JPS61209959A - Manufacture of aluminum nitride - Google Patents

Manufacture of aluminum nitride

Info

Publication number
JPS61209959A
JPS61209959A JP60048257A JP4825785A JPS61209959A JP S61209959 A JPS61209959 A JP S61209959A JP 60048257 A JP60048257 A JP 60048257A JP 4825785 A JP4825785 A JP 4825785A JP S61209959 A JPS61209959 A JP S61209959A
Authority
JP
Japan
Prior art keywords
sintered body
powder
aluminum nitride
sintering
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60048257A
Other languages
Japanese (ja)
Other versions
JPH0712981B2 (en
Inventor
加曽利 光男
和夫 篠崎
安斎 和雄
柘植 章彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60048257A priority Critical patent/JPH0712981B2/en
Priority to US06/760,772 priority patent/US4746637A/en
Priority to EP85110151A priority patent/EP0180724B1/en
Priority to DE8585110151T priority patent/DE3576326D1/en
Publication of JPS61209959A publication Critical patent/JPS61209959A/en
Publication of JPH0712981B2 publication Critical patent/JPH0712981B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は窒化アルミニウム焼結体およびその製造方法に
関し、更に詳しくは、高密度で、熱伝導性が良好な窒化
アルミニウム焼結体と、それを低温で製造することがで
きる方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an aluminum nitride sintered body and a method for manufacturing the same, and more particularly, to an aluminum nitride sintered body with high density and good thermal conductivity, and a method for manufacturing the same. It relates to a method that can be produced at low temperatures.

〔発明の技術的背景とその問題点〕− 窒化アルミニウム(7□N)は常温から高温までの強度
が高く、化学的耐性にも優れているため、耐熱材料とし
て用いられる一方、その高熱伝導性。
[Technical background of the invention and its problems] - Aluminum nitride (7□N) has high strength from room temperature to high temperature and has excellent chemical resistance, so it is used as a heat-resistant material, but its high thermal conductivity .

高電気絶縁性を利用して半導体装置の放熱板材料として
も有望視されている。こうした&4Nは1通常、融点を
持たず、2200 C以上の高温で分解するため、薄膜
などの用途を除いては焼結体として用いられる。
Due to its high electrical insulation properties, it is also seen as a promising material for heat sinks in semiconductor devices. Such &4N usually has no melting point and decomposes at high temperatures of 2200 C or higher, so it is used as a sintered body except for applications such as thin films.

かかる人、eN焼結体は、通常、A4N@末を成形。For such people, eN sintered bodies are usually molded from A4N@ powder.

焼結して得られる。しかし、A、eN粉末を単独で用い
た場合には焼結性が良好でないために、ポットプレス法
による以外には 密、すなわち、高密度の焼結体を得る
ことが困難である。そこで、常圧で焼結する場合C二は
、通常焼結体の高密度化を目的として、λ婆N粉末に、
焼結助剤として、希土類酸化物或いはアルカリ土類金属
酸化物を添加することが一般に行なわれている。
Obtained by sintering. However, when A, eN powder is used alone, the sinterability is not good, and it is difficult to obtain a dense, ie, high-density, sintered body except by the pot press method. Therefore, in the case of sintering under normal pressure, C2 is usually made into λbN powder for the purpose of increasing the density of the sintered body.
It is common practice to add rare earth oxides or alkaline earth metal oxides as sintering aids.

このように焼結助剤を添加することにより、確かに焼結
体の密度はかなり高められたが、しかし。
However, by adding the sintering aid in this way, the density of the sintered body was considerably increased.

他方で、かかるAJN焼結体の熱伝導率は酸素その他の
不純物および粒界の存在などにより予想されるよりも低
いというのが現状であった。すなわち、Alxの理論熱
伝導率が32ow/m−にであるのに対し1人AN焼結
体のそれは高々20〜6ow/mIIk  である。
On the other hand, the thermal conductivity of such AJN sintered bodies was currently lower than expected due to the presence of oxygen and other impurities and grain boundaries. That is, while the theoretical thermal conductivity of Alx is 32 ow/m-, that of the one-person AN sintered body is at most 20-6 ow/mIIk.

更に、通常のA−eN粉末を焼結する際の温度は通常1
800 C以上と非常に高く、そのためにA、6N焼結
体の製造コストの低減が阻まれていた。
Furthermore, the temperature at which normal A-eN powder is sintered is usually 1
The temperature is extremely high, at 800 C or more, and this has hindered the reduction in manufacturing costs of A, 6N sintered bodies.

