JPS6054271B2 - Method for manufacturing silicon nitride-based sintered body - Google Patents

Method for manufacturing silicon nitride-based sintered body

Info

Publication number
JPS6054271B2
JPS6054271B2 JP51129444A JP12944476A JPS6054271B2 JP S6054271 B2 JPS6054271 B2 JP S6054271B2 JP 51129444 A JP51129444 A JP 51129444A JP 12944476 A JP12944476 A JP 12944476A JP S6054271 B2 JPS6054271 B2 JP S6054271B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
oxide
nitride
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51129444A
Other languages
Japanese (ja)
Other versions
JPS5355312A (en
Inventor
章彦 柘植
博康 大田
聰 鹿内
通泰 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP51129444A priority Critical patent/JPS6054271B2/en
Publication of JPS5355312A publication Critical patent/JPS5355312A/en
Publication of JPS6054271B2 publication Critical patent/JPS6054271B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は高温下でもすぐれた強度を備えた窒化けい素系
焼結体の製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a silicon nitride-based sintered body having excellent strength even under high temperatures.

窒化けい素系焼結体は高温で、耐高応力を要求される構
造材料部品として開発されている。
Silicon nitride-based sintered bodies are being developed as structural material parts that require high stress resistance at high temperatures.

しかしてこの種の焼結体においては焼結性など考慮して
例えば酸化マグネシウムなど添加配合しているが、一般
に高温例えば1000℃程度では機械的強度の低下が認
められる。こうした点の改善策として窒化けい素−イッ
トリウム酸化物など希土類酸化物系成形体を窒化アルミ
ニウム共存下で加熱処理乃至焼結処理する製造方法も試
られている。この方法によれば高温下で高強度を示す窒
化けい素系焼結体を得られるが上記加熱処理乃至焼結処
理に比較的長時間を要すると云う不都合さがある。本発
明者らは上記不都合さの改善につき検討を進めた結果チ
タン、ジルコニウム、ハフニウム、バナジウム、ニオブ
、クロムなどの窒化物を共存させた場合、比較的短時間
の加熱処理、焼結処理で所要の高温高強度の焼結体が得
られることを見出した。本発明はこのような知見に基づ
き、高温下で、高強度を備えた窒化けい素系焼結体の量
産に適する製造方法を提供しようとするものである。
However, in this type of sintered body, for example, magnesium oxide is added in consideration of sinterability, but generally a decrease in mechanical strength is observed at high temperatures, for example, about 1000°C. As a solution to these problems, a manufacturing method has been tried in which a rare earth oxide molded product such as silicon nitride-yttrium oxide is heat-treated or sintered in the coexistence of aluminum nitride. According to this method, a silicon nitride-based sintered body exhibiting high strength at high temperatures can be obtained, but there is a disadvantage that the heat treatment and sintering treatment require a relatively long time. The present inventors have conducted studies to improve the above-mentioned disadvantages, and as a result, when nitrides such as titanium, zirconium, hafnium, vanadium, niobium, and chromium are co-existing, a relatively short heat treatment and sintering treatment are required. It has been found that a high-temperature, high-strength sintered body can be obtained. Based on this knowledge, the present invention aims to provide a manufacturing method suitable for mass production of silicon nitride-based sintered bodies with high strength under high temperatures.

以下本発明を詳細に説明すると本発明は希土類元素の酸
化物および窒化けい素を必須成分とした未焼成体を、チ
タン、ジルコニウム、ハフニウム、バナジウム、ニオブ
またはクロムの窒化物の共存下で加熱処理し、希土類元
素、けい素、酸素および窒素からなる酸窒化物を生成さ
せる工程と、j 前記工程で得た酸窒化物を焼結処理す
る工程とを具備して成る窒化けい素系焼結体の製造方法
で例えば次のように行なわれる。
To explain the present invention in detail below, the present invention heat-treats an unfired body containing rare earth element oxides and silicon nitride as essential components in the coexistence of titanium, zirconium, hafnium, vanadium, niobium, or chromium nitride. a silicon nitride-based sintered body comprising: a step of generating an oxynitride consisting of a rare earth element, silicon, oxygen and nitrogen; and a step of sintering the oxynitride obtained in the above step. For example, the manufacturing method is as follows.

