダウンを図れることがわかった。
In terms of cost, the conventional product of the comparative example requires casting, cooling and crushing steps, but in the present embodiment, the cooling rate is fast and it is possible to continuously atomize until pulverization. It was found that the value of 1 can reduce the cost by about 60% as compared with the comparative example.

【0026】なお、アルカリ水溶液としてはpH10〜
pH13の範囲が有効でpH9以下では表面活性化の効
果がでず、またpH14以上では酸化膜が形成され容量
低下を引き起こした。またその浸漬処理時間も5分間〜
1時間程度が最適であっが、従来アルカリ処理では数時
間程度を要するのに対し、大幅な時間短縮が可能とな
る。また、合金粉末の粒径としては充放電サイクル特性
および高率放電特性の点から20μm〜50μmが適し
ていた。従来水アトマイズ法では10μm以下の粉末が
作製されているが、本実施例においては噴霧時の水圧を
少なくすることで粒径の大きいものを作製した。
The alkaline aqueous solution has a pH of 10 to 10.
The range of pH 13 is effective, and the effect of surface activation is not obtained at pH 9 or lower, and the oxide film is formed at pH 14 or higher to cause the capacity decrease. Also, the immersion treatment time is 5 minutes ~
The optimum time is about one hour, but it takes a few hours for the conventional alkali treatment, but the time can be greatly shortened. Further, the particle size of the alloy powder is preferably 20 μm to 50 μm from the viewpoint of charge / discharge cycle characteristics and high rate discharge characteristics. Conventionally, a powder having a particle size of 10 μm or less is produced by the water atomizing method, but in this example, a powder having a large particle size was produced by reducing the water pressure during spraying.

【0027】なお、水素吸蔵合金としてZr,Mn,
V,Cr,NiからなるAB2型合金を用いて、実施例
2と同様に作製した電池においても高放電容量で充放電
サイクル特性に優れ、かつ本実施例同様粉砕工程が省け
コストダウンが図れた。
As the hydrogen storage alloy, Zr, Mn,
A battery manufactured in the same manner as in Example 2 using an AB2 type alloy composed of V, Cr, and Ni also has a high discharge capacity and excellent charge / discharge cycle characteristics, and like the present example, the pulverization step was omitted and cost reduction was achieved. .

【0028】[0028]

【発明の効果】以上の説明により明らかなように本発明
の水素吸蔵合金粉末およびその製造方法によれば、溶湯
の粉砕能力が高く、20μm程度までの微粉化が一気に
行え微粉砕工程さらにはアルカリ処理工程を簡略化でき
大幅な低コスト化が可能となり、また7μm〜8μm粒
径の不活性な粉末もほとんど生成されず、さらにガスア
トマイズ法に比べ高価なアルゴンガスなどの不活性ガス
を用いないため製造コストが安くなる。さらに粉砕工程
がないため水素吸蔵合金粉末は従来粉末のような機械的
な破断面がなく、球状体およびそれに類した形状をして
いるため充放電サイクル時での微細化が起こりにくく長
寿命となる。また微粉化に際してアルカリ水溶液で合金
表面の活性化まで一気にできるため高放電容量化が図れ
る等の利点もある。
As is apparent from the above description, according to the hydrogen storage alloy powder and the method for producing the same of the present invention, the ability of the molten metal to be pulverized is high, and the pulverization process up to about 20 μm can be performed at once in the fine pulverization step and the alkali. The treatment process can be simplified and the cost can be significantly reduced. In addition, an inert powder having a particle size of 7 μm to 8 μm is hardly generated, and an inert gas such as argon gas, which is more expensive than the gas atomization method, is not used. Manufacturing cost is reduced. Furthermore, since there is no crushing step, the hydrogen-absorbing alloy powder does not have the mechanical fracture surface unlike conventional powders, and because it has a spherical body and similar shape, it is unlikely to be miniaturized during charge and discharge cycles and has a long life. Become. Further, when finely pulverized, activation of the alloy surface can be performed at once with an alkaline aqueous solution, which has an advantage that a high discharge capacity can be achieved.