〔発明の目的〕[Purpose of the invention]

本発明は上述した従来の問題を解消し、高密度で、しか
も、高熱伝導率を有するAnN焼結体と、それを比較的
低温による焼結で製造することができる方法の提供を目
的とする。
The present invention solves the above-mentioned conventional problems, and aims to provide an AnN sintered body having high density and high thermal conductivity, and a method for producing the same by sintering at a relatively low temperature. .

〔発明の概要〕[Summary of the invention]

本発明者らは、人2N粉末に添加される焼結助剤と、得
られた焼結体の密度並びに熱伝導率との関係を種々検討
した結果、以下に述べる知見を得た。
The present inventors conducted various studies on the relationship between the sintering aid added to the human 2N powder and the density and thermal conductivity of the obtained sintered body, and as a result, the following findings were obtained.

すなわち、本発明方法では希土類及びアルカリ土類の少
なくとも一方をフッ化物として添加し、かつ希土類化合
物とアルカリ土類化合物を、同時に添加することにより
、従来の希土類又はアルカリ土類酸化物を単独で添加し
た場合に比べて低い焼結温度で高密度および高熱伝導率
のA、gN焼結体が得られるというものである。
That is, in the method of the present invention, at least one of a rare earth element and an alkaline earth element is added as a fluoride, and a rare earth compound and an alkaline earth compound are added simultaneously, thereby replacing the conventional addition of a rare earth element or an alkaline earth oxide alone. An A, gN sintered body with high density and high thermal conductivity can be obtained at a lower sintering temperature than in the case where the A, gN sintered body is used.

すなわち、本発明の窒化アルミニウム焼結体は、窒化ア
ルミニウムと、希土類アルミニウム化合物およびアルカ
リ土類アルミニウム化合物よりなることを特徴とし、そ
の製造方法は、窒化アルミニウム粉末に、 (a)  希土類フッ化物又は酸化物及び焼成によって
これらのフッ化物又は酸化物となる化合物よりなる群か
ら選ばれた少なくとも1種の化合物並びに。
That is, the aluminum nitride sintered body of the present invention is characterized by being composed of aluminum nitride, a rare earth aluminum compound, and an alkaline earth aluminum compound, and the manufacturing method thereof includes adding (a) rare earth fluoride or oxide to aluminum nitride powder. at least one compound selected from the group consisting of compounds that become fluorides or oxides upon firing;

(b)アルカリ土類フッ化物又は酸化物及び焼成によっ
てこれらのフッ化物又は酸化物となる化合物よりなる群
から選ばれた少なくとも1種の化合物から成り、かつア
ルカリ土類と希土類化合物はいずれもフッ化物及び焼成
によりフッ化物となる化合物であるか、又はアルカリ土
類と希土類化合物の一部は必ずフッ化物及び焼成により
フッ化物となる化合物を含み、フッ化物、酸化物の重量
に換算して合計で0.01〜20!t%添加したのち、
成形。
(b) Consists of at least one compound selected from the group consisting of alkaline earth fluorides or oxides and compounds that become these fluorides or oxides upon calcination, and both the alkaline earth and rare earth compounds are fluoride. oxides and compounds that become fluorides when fired, or some alkaline earth and rare earth compounds always contain fluorides and compounds that become fluorides when fired, and the total amount is calculated in terms of the weight of fluorides and oxides. So 0.01~20! After adding t%,
Molding.

焼結することを特徴とするう 本発明の人AN焼結体は、その構成相をX線回折により
観察するとAANの他に希土類アルミニウム酸化物そし
て希土類アルミニウム酸化物と類似のしかし明らかに異
なる化合物、およびアルカリ土類酸化物そしてアルカリ
土類アルミニウム酸化物と類似の化合物が生成されてい
る。又は、まれにA−13ON(人Jの酸窒化物〕、人
1Nのポリタイプ主に27R型が生成される場合もある
。例えば希土類元素がイツトリウム〔Y〕であり、しか
も酸化物(Yt’s )である場合、3Y、Os・5A
A、0.又はY、O。
When the constituent phases of the human AN sintered body of the present invention, which is characterized by sintering, are observed by X-ray diffraction, it contains, in addition to AAN, a rare earth aluminum oxide and a compound similar to but clearly different from the rare earth aluminum oxide. , and alkaline earth oxides and alkaline earth aluminum oxides and similar compounds have been produced. Or, in rare cases, A-13ON (oxynitride of human J) and polytype 27R of human 1N are mainly produced.For example, the rare earth element is yttrium [Y], and the oxide (Yt' s ), 3Y, Os・5A
A, 0. Or Y, O.

・Aβ203その他の希土類アルミニウム酸化物が生成
され、一方フッ化物(Y F、 )である場合には3 
y!o、・5人!!0.又はY、03・A石0.その他
と類似のしかし明らかに異なる化合物が生成される。
・Aβ203 and other rare earth aluminum oxides are produced, while in the case of fluoride (YF, ), 3
Y! o,・5 people! ! 0. Or Y, 03/A stone 0. Compounds similar to others but distinctly different are produced.