先ず希土類系元素の酸化物と窒化けい素との混合粉末を
原料として用意し、所定形状の粉末成形体を作る。しか
る後この粉末成形体をチタン、ジルコニウム、ハフニウ
ム、バナジウム、ニオブ、タンタルまたはクロムなどの
窒化物共存下で酸窒化物を生成する温度、例えば165
0〜1850℃程度の温度で加熱処理する。この加熱処
理過程で粉末成形体においては、希土類系元素とけい素
、窒素、酸素の間で酸窒化反応により、上記酸化物は酸
窒化物化(結晶化)する。かくして粉末成形体中の酸化
物成分を酸窒化物化した後、さらに1700〜1900
℃程度の温度に加熱し、通常の常圧焼結、ホットブレス
等の焼結処理を施すことにより、高温下でもすぐれた機
械的強度を示す窒化けい素系焼結体が得られる。なお本
発明における1チタン、ジルコニウム、ハフニウム、バ
ナジウム、ニオブ、タンタル、クロム等の窒化物の共存
下ョとは、加熱処理時に未焼成体中の窒化けい素から分
解蒸発により発生する酸化けい素成分と反応し得る隣接
した位置に上記窒化物を設ける事を意味する。そして前
述の窒化物の共存下で加熱処理する具体的方法としては
A)、窒化物粉末中に埋設(被覆)させルツボ等の容器
に収容し加熱する方法、B)、窒化物焼結体で製作した
ルツボ等の容器に未焼結体を収容し加熱する方法、が挙
げられる。又、本発明において出発原料の一組成分たる
窒化けい素としてはα型窒化けい素てもβ型窒化けい素
のいづれでもよく、また粉末粒度は5μ以下が好ましい
First, a mixed powder of a rare earth element oxide and silicon nitride is prepared as a raw material, and a powder compact of a predetermined shape is made. Thereafter, this powder compact is heated to a temperature that produces an oxynitride in the coexistence of a nitride such as titanium, zirconium, hafnium, vanadium, niobium, tantalum, or chromium, for example, 165°C.
Heat treatment is performed at a temperature of about 0 to 1850°C. In the powder compact during this heat treatment process, the oxide is converted into an oxynitride (crystallized) by an oxynitriding reaction between the rare earth element, silicon, nitrogen, and oxygen. After converting the oxide component in the powder compact into an oxynitride, the
By heating the material to a temperature of approximately .degree. C. and subjecting it to normal pressureless sintering, hot-pressing, and other sintering treatments, a silicon nitride-based sintered body exhibiting excellent mechanical strength even at high temperatures can be obtained. In the present invention, the coexistence of nitrides such as titanium, zirconium, hafnium, vanadium, niobium, tantalum, and chromium refers to silicon oxide components generated by decomposition and evaporation from silicon nitride in the unfired body during heat treatment. This means that the nitride is provided in an adjacent position where it can react with the nitride. The specific methods of heat treatment in the coexistence of nitrides include A), a method of embedding (covering) nitride powder in a container such as a crucible, and heating it; and B), a method of heating a nitride sintered body. One example is a method in which the unsintered body is placed in a manufactured container such as a crucible and heated. Further, in the present invention, silicon nitride, which is a component of the starting material, may be either α-type silicon nitride or β-type silicon nitride, and the powder particle size is preferably 5 μm or less.

一方他の組成分たる希土類系元素としてはイットリウム
、ランタン、セリウム、プラ.セオジウム、ユーロピウ
ム、ネオジウム、デスプロシウム、プロメシウム、テル
ビウム、サマリウム、ガドリニウム、ホルミウム、エル
ビウム、ツリウム、イッテルビウム、ルテニウム、スカ
ンジムなどが挙げられこれらは1種もしくは2種以上!
の混合系で用いてもよい。しかしてこの希土類系元素の
酸化物の組成比は希土類系元素酸化物一窒化けい素にお
いて一般に15重量%以下、好しくは5重量%程度以下
に選べばよい。本発明において出発原料は上記希土類系
元素の4酸化物および窒化けい素の2成分系のみでよい
が窒化けい素成分の一部(窒化けい素成分の7鍾量%以
下)を例えば炭化けい素、炭化アルミニウムなどの炭化
物、例えば酸化アルミニウム、酸化けい素などの酸化物
で適宜置換しても差支えない。
On the other hand, other rare earth elements that make up the composition include yttrium, lanthanum, cerium, and plastin. These include theodium, europium, neodymium, desprosium, promethium, terbium, samarium, gadolinium, holmium, erbium, thulium, ytterbium, ruthenium, scandium, etc. One or more of these!
It may be used in a mixed system. However, the composition ratio of the rare earth element oxide may be selected to be generally 15% by weight or less, preferably about 5% by weight or less in the rare earth element oxide silicon mononitride. In the present invention, the starting material may be only a two-component system of the tetraoxide of the rare earth element and silicon nitride, but a part of the silicon nitride component (up to 7% by weight of the silicon nitride component) may be replaced with silicon carbide, for example. , carbides such as aluminum carbide, and oxides such as aluminum oxide and silicon oxide may be substituted as appropriate.