【0029】以上のように本発明の水素吸蔵合金粉末お
よびその製造方法によって低コストで長寿命のニッケル
水素電池を提供することができる。
As described above, the hydrogen storage alloy powder and the method for producing the same according to the present invention can provide a low cost and long life nickel hydrogen battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の水素吸蔵合金粉末の製造方法
に用いる水アトマイズ法の装置の断面略図
FIG. 1 is a schematic cross-sectional view of a water atomizing apparatus used in a method for producing a hydrogen storage alloy powder according to an embodiment of the present invention.

【図2】同噴出ノズルを切り欠いてその断面を示す略図FIG. 2 is a schematic view showing a cutout of the ejection nozzle and showing a section thereof.

【図3】本発明の実施例および比較例の水素吸蔵合金粉
末を負極に用いた評価電池の充放電サイクル試験におけ
る負極放電容量の変化を示したグラフ
FIG. 3 is a graph showing changes in the negative electrode discharge capacity in a charge / discharge cycle test of an evaluation battery using the hydrogen storage alloy powders of Examples and Comparative Examples of the present invention as a negative electrode.

【符号の説明】[Explanation of symbols]

11 高周波溶解炉 12,23 溶湯 13 保持炉 14 窒素ガスボンベ 15 捕集用タンク 16,22 噴出ノズル 17 高圧ポンプ 18,24 水素吸蔵合金粉末 21 アルカリ水溶液 11 High Frequency Melting Furnace 12,23 Molten Metal 13 Holding Furnace 14 Nitrogen Gas Cylinder 15 Collection Tank 16,22 Jet Nozzle 17 High Pressure Pump 18,24 Hydrogen Storage Alloy Powder 21 Alkaline Aqueous Solution