次にアルカリ土類元素がカルシウム(Ca〕であり、し
かも酸化物1:CaO:lである場合には、6A−e、
O8幸CaO又は2A4,0.・CaOその他のアルカ
リ土類アルミニウム酸化物が生成され、一方フッ化物(
CaF、)である場合には6A−620,・CaO又は
2人、!3to、・CaOと類似の化合物が生成される
。しかるに、希土類とアルカリ土類とから成る化合物又
は希土類とアルカリ土類そしてアルミニウムから成る化
合物は生成されない。かかるAnN焼結体において人1
N結晶粒の構成比は全体の80〜99.99重量%であ
ることが好ましい。
Next, when the alkaline earth element is calcium (Ca) and the oxide is 1:CaO:l, 6A-e,
O8 Sachi CaO or 2A4,0.・CaO and other alkaline earth aluminum oxides are produced, while fluoride (
CaF, ), then 6A-620, ·CaO or 2 people,! 3to, a compound similar to .CaO is produced. However, a compound consisting of a rare earth element and an alkaline earth element or a compound consisting of a rare earth element, an alkaline earth element, and aluminum is not produced. In such an AnN sintered body, the person 1
The composition ratio of N crystal grains is preferably 80 to 99.99% by weight of the total.

本発明のAノN焼結体の製造方法は、酸素の含有量が0
.001〜7重量%であるようなAfflN粉末に適用
して特に有用である。
In the method for producing an A/N sintered body of the present invention, the oxygen content is 0.
.. It is particularly useful for applications where AfflN powder is between 0.001 and 7% by weight.

又、使用する人4N粉末および焼結助剤粉末の粒径は、
平均粒径でともに5μm以下であり、好ましくは4μm
以下である。
In addition, the particle sizes of the 4N powder and sintering aid powder used are:
Both have an average particle size of 5 μm or less, preferably 4 μm
It is as follows.

焼結助剤として添加する希土類元素としては、Y、 L
a、 Ce、 am、 Dy、 Nd、 Gd、 Pr
、 Ho、 ’Br、 Ybなどがあげられ、とくに、
Y、 La、 Ceは好ましいものである。これらの希
土類元素は、1種又は2種以上がそれぞれフッ化物又は
酸化物、或いは焼成書=よりフッ化物又は酸化物となる
ような化合物として、上記AAN粉末に添加される。
Rare earth elements added as sintering aids include Y, L
a, Ce, am, Dy, Nd, Gd, Pr
, Ho, 'Br, Yb, etc., especially,
Y, La, and Ce are preferred. One or more of these rare earth elements are added to the AAN powder as a fluoride or an oxide, or a compound that becomes a fluoride or an oxide.

又、アルカリ土類金属としては、Mg、 Ca、 8 
r。
In addition, as alkaline earth metals, Mg, Ca, 8
r.

Baなどがあげられ、とくにCa、 8r、 Baは好
ましい。これらのアルカリ土類金属も上記と同様、その
うちの1種又は2種以上が、それぞれフッ化物又は酸化
物或いは、焼成によりフッ化物又は酸化物となる化合物
の粉末として人、6N粉末に添加される。
Examples include Ba, with Ca, 8r, and Ba being particularly preferred. As mentioned above, one or more of these alkaline earth metals are added to the 6N powder as a powder of a fluoride or oxide, or a compound that becomes a fluoride or oxide upon firing, respectively. .

上記した希土類元素化合物及びアルカリ土類金属化合物
はそれぞれ酸化物、フッ化物の状態に換算して合計で0
.01〜203&量チ添加される。合計の添加量が0.
01重it%未満の場合は目的とする効果が得られない
場合があり、一方、20重+jk%を超えると耐熱性お
よび機械的強度が損なわれるばかりか、熱伝導性も低下
してしまう場合がある。合計の添加量は、好“ましくは
、0.01〜17重量%である。
The above-mentioned rare earth element compounds and alkaline earth metal compounds have a total of 0 when converted into oxide and fluoride states, respectively.
.. 01~203& amount is added. The total amount added is 0.
If it is less than 01wt%, the desired effect may not be obtained, while if it exceeds 20wt+jk%, not only the heat resistance and mechanical strength will be impaired, but also the thermal conductivity will decrease. There is. The total amount added is preferably 0.01 to 17% by weight.

本発明から成る焼結体の熱伝導率が上昇し、焼結温度が
低下する原因は、現在のところ不明な点が多いが、次の
ように推定することができる。
The reasons why the thermal conductivity of the sintered body of the present invention increases and the sintering temperature decreases are largely unknown at present, but can be estimated as follows.