上記の如き本発明方法によれば比較的短時間の処理によ
つて非晶質相を含ない酸窒化物からなり、1000′C
以上の高温下でも高い機械的強度を維持する窒化けい素
系焼結体が容易に得られる。例えば酸化イットリウムー
窒化けい素系混合物を原料として得た粉末成形体を窒化
アルミニウムの共存下1750℃で加熱処理して所要の
酸窒化物を生成させるのに2時間要したのに対して本発
明方法のノ場合には0.5〜1.時間程度でも充分であ
つた。しかも上記酸窒化物化後焼結処理して得た焼結体
は例えば1200′Cの高温下でも、室温下における値
に対し85%程度の強度を維持発揮する。この点は他の
窒化物を共存させる工程をとらずに例えば酸化物イット
リウムー窒化けい素系を焼結せしめた焼結体が1000
0Cでは約90%程度、1200℃では約36%程度の
値を(いずれも室温下における値に対するもの)維持、
発揮するに過ぎないのに較べ著しい差異である。ところ
で上記本発明方法によれば、高温下でも高い機械的強度
を維持、発揮する(高温下でも機械的強度の著しい低下
を招来しない)のは次のように考えられる。
According to the method of the present invention as described above, an oxynitride containing no amorphous phase can be formed by a relatively short treatment time, and a temperature of 100'C
A silicon nitride-based sintered body that maintains high mechanical strength even at higher temperatures can be easily obtained. For example, it took two hours to heat-treat a powder compact obtained from a yttrium oxide-silicon nitride mixture at 1750°C in the coexistence of aluminum nitride to generate the desired oxynitride, whereas the method of the present invention In the case of 0.5 to 1. Even just a few hours was enough. Moreover, the sintered body obtained by the sintering treatment after oxynitriding maintains and exhibits a strength of about 85% of the value at room temperature even at a high temperature of, for example, 1200'C. In this respect, for example, a sintered body made by sintering yttrium oxide-silicon nitride without taking the step of coexisting other nitrides is
Maintains a value of approximately 90% at 0C and approximately 36% at 1200℃ (all values relative to room temperature),
It is a remarkable difference compared to the fact that it is only a demonstration. By the way, according to the method of the present invention, the reason why high mechanical strength is maintained and exhibited even at high temperatures (no significant decrease in mechanical strength occurs even at high temperatures) is considered to be as follows.

即ち原料としての窒化けい素粉末は通常、酸化ケイ素や
酸化アルミニウムや酸化鉄などの不純物を含んでいるう
え、焼結助剤として金属酸化物を適宜添加配合する。し
かしてこれら不純物や焼結助剤などは焼結過程て非晶質
相を形成することになる。換言すれば得られた焼結体は
結晶質相てある窒化けい素と酸化物(添加物)を主体と
した非晶質相とから構成されており、上記非晶質相が高
温下で軟下し、この軟化によつて高温強度の劣化を招来
する。しかるに本発明によれば窒化チタンなどの共存下
で先ず加熱処理し、この加熱処理過程で粉末成形体中の
酸化物成分は大部分が酸窒化物化する。かくして最終的
に得られた焼結体は非晶質相をほとんど含まない窒化け
い素一酸窒化物系(結晶質)で構成されるため高温下に
おいても非晶質相による影響をほとんど受けることもな
くすぐれた機械的強度を維持すると考えられる。次に本
発明の実施例を記載する。
That is, silicon nitride powder as a raw material usually contains impurities such as silicon oxide, aluminum oxide, and iron oxide, and a metal oxide is appropriately added as a sintering aid. However, these impurities and sintering aids form an amorphous phase during the sintering process. In other words, the obtained sintered body is composed of a crystalline phase of silicon nitride and an amorphous phase mainly composed of oxides (additives), and the amorphous phase softens at high temperatures. This softening causes deterioration of high temperature strength. However, according to the present invention, heat treatment is first performed in the coexistence of titanium nitride, etc., and most of the oxide components in the powder compact are converted into oxynitrides during this heat treatment process. The sintered body finally obtained in this way is composed of silicon nitride monooxynitride (crystalline) containing almost no amorphous phase, so it is hardly affected by the amorphous phase even at high temperatures. It is thought that it maintains excellent mechanical strength. Next, examples of the present invention will be described.