フロントページの続き (72)発明者 山口 誠二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 木村 忠雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 豊口 吉徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 生駒 宗久 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continuation (72) Inventor Seiji Yamaguchi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Tadao Kimura 1006 Kadoma, Kadoma City Osaka Prefecture Toyoguchi Yoshinori 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Munehisa Ikoma, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】水素吸蔵合金からなる溶湯をアルカリ水溶
液を用いた水アトマイズ法で微粉化した、機械的な破断
面がなく、表面活性化された球状体またはそれに類した
形状を有する水素吸蔵合金粉末。
1. A hydrogen storage alloy having a surface-activated spherical body or a shape similar to that obtained by pulverizing a molten metal made of a hydrogen storage alloy by a water atomizing method using an alkaline aqueous solution and having no mechanical fracture surface. Powder.
【請求項2】水素吸蔵合金からなる溶湯をアルカリ水溶
液を用いた水アトマイズ法で微粉化した、機械的な破断
面がなく、表面活性化された球状体またはそれに類した
形状を有する水素吸蔵合金粉末を、真空中またはアルゴ
ンガス中で焼鈍処理した水素吸蔵合金粉末。
2. A hydrogen storage alloy having a surface-activated spherical body or a shape similar to that obtained by atomizing a molten metal made of a hydrogen storage alloy by a water atomizing method using an alkaline aqueous solution and having no mechanical fracture surface. Hydrogen storage alloy powder obtained by annealing the powder in vacuum or in argon gas.
【請求項3】請求項1または2記載の水素吸蔵合金粉末
を負極活物質に有するニッケル水素電池。
3. A nickel hydrogen battery having the hydrogen storage alloy powder according to claim 1 or 2 as a negative electrode active material.
【請求項4】水素吸蔵合金からなる溶湯をアルカリ水溶
液を用いた水アトマイズ法で微粉化する水素吸蔵合金粉
末の製造方法。
4. A method for producing a hydrogen storage alloy powder, which comprises pulverizing a molten metal comprising a hydrogen storage alloy by a water atomizing method using an alkaline aqueous solution.
【請求項5】水素吸蔵合金からなる溶湯をアルカリ水溶
液を用いた水アトマイズ法で微粉化した水素吸蔵合金粉
末を、真空中またはアルゴンガス中で焼鈍処理する水素
吸蔵合金粉末の製造方法。
5. A method for producing a hydrogen storage alloy powder, which comprises subjecting a hydrogen storage alloy powder obtained by pulverizing a molten metal made of a hydrogen storage alloy by a water atomizing method using an alkaline aqueous solution to an annealing treatment in vacuum or in an argon gas.
【請求項6】アルカリ水溶液が苛性カリまたは苛性ソー
ダからなるpH10ないしpH13の範囲の水溶液であ
る請求項4または5記載の水素吸蔵合金粉末の製造方
法。
6. The method for producing a hydrogen storage alloy powder according to claim 4, wherein the alkaline aqueous solution is an aqueous solution containing caustic potash or caustic soda in the range of pH 10 to pH 13.
【請求項7】微粉化を行った後、5分間ないし1時間の
範囲以内にアルカリ水溶液から水素吸蔵合金粉末を取り
出し、水洗しアルカリを除去する請求項4ないし6のい
ずれかに記載の水素吸蔵合金粉末の製造方法。
7. The hydrogen storage according to claim 4, wherein the hydrogen storage alloy powder is taken out from the aqueous alkali solution within 5 minutes to 1 hour after pulverization and washed with water to remove the alkali. Method for producing alloy powder.
【請求項8】水素吸蔵合金粉末の粒径が20μmないし
50μmの範囲である請求項4ないし7のいずれかに記
載の水素吸蔵合金粉末の製造方法。
8. The method for producing a hydrogen storage alloy powder according to claim 4, wherein the particle size of the hydrogen storage alloy powder is in the range of 20 μm to 50 μm.
JP5265329A 1993-07-15 1993-10-25 Hydrogen storage alloy powder, nickel-metal hydride battery having the hydrogen storage alloy powder as negative electrode active material, and method for producing hydrogen storage alloy powder Expired - Lifetime JP2920343B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5265329A JP2920343B2 (en) 1993-10-25 1993-10-25 Hydrogen storage alloy powder, nickel-metal hydride battery having the hydrogen storage alloy powder as negative electrode active material, and method for producing hydrogen storage alloy powder
US08/271,826 US5605585A (en) 1993-07-15 1994-07-07 Method for producing hydrogen storage alloy particles and sealed-type nickel-metal hydride storage battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5265329A JP2920343B2 (en) 1993-10-25 1993-10-25 Hydrogen storage alloy powder, nickel-metal hydride battery having the hydrogen storage alloy powder as negative electrode active material, and method for producing hydrogen storage alloy powder

Publications (2)

Publication Number Publication Date
JPH07118711A true JPH07118711A (en) 1995-05-09
JP2920343B2 JP2920343B2 (en) 1999-07-19

Family

ID=17415683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5265329A Expired - Lifetime JP2920343B2 (en) 1993-07-15 1993-10-25 Hydrogen storage alloy powder, nickel-metal hydride battery having the hydrogen storage alloy powder as negative electrode active material, and method for producing hydrogen storage alloy powder

Country Status (1)