すなわち、高熱伝導率化の要因のひとつとして本発明か
ら成る焼結体では、A2の酸窒化、物(ANON)そし
て1人2Nのポリタイプ(27R型)が生成し難いこと
である。発明者の研究結果によれば、A、#ONそして
27R型が生成した焼結体は、いずれも熱伝導率が低い
ことがわかっている。AAON 、 27R型の生成は
、A、4N粉の純度、焼結炉内雰囲気および焼結助剤の
種類とその添加量などにも影響されるが、同一の人1N
粉を用いて、同一の実験条件下で製造した焼結体を比較
すると、従来のアルカリ土類又は希土類・酸化物を添加
した場合に比べて、本発明から成る焼結体では、AAO
Nをして27R凰が生成量が明らかに少ないか、まった
く生成しない。
That is, one of the factors contributing to the high thermal conductivity is that in the sintered body of the present invention, A2 oxynitridation, ANON, and 1N 2N polytype (27R type) are difficult to form. According to the inventor's research results, it has been found that the sintered bodies produced by types A, #ON, and 27R all have low thermal conductivity. The production of AAON and 27R types is influenced by the purity of A, 4N powder, the atmosphere in the sintering furnace, the type and amount of sintering aid, etc., but the production of 1N by the same person
Comparing sintered bodies produced using powder under the same experimental conditions, it was found that the sintered bodies of the present invention had higher AAO
After applying N, the amount of 27R 凰 produced is clearly small or not produced at all.

一方、従来に比べて焼結温度が低下する理由は現時点で
は不明であるが、従来の希土類酸化物又はアルカリ土類
酸化物を単独で添加する場合に比べて、焼結時により低
い温度で液相を生じ、焼結を進行させると考えられる。
On the other hand, the reason why the sintering temperature is lower than before is currently unknown, but compared to the conventional case where rare earth oxides or alkaline earth oxides are added alone, the sintering temperature is lower than before. It is thought that this causes the formation of a phase and promotes sintering.

次いで、本発明の人−eN焼結体の製造方法の一例を以
下に述べる。
Next, an example of the method for manufacturing the human-eN sintered body of the present invention will be described below.

先ず、AJN粉末に、焼結助剤として上記した希土類元
素化合物およびアルカリ土類金属化合物よりなる粉末を
所定量添加したのちボールミル等を用いて混合する。焼
結には常圧焼結法、ホットプレス焼結法などを使用する
ことができる。常圧焼結法による場合は、混合粉末にバ
インダーを加え、混線、造粒、整粒を行なったのち成形
する。
First, a predetermined amount of powder made of the above-mentioned rare earth element compound and alkaline earth metal compound as a sintering aid is added to AJN powder, and then mixed using a ball mill or the like. For sintering, a pressureless sintering method, a hot press sintering method, etc. can be used. When using the pressureless sintering method, a binder is added to the mixed powder, and the powder is mixed, granulated, and sized, and then shaped.

成形法としては、金型プレス、静水圧プレス或いはシー
ト成形などが適用できる。続いて、成形体を例えばN、
ガス気流中で加熱してバインダーを除去したのち、常圧
焼結する。
As a molding method, a mold press, isostatic press, sheet molding, etc. can be applied. Subsequently, the molded body is heated with, for example, N,
After removing the binder by heating in a gas stream, it is sintered under normal pressure.

一方、ホットプレス焼結法による場合は、前記ボールミ
ル等で混合した原料を直接ホットプレスすればよい。
On the other hand, when using the hot press sintering method, the raw materials mixed in the ball mill or the like may be directly hot pressed.

かかる工程において、常圧焼結法による場合も、ホット
プレス焼結法による場合も、焼結温度は1700 C以
下でよく、実用上は、1550〜1700 Cである。
In this process, the sintering temperature may be 1700C or less, and is practically 1550 to 1700C, whether the pressureless sintering method or the hot press sintering method is used.