実施例1 90%がα型窒化けい素である窒化けい素粉末97重量
部および酸化イットリウム3重量部を、アルミナポツト
およびアルミナボールを用いn−ブタノール共存下10
時間粉砕混合して平均粒径0.5μの混合粉末を調製し
た。
Example 1 97 parts by weight of silicon nitride powder, 90% of which is α-type silicon nitride, and 3 parts by weight of yttrium oxide were mixed in an alumina pot and an alumina ball in the coexistence of n-butanol for 10 minutes.
A mixed powder having an average particle size of 0.5 μm was prepared by time-pulverization and mixing.

上記調製した混合粉末を原料とし、500k9/Clt
の圧力で成形し30×30×10順の未焼成体としての
粉末成形体を作製した。この粉末成形体を黒鉛ルツボ中
に収容し成形体の周囲を窒化チタン粉末で被覆し、窒素
ガス雰囲気中1750℃で3紛間保持して熱処理した。
しかる後この熱処理済み成形体を1780℃、400k
g/C7l!、の条件でホットブレスを施し焼結体を得
た。この焼結体は緻密で、またその一部を削り取り、粉
砕してX線回析を行なつたところβ−Si3N4と−S
i3N4・Y2O3との結晶相を呈していた。さらに上
記焼結体について三点曲げ法(スパン2i1荷重印加速
度0.5?/Min)にて抗折強度を測定したとこ第1
図に示す如くであつた。実施例2 90%がα型窒化けい素である窒化けい素粉末50重量
部または3唾量部、酸化アルミニウム粉末50重量部ま
たは7鍾量部、酸化イットリウム5重量部を出発原料と
し、粉砕して混合粉末を調製し、実施例1の場合と同様
にして未焼結体としての粉末成形体を作製した。
Using the mixed powder prepared above as raw material, 500k9/Clt
The powder compacts were molded at a pressure of 30 x 30 x 10 in the order of 30 x 30 x 10 as green bodies. This powder molded body was placed in a graphite crucible, the periphery of the molded body was coated with titanium nitride powder, and heat treated by holding the powder at 1750° C. for three times in a nitrogen gas atmosphere.
After that, this heat-treated molded body was heated at 1780°C and 400k.
g/C7l! A sintered body was obtained by hot pressing under the following conditions. This sintered body was dense, and when a part of it was scraped off, crushed, and subjected to X-ray diffraction, it was found that β-Si3N4 and -S
It exhibited a crystalline phase with i3N4.Y2O3. Furthermore, the bending strength of the above sintered body was measured using the three-point bending method (span 2i1 load application acceleration 0.5?/Min).
It was as shown in the figure. Example 2 50 parts by weight or 3 parts by weight of silicon nitride powder, 90% of which is α-type silicon nitride, 50 parts by weight or 7 parts by weight of aluminum oxide powder, and 5 parts by weight of yttrium oxide were used as starting materials and pulverized. A mixed powder was prepared, and a powder compact as an unsintered body was produced in the same manner as in Example 1.

この粉末成形体について、温度1700℃、時間2時間
とした他は実施例1の場合と同じ条件で加熱処理した。
次いで1750℃、300k9/Cltの条件でホット
ブレスを施して焼結体を得た。かくして得られた焼結体
について1200℃での機械的強度は90k9/iまた
は85k9/iでありまた焼結体自体はX線回折による
と粒界相が完全に結晶化しており他の構成相として酸化
アルミニウムがβ−Si3N4に固溶してなるβ″−S
i3N4も認められた。尚、上記焼結体についてX線回
折によると酸化アルミニウムは酸窒化物と窒化けい素の
両者に固溶しており、また焼結処理温度を比較的低く選
んでも緻密な焼結体が得られた。
This powder compact was heat-treated under the same conditions as in Example 1, except that the temperature was 1700°C and the time was 2 hours.
Next, hot pressing was performed at 1750° C. and 300 k9/Clt to obtain a sintered body. The mechanical strength of the thus obtained sintered body at 1200°C is 90k9/i or 85k9/i, and X-ray diffraction of the sintered body shows that the grain boundary phase is completely crystallized and other constituent phases are not present. β''-S formed by solid solution of aluminum oxide in β-Si3N4 as
i3N4 was also recognized. Furthermore, according to X-ray diffraction of the above sintered body, aluminum oxide is solidly dissolved in both oxynitride and silicon nitride, and even if the sintering temperature is selected to be relatively low, a dense sintered body cannot be obtained. Ta.