Country Link
JP (1) JP2920343B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09316505A (en) * 1996-05-29 1997-12-09 Japan Metals & Chem Co Ltd Production of powder-type hydrogen-storing alloy
JPH10265801A (en) * 1997-03-25 1998-10-06 Sanyo Special Steel Co Ltd Production of hydrogen occlusion alloy powder and negative electrode for nickel-hydr0gen battery formed by using this powder
JP2017048461A (en) * 2015-09-03 2017-03-09 Dowaエレクトロニクス株式会社 Phosphorus-containing copper powder and manufacturing method therefor
WO2017038478A1 (en) * 2015-09-03 2017-03-09 Dowaエレクトロニクス株式会社 Phosphorus-containing copper powder and method for producing same
CN113338865A (en) * 2021-06-02 2021-09-03 南京公诚节能新材料研究院有限公司 Application method of anti-scaling technology for oil field geothermal well based on catalyst alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100109A (en) * 1986-10-14 1988-05-02 Kubota Ltd Method for molding powder of al and mg series metal solidified by rapid cooling
JPH05156322A (en) * 1991-12-05 1993-06-22 Matsushita Electric Ind Co Ltd Production of hydrogen storage alloy and alkaline battery using the alloy
JPH05195024A (en) * 1992-01-14 1993-08-03 Nippon Steel Corp Method for preventing oxidation of metal powder during production of metal powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100109A (en) * 1986-10-14 1988-05-02 Kubota Ltd Method for molding powder of al and mg series metal solidified by rapid cooling
JPH05156322A (en) * 1991-12-05 1993-06-22 Matsushita Electric Ind Co Ltd Production of hydrogen storage alloy and alkaline battery using the alloy
JPH05195024A (en) * 1992-01-14 1993-08-03 Nippon Steel Corp Method for preventing oxidation of metal powder during production of metal powder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09316505A (en) * 1996-05-29 1997-12-09 Japan Metals & Chem Co Ltd Production of powder-type hydrogen-storing alloy
JPH10265801A (en) * 1997-03-25 1998-10-06 Sanyo Special Steel Co Ltd Production of hydrogen occlusion alloy powder and negative electrode for nickel-hydr0gen battery formed by using this powder
JP2017048461A (en) * 2015-09-03 2017-03-09 Dowaエレクトロニクス株式会社 Phosphorus-containing copper powder and manufacturing method therefor
WO2017038478A1 (en) * 2015-09-03 2017-03-09 Dowaエレクトロニクス株式会社 Phosphorus-containing copper powder and method for producing same
KR20180048980A (en) * 2015-09-03 2018-05-10 도와 일렉트로닉스 가부시키가이샤 Phosphorus-containing copper powder and its preparation method
US10773311B2 (en) 2015-09-03 2020-09-15 Dowa Electronics Materials Co., Ltd. Phosphorus-containing copper powder and method for producing the same
CN113338865A (en) * 2021-06-02 2021-09-03 南京公诚节能新材料研究院有限公司 Application method of anti-scaling technology for oil field geothermal well based on catalyst alloy

Also Published As

Publication number Publication date
JP2920343B2 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
US5605585A (en) Method for producing hydrogen storage alloy particles and sealed-type nickel-metal hydride storage battery using the same
JP2920343B2 (en) Hydrogen storage alloy powder, nickel-metal hydride battery having the hydrogen storage alloy powder as negative electrode active material, and method for producing hydrogen storage alloy powder
JP3215235B2 (en) Method for producing hydrogen storage alloy powder and hydrogen storage alloy powder
JP3417980B2 (en) Hydrogen storage alloy powder for electrode and method for producing the same
JP2924382B2 (en) Method for producing hydrogen storage alloy and alkaline storage battery using the alloy
JPH0693358B2 (en) Manufacturing method of hydrogen storage electrode
JP3370071B2 (en) Hydrogen storage alloy electrode and nickel-metal hydride storage battery using this electrode
JP2966493B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3189361B2 (en) Alkaline storage battery
JPH0748602A (en) Production of hydrogen storage alloy powder
JP3198896B2 (en) Nickel-metal hydride battery
JP3553708B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH0729569A (en) Manufacture of hydrogen storage alloy electrode
JP3398070B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3685643B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery using the electrode
JPS63264869A (en) Manufacture of hydrogen storage electrode
JP2983564B2 (en) Hydrogen storage alloy electrode
JP2000090921A (en) Alkaline secondary battery
JPH0850919A (en) Manufacture of nickel metal hydride cell
CN110950302A (en) Hydrogen storage alloy containing cobalt oxide and cobalt boron of carbon fiber micron tube and preparation method thereof
JPH05314973A (en) Manufacture of hydrogen storage alloy electrode
JPS63264868A (en) Manufacture of hydrogen storage electrode
JPH07245102A (en) Hydrogen storage alloy electrode and manufacture of hydrogen storage alloy powder
JP2001319645A (en) Manufacturing method of hydrogen storage alloy electrode
JPH07192729A (en) Manufacture of hydrogen storage alloy electrode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 15

EXPY Cancellation because of completion of term