このように、従来に比べて低い温度で焼結が進行する理
由は末だつまびらかではないが、焼結工程において、希
土類元素フッ化物とアルカリ土類金属フッ化物とが何ら
かの相互作用をもつことによるものと推考される。
The reason why sintering progresses at a lower temperature than in the past is not clear, but it is due to some kind of interaction between rare earth element fluorides and alkaline earth metal fluorides during the sintering process. It is assumed that

〔発明の実施例〕[Embodiments of the invention]

実施例1 不純物としての酸素を3.6重量%含有し、平均粒径が
2.2μmの人ぷN粉末に、平均粒径1.5μmのCa
F2およびYF、の混合粉末(重量比1:3)を4重量
%添加し、ボールミルを用いて粉砕、混合を行ない原料
を調製した。次いで、この原料にパラフィンを7重t%
添加して造粒したのち、3001==t/mの圧力でプ
レス成形して30X30X8mの圧粉体とした。この圧
粉体を窒素ガス3囲中で7000まで加熱してパラフィ
ンを除去した。更に、カーボン気中に収容し、窒素ガス
雰囲気中、1700Cにおいて2時間常圧焼結した。得
られたAAN焼結体の密度を測定した。又、焼結体から
直径101m 。
Example 1 Ca powder with an average particle size of 1.5 μm was added to human powder containing 3.6% by weight of oxygen as an impurity and with an average particle size of 2.2 μm.
A raw material was prepared by adding 4% by weight of a mixed powder of F2 and YF (weight ratio 1:3), pulverizing and mixing using a ball mill. Next, 7% by weight of paraffin is added to this raw material.
After adding it and granulating it, it was press-molded at a pressure of 3001 t/m to obtain a green compact of 30 x 30 x 8 m. This green compact was heated to 7,000 ℃ in three nitrogen gas surroundings to remove paraffin. Furthermore, it was placed in a carbon atmosphere and sintered under normal pressure at 1700C for 2 hours in a nitrogen gas atmosphere. The density of the obtained AAN sintered body was measured. Also, the diameter is 101m from the sintered body.

厚さ3.5朧の円板を研削し、これを試験片としてレー
ザフラッシュ法により熱伝導率を測定した。
A disk with a thickness of 3.5 mm was ground and used as a test piece to measure thermal conductivity by a laser flash method.

結果を第1表に示した。The results are shown in Table 1.

実施例2〜10 AAN粉末の種類並びに焼結助剤粉末の種類を種々に変
えて、上記実施例1と同様にしてAAN焼結体を製造し
、それぞれ(二ついて、同じく密度および熱伝導率を測
定した。結果を各人ff1N粉末の粒径、酸素含有量、
焼結助剤の種類、混合比、粒径、添加量とともに第1表
に示した。
Examples 2 to 10 AAN sintered bodies were manufactured in the same manner as in Example 1 above by changing the type of AAN powder and the type of sintering aid powder. The results were measured for each person's ff1N powder particle size, oxygen content,
The types, mixing ratios, particle sizes, and amounts of sintering aids are shown in Table 1.

比較例1 実施例1で用いたAAN粉末のみから実施例1と同様に
してA4N焼結体を製造した。
Comparative Example 1 An A4N sintered body was produced in the same manner as in Example 1 from only the AAN powder used in Example 1.

比較例2 実施例1で用いた人、8N粉末に、平均粒径2.4μm
のCaC0,粉末をCaOに換算して3重渣チ添加し、
実施例1と同様にAAN焼結体を製造した。
Comparative Example 2 The average particle size of the 8N powder used in Example 1 was 2.4 μm.
CaC0, powder was converted to CaO and triple residue was added,
An AAN sintered body was produced in the same manner as in Example 1.

比較例3 実施例1で用いた人AN粉末に、平均粒径2.5μmの
Y!O8粉末3重量%を添加し、実施例1と同様にAτ
N焼結体を製造した。
Comparative Example 3 Y! with an average particle size of 2.5 μm was added to the human AN powder used in Example 1. 3% by weight of O8 powder was added, and Aτ
A N sintered body was manufactured.

これら比較例1〜3で得られたA4N焼結体それぞれに
ついても、実施例1と同様に密度および熱伝導率を測定
した。結果を第1表に併記した。
The density and thermal conductivity of each of the A4N sintered bodies obtained in Comparative Examples 1 to 3 were measured in the same manner as in Example 1. The results are also listed in Table 1.

(以下余白) 実施例11 実施例1で用いたAAN粉末に、平均粒径1.5μmの
BaF2および平均粒径2.5μmのLaF、の混合粉
末(重量比2:2)を41僅チ添加し、ボールミルを用
いて粉砕、混合を行ない原料を調製した。
(Left below) Example 11 To the AAN powder used in Example 1, 41 grams of a mixed powder of BaF2 with an average particle size of 1.5 μm and LaF with an average particle size of 2.5 μm (weight ratio 2:2) was added. A raw material was prepared by pulverizing and mixing using a ball mill.

