JPH01224268A - Production of sintered aluminum nitride - Google Patents

Production of sintered aluminum nitride

Info

Publication number
JPH01224268A
JPH01224268A JP63051076A JP5107688A JPH01224268A JP H01224268 A JPH01224268 A JP H01224268A JP 63051076 A JP63051076 A JP 63051076A JP 5107688 A JP5107688 A JP 5107688A JP H01224268 A JPH01224268 A JP H01224268A
Authority
JP
Japan
Prior art keywords
aluminum nitride
thermal conductivity
room temperature
sintered body
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63051076A
Other languages
Japanese (ja)
Inventor
Katsuhisa Ishikawa
石川 勝久
Hideo Takamizawa
秀男 高見沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63051076A priority Critical patent/JPH01224268A/en
Publication of JPH01224268A publication Critical patent/JPH01224268A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a heat-dissipating base material for large-scale integrated circuit of high density, high thermal conductivity, excellent mechanical and electrical properties, by calcining a combination of AlN powder with rare earth elements and alkaline earth metal fluoride. CONSTITUTION:An AlN powder ( of higher than 98% purity, preferably of about 2 micrometer average particle size), is mixed with rare earth oxides, preferably in 0.05-15wt.%, alkaline earth metal fluoride, preferably in 0.05-12wt.%, and they are calcined at elevated temperature (at 1,500-2,000 deg.C, preferably 1,600-2,000 deg.C) in a nonoxidative atmosphere to give a sintered alumi num nitride. Rare earth metal oxides are preferably, e.g., La2O3, CeO2, Nd2O3, Sm2O3, Gd2O3, while alkaline earth metal fluoride is, e.g., CaF2, SrF2, BaF2. According to the process of the present invention, AlN sintered products of more than 140W/mK of thermal conductivity can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒化アルミニウム焼結体の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing an aluminum nitride sintered body.

〔従来の技術〕[Conventional technology]

近年、半導体工業の急速な技術革新によりIC。 In recent years, due to rapid technological innovation in the semiconductor industry, IC.

LSIをはじめとする大規模集積回路は高集積化高出力
化が行われ、これに伴うシリコン素子の単位面積機りの
発熱量が大幅に増加してきた。そこで、シリコン素子の
通電動作による発熱のためシリコン素子の正常な動作を
妨ける問題が生じ始め ゛