実施例3 窒化けい素(Si3N4)粉末、酸化イットリウム(Y
2O3)、酸化サマリウム(Srn2O3)、酸化ジス
プロシウム(Dy2O3)、酸化ランタン(La2O3
)、酸化アルミニウム(Al.O3)を表に示す組成比
(重量部)に選び実施例1の場合と同様にして粉砕混合
物をそれぞれ比較例を含め3唯調製した。
Example 3 Silicon nitride (Si3N4) powder, yttrium oxide (Y
2O3), samarium oxide (Srn2O3), dysprosium oxide (Dy2O3), lanthanum oxide (La2O3)
) and aluminum oxide (Al.O3) were selected at the composition ratios (parts by weight) shown in the table, and three pulverized mixtures were prepared in the same manner as in Example 1, including a comparative example.

これら調整粉末に加圧成形を施して未焼結体としての粉
末成形体をそれぞれ作製し、この成形体を窒化チタン粉
末など中に埋設(被覆)させ黒鉛製ルツボに収容するか
(窒化物の共存手段A)、窒化チタン焼結体などで製作
したルツボに上記成形体を収容して(窒化物の共存手段
B)それぞれ窒化ガス雰囲気中で加熱処理した。しかる
後上記加熱処理により成形体中の酸化物成分を酸窒化物
化した成形体につきそれぞれホットブレス又は常圧焼結
処理を施して焼結した。かくして得た焼結体についてX
線回折によつてそれぞれ構成相を検知するとともに常温
および1200′C下における強度(K9/Wrlt)
を求めた結果を、上記加熱処理条件、焼結処理条件とと
もに併.せて表に示した。
These adjusted powders are press-molded to produce powder compacts as unsintered bodies, and these compacts are buried (covered) in titanium nitride powder or the like and housed in a graphite crucible (nitride powder). Coexistence means A) The above-mentioned molded bodies were housed in a crucible made of a titanium nitride sintered body or the like (nitride coexistence means B) and were heat-treated in a nitriding gas atmosphere. Thereafter, the molded bodies in which the oxide components in the molded bodies had been converted into oxynitrides by the heat treatment were sintered by hot-pressing or pressureless sintering. About the sintered body thus obtained
Each constituent phase is detected by line diffraction and the intensity at room temperature and 1200'C (K9/Wrlt)
The results obtained are combined with the above heat treatment conditions and sintering treatment conditions. The results are shown in the table below.

尚表において焼結体構成相(a)はβ−Si3N4+S
l3N4・Y2O3相を、(b)はβ−Si3N4+S
i3N4・Sm2O3相を、(c)はβ−Sl3N4+
Si3N4・Dy2O3相を、(d)はβ″−Sl3N
4+Si3N4・Y2O3相を、(e)はβ)−Sl3
N4+Sl3N4・La2O3相を、(f)はβ−Si
3N4+Sl3N4・Y2O3+非晶質相を、また(g
)はβ−Sl3N4+非晶質相をそれぞれ示す。
In the table, the constituent phase (a) of the sintered body is β-Si3N4+S.
l3N4・Y2O3 phase, (b) is β-Si3N4+S
i3N4・Sm2O3 phase, (c) is β-Sl3N4+
Si3N4・Dy2O3 phase, (d) is β″-Sl3N
4+Si3N4・Y2O3 phase, (e) is β)-Sl3
N4+Sl3N4・La2O3 phase, (f) is β-Si
3N4+Sl3N4・Y2O3+amorphous phase, also (g
) indicate β-Sl3N4+ amorphous phase, respectively.

上記実施例から明らかなように本発明によれば焼結処理
において焼結時間を比較例1の場合に較べ短縮しても高
温下で強度の高い焼結体が得られる。
As is clear from the above examples, according to the present invention, even if the sintering time in the sintering process is shortened compared to Comparative Example 1, a sintered body with high strength can be obtained at high temperatures.