次いで、この原料粉を300kg/l、iの圧力でプレ
ス成形して直径12叫、厚さ10鴫の圧粉体とした。し
かるのち、この圧粉体をカーボン型中に入れ窒素ガス雰
囲気中、1700 Cかつ400’#/c!iの圧力下
で1時間ホットプレス焼枯した。実施例1と同様にして
得られた人1焼結体の密度および熱伝導率を測定し、結
果を第2表に示した。
Next, this raw material powder was press-molded at a pressure of 300 kg/l to obtain a compact having a diameter of 12 mm and a thickness of 10 mm. After that, this green compact was placed in a carbon mold and heated at 1700 C and 400'#/c! in a nitrogen gas atmosphere. Hot press burnout was carried out under a pressure of i for 1 hour. The density and thermal conductivity of the human 1 sintered body obtained in the same manner as in Example 1 were measured, and the results are shown in Table 2.

比較例4 実施例1で用いたA2N粉末のみから、実施例11と同
様にしてA4N、J給体を製造した。
Comparative Example 4 A4N and J feed bodies were produced in the same manner as in Example 11 from only the A2N powder used in Example 1.

比較例5 実施例1で用いたAノN粉末に、平均粒径1,5μmの
B a COs 4重ffi%を添加し、実施例11と
同様にしてA、g N焼結体を製造した。
Comparative Example 5 A, g N sintered body was produced in the same manner as in Example 11 by adding 4% B a COs with an average particle size of 1.5 μm to the A-N powder used in Example 1. .

比較例6 実施例1で用いたA−eN粉末に、平均粒径2,5μm
のLa、034重量%を添加し、実施例11と同様にし
てA、、eN焼結体を製造した。
Comparative Example 6 The A-eN powder used in Example 1 had an average particle size of 2.5 μm.
A, eN sintered body was produced in the same manner as in Example 11 by adding 034% by weight of La.

これら比較例4〜6で得られた人2N焼結体のそれぞれ
についても実施例1と同様に密度および熱伝導率を測定
し、結果を第2表に併記した。
The density and thermal conductivity of each of the human 2N sintered bodies obtained in Comparative Examples 4 to 6 were measured in the same manner as in Example 1, and the results are also listed in Table 2.

(以下余白) 次に不純物としての酸素を1.4重量%含有し、平均粒
径が1.2μmの人1N粉末に、平均粒径2,5μmの
Ca F *および平均粒径0.8μmのYF、の混合
粉末(重量比1:1)を2.8重量%添加し、上記実施
例1と同様の方法により、1600 C,1650c、
17QOC11750Cおよび1800 rの各温度で
2時間焼結し、それぞれ得られたAJeN焼結体につい
て実施例1と同様に密度および熱伝導率を測定し、結果
を第1図および第2図において曲線人により示した。
(Left below) Next, CaF* with an average particle size of 2.5 μm and CaF* with an average particle size of 0.8 μm were added to the human 1N powder containing 1.4% by weight of oxygen as an impurity and having an average particle size of 1.2 μm. By adding 2.8% by weight of mixed powder of YF (weight ratio 1:1), 1600C, 1650c,
17QOC11750C and 1800 r were sintered for 2 hours, and the density and thermal conductivity of the obtained AJeN sintered bodies were measured in the same manner as in Example 1, and the results are shown in curved lines in Figs. It was shown by

比較のために、上記と同様の人2N粉末に平均粒径2.
5μmのCaC0,5重量%を添加した原料粉および平
均粒径0.8μmのY、0. 2,3重量%を添加した
原料粉を使用して、上記と同様各温度で焼結を行ない、
得られた焼結体の密度および熱伝導率を測定し結果を第
1図、第2図にそれぞれ曲線B。
For comparison, the average particle size of 2N powder similar to the above was 2.
Raw material powder containing 0.5% by weight of CaC with a particle size of 5 μm and Y, 0.5 μm with an average particle size of 0.8 μm. Sintering was carried out at various temperatures in the same manner as above using raw material powder to which 2.3% by weight was added.
The density and thermal conductivity of the obtained sintered body were measured and the results are shown in curves B in Figures 1 and 2, respectively.

曲線Cにより示した。It is shown by curve C.

第1図および第2図からも明らかなように、本発明のA
ノN焼結体は、大幅な焼結温度の低下が可能であり、高
密度且つ高伝導率となるため、従来のll?N焼結体に
比べ製造コストを低く抑えることが可能である。
As is clear from FIGS. 1 and 2, A of the present invention
Since the NO-N sintered body can significantly lower the sintering temperature and has high density and high conductivity, it is different from conventional ll? It is possible to keep manufacturing costs low compared to N sintered bodies.