また図には比較例3の焼結体について温度と強度Kf)
/Tdとの関係を併せて示した。このように本発明によ
つて得られる窒化けい素系焼結体は高温下てもすぐれた
強度を維持する。従つて本発明は例えばガスタービン材
など高温下で耐高応力を要求される部材などをうるに適
する方法と云える。
The figure also shows temperature and strength Kf for the sintered body of Comparative Example 3.
/Td is also shown. As described above, the silicon nitride-based sintered body obtained by the present invention maintains excellent strength even at high temperatures. Therefore, the present invention can be said to be a method suitable for coating members that require high stress resistance under high temperatures, such as gas turbine materials.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明方法および従来公知の方法てそれぞれ製造し
た窒化けい素系焼結体について温度と強度との関係を示
す曲線図である。
The figure is a curve diagram showing the relationship between temperature and strength for silicon nitride-based sintered bodies produced by the method of the present invention and a conventionally known method.

Claims (1)

【特許請求の範囲】[Claims] 1 希土類元素の酸化物および窒化けい素を必須成分と
した未焼成体を、チタン、ジルコニウム、ハフニウム、
バナジウム、ニオブ、タンタルまたはクロムの窒化物の
共存下で加熱処理し希土類元素、けい素、酸素および窒
素からなる酸窒化物を生成させる工程と、前記工程で得
た酸窒化物を焼結処理する工程とを具備して成る事を特
徴とした窒化けい素系焼結体の製造方法。
1 Unfired bodies containing rare earth element oxides and silicon nitride as essential components are processed into titanium, zirconium, hafnium,
A step of heat-treating in the coexistence of vanadium, niobium, tantalum, or chromium nitride to produce an oxynitride consisting of rare earth elements, silicon, oxygen, and nitrogen, and a sintering treatment of the oxynitride obtained in the above step. A method for producing a silicon nitride-based sintered body, comprising the steps of:
JP51129444A 1976-10-29 1976-10-29 Method for manufacturing silicon nitride-based sintered body Expired JPS6054271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51129444A JPS6054271B2 (en) 1976-10-29 1976-10-29 Method for manufacturing silicon nitride-based sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51129444A JPS6054271B2 (en) 1976-10-29 1976-10-29 Method for manufacturing silicon nitride-based sintered body

Publications (2)

Publication Number Publication Date
JPS5355312A JPS5355312A (en) 1978-05-19
JPS6054271B2 true JPS6054271B2 (en) 1985-11-29

Family

ID=15009612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51129444A Expired JPS6054271B2 (en) 1976-10-29 1976-10-29 Method for manufacturing silicon nitride-based sintered body

Country Status (1)

Country Link
JP (1) JPS6054271B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55160053A (en) * 1979-05-30 1980-12-12 Unitika Ltd Flame-retarding agent for polyamide

Also Published As

Publication number Publication date
JPS5355312A (en) 1978-05-19

Similar Documents

Publication Publication Date Title
JPS61209959A (en) Manufacture of aluminum nitride
JPS6054271B2 (en) Method for manufacturing silicon nitride-based sintered body
JP2585506B2 (en) Silicon carbide sintered body and method for producing the same
JP2742619B2 (en) Silicon nitride sintered body
JP3007732B2 (en) Silicon nitride-mixed oxide sintered body and method for producing the same
JP2694369B2 (en) Silicon nitride sintered body
JP2631102B2 (en) Method for producing silicon nitride based sintered body
JPH0513104B2 (en)
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JPS6047227B2 (en) Method for manufacturing heat-resistant, high-strength sintered bodies
JPH078746B2 (en) Silicon nitride ceramics and method for producing the same
JPH01145380A (en) Production of silicon nitride sintered form
JPH08508458A (en) Heat treatment of nitrogen ceramics
JP2801455B2 (en) Silicon nitride sintered body
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JPH02233560A (en) High-strength calcined sialon-based compact
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JPS62207769A (en) Manufacture of silicon nitride sintered body
JPH03131571A (en) Production of silicon nitride ceramics having high strength
JPH10120406A (en) Modified silicon nitride powder and its production and silicon nitride mixture powder and production of silicon nitride sintered product
JPH01100064A (en) Production of silicon nitride sintered compact
JPH04280871A (en) Silicon nitride sintered product and production thereof
JPH06316465A (en) Silicon nitride-based sintered compact and production thereof
JPH0873268A (en) Production of silicon nitride ceramics
JPH04243972A (en) Sintered substance of silicon nitride