尚、本発明(−おいては、焼結助剤として上記したもの
の他に炭素或いはNiOなどを添加してもよい。
In the present invention (-), carbon, NiO, or the like may be added as a sintering aid in addition to those mentioned above.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明の人2N焼結体
は高密度であり、且つ高熱伝導率を有し、またその製造
方法にあっては、焼結温度が1700 C以下と従来に
比べて低い温度であるため、その工業的価値は極めて大
であり、とくに、半導体装置などの放熱板材料として有
用である。
As is clear from the above description, the human 2N sintered body of the present invention has high density and high thermal conductivity, and the manufacturing method thereof requires a sintering temperature of 1700 C or lower, which is higher than conventional sintered bodies. Since the temperature is relatively low, its industrial value is extremely large, and it is particularly useful as a heat sink material for semiconductor devices and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は共に本発明の実施例を示し。 第1図は焼結温度と得られたAAN焼結体の密度との関
係を示す図、第2図は焼結温度と侍られたA、、eN焼
結体の熱伝導率との関係を示す図である。 代理人 弁理士 則 近 憲 佑 (ほか1名)/4θ
D       /7θθ      lα〃焼純是度
(°C) 第1図
1 and 2 both show embodiments of the present invention. Figure 1 shows the relationship between the sintering temperature and the density of the obtained AAN sintered body, and Figure 2 shows the relationship between the sintering temperature and the thermal conductivity of the A, eN sintered body. FIG. Agent: Patent Attorney Noriyuki Chika (and 1 other person) / 4θ
D /7θθ lα Firing purity (°C) Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)窒化アルミニウムに (a)希土類フッ化物又は酸化物および焼成によつて希
土類フッ化物又は酸化物となる化合物の少なくとも一種
、及び (b)アルカリ土類フッ化物、又は酸化物および焼成に
よつてアルカリ土類フッ化物又は酸化物となる化合物の
少なくとも一種を含有し、かつ前記(a)(b)のフッ
化物を少なくとも1種含む添加助剤成分を合計で0.0
1〜20重量%添加し、焼結することを特徴とする窒化
アルミニウム焼結体の製造方法。
(1) Aluminum nitride contains (a) a rare earth fluoride or oxide and at least one compound that becomes a rare earth fluoride or oxide when fired, and (b) an alkaline earth fluoride or oxide and a compound that becomes a rare earth fluoride or oxide when fired. The additive auxiliary component contains at least one compound that becomes an alkaline earth fluoride or oxide, and contains at least one of the fluorides described in (a) and (b) above, with a total of 0.0
A method for producing an aluminum nitride sintered body, which comprises adding 1 to 20% by weight and sintering the aluminum nitride sintered body.
(2)窒化アルミニウムが0.001〜7重量%の酸素
を含んでいることを特徴とする特許請求の範囲囲第1項
記載の窒化アルミニウム焼結体の製造方法。
(2) The method for producing an aluminum nitride sintered body according to claim 1, wherein the aluminum nitride contains 0.001 to 7% by weight of oxygen.
(3)窒化アルミニウム粉末の平均粒径が5μm以下で
ある特許請求の範囲第2項記載の窒化アルミニウム焼結
体の製造方法。
(3) The method for producing an aluminum nitride sintered body according to claim 2, wherein the average particle size of the aluminum nitride powder is 5 μm or less.
(4)常圧焼結法を適用し、焼結温度が1700℃以下
である特許請求の範囲第2項又は第3項記載の窒化アル
ミニウム焼結体の製造方法。
(4) The method for producing an aluminum nitride sintered body according to claim 2 or 3, wherein a pressureless sintering method is applied and the sintering temperature is 1700° C. or lower.
JP60048257A 1984-11-08 1985-03-13 Method for manufacturing aluminum nitride sintered body Expired - Lifetime JPH0712981B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60048257A JPH0712981B2 (en) 1985-03-13 1985-03-13 Method for manufacturing aluminum nitride sintered body
US06/760,772 US4746637A (en) 1984-11-08 1985-07-31 Aluminum nitride sintered body and process for producing the same
EP85110151A EP0180724B1 (en) 1984-11-08 1985-08-13 Aluminum nitride sintered body and process for producing the same
DE8585110151T DE3576326D1 (en) 1984-11-08 1985-08-13 ALUMINUM NITRIDE INTERMEDIATE BODY AND METHOD FOR THE PRODUCTION THEREOF.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60048257A JPH0712981B2 (en) 1985-03-13 1985-03-13 Method for manufacturing aluminum nitride sintered body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6130837A Division JPH06321639A (en) 1994-05-23 1994-05-23 Production of aluminum nitride sintered compact

Publications (2)

Publication Number Publication Date
JPS61209959A true JPS61209959A (en) 1986-09-18
JPH0712981B2 JPH0712981B2 (en) 1995-02-15

Family

ID=12798389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60048257A Expired - Lifetime JPH0712981B2 (en) 1984-11-08 1985-03-13 Method for manufacturing aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JPH0712981B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62105960A (en) * 1985-10-30 1987-05-16 株式会社トクヤマ Manufacture of aluminum nitride sintered body
JPS63134569A (en) * 1985-10-31 1988-06-07 京セラ株式会社 Aluminum nitride sintered body
JPS63190761A (en) * 1987-01-30 1988-08-08 京セラ株式会社 Aluminum nitride-base sintered body
JPS6484648A (en) * 1987-09-28 1989-03-29 Kyocera Corp Aluminum nitride substrate for semiconductor device
JPH01224268A (en) * 1988-03-03 1989-09-07 Nec Corp Production of sintered aluminum nitride
JPH01301575A (en) * 1988-05-31 1989-12-05 Kyocera Corp Aluminum nitride base for semiconductor
JPH01301564A (en) * 1988-03-03 1989-12-05 Nec Corp Sintered material of aluminum nitride and production thereof
US5076981A (en) * 1988-12-07 1991-12-31 Sumitomo Chemical Co., Ltd. Process for production of aluminum nitride sintered body
JPH04182358A (en) * 1990-11-16 1992-06-29 Kyocera Corp Aluminum nitride sintered body
JPH06321639A (en) * 1994-05-23 1994-11-22 Toshiba Corp Production of aluminum nitride sintered compact
US6403510B1 (en) 1999-08-25 2002-06-11 Sumitomo Electric Industries, Ltd. Aluminum nitride sintered body and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201669A (en) * 1985-03-01 1986-09-06 住友電気工業株式会社 Aluminum nitride sintered body and manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201669A (en) * 1985-03-01 1986-09-06 住友電気工業株式会社 Aluminum nitride sintered body and manufacture

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517190B2 (en) * 1985-10-30 1993-03-08 Tokuyama Soda Kk
JPS62105960A (en) * 1985-10-30 1987-05-16 株式会社トクヤマ Manufacture of aluminum nitride sintered body
JPS63134569A (en) * 1985-10-31 1988-06-07 京セラ株式会社 Aluminum nitride sintered body
JPS63190761A (en) * 1987-01-30 1988-08-08 京セラ株式会社 Aluminum nitride-base sintered body
JPS6484648A (en) * 1987-09-28 1989-03-29 Kyocera Corp Aluminum nitride substrate for semiconductor device
JP2563809B2 (en) * 1987-09-28 1996-12-18 京セラ株式会社 Aluminum nitride substrate for semiconductors
JPH01301564A (en) * 1988-03-03 1989-12-05 Nec Corp Sintered material of aluminum nitride and production thereof
JPH01224268A (en) * 1988-03-03 1989-09-07 Nec Corp Production of sintered aluminum nitride
JPH01301575A (en) * 1988-05-31 1989-12-05 Kyocera Corp Aluminum nitride base for semiconductor
US5076981A (en) * 1988-12-07 1991-12-31 Sumitomo Chemical Co., Ltd. Process for production of aluminum nitride sintered body
JPH04182358A (en) * 1990-11-16 1992-06-29 Kyocera Corp Aluminum nitride sintered body
JPH06321639A (en) * 1994-05-23 1994-11-22 Toshiba Corp Production of aluminum nitride sintered compact
US6403510B1 (en) 1999-08-25 2002-06-11 Sumitomo Electric Industries, Ltd. Aluminum nitride sintered body and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0712981B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
EP0180724B1 (en) Aluminum nitride sintered body and process for producing the same
CA1186346A (en) Sintered bodies of aluminum nitride
US4698320A (en) Aluminum nitride sintered body
JPS61209959A (en) Manufacture of aluminum nitride
CA2016336C (en) Silicon nitride sintered bodies and method of manufacturing the same
JPS62153173A (en) Aluminum nitride sintered body and manufacture
JPS61117160A (en) Aluminium nitride sintered body and manufacture
CA1294290C (en) Silicon nitride sintered body and process for preparation thereof
JPS646141B2 (en)
JP2962466B2 (en) Aluminum nitride sintered body
JP2666942B2 (en) Aluminum nitride sintered body
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JP2938153B2 (en) Manufacturing method of aluminum nitride sintered body
JPS6110073A (en) Aluminum nitride sintered body
JPH0518776B2 (en)
JPS61158866A (en) Ceramic sintered body and manufacture
JP2535139B2 (en) Heat dissipation board
JPS62153170A (en) Silicon nitride ceramic sintered body and manufacture
JPS63139057A (en) Manufacture of silicon nitride base ceramics
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JPH06321639A (en) Production of aluminum nitride sintered compact
JP2876521B2 (en) Manufacturing method of aluminum nitride sintered body
JPS6110072A (en) Aluminum nitride sintered body
JPH0559073B2 (en)
JPH0535107B2 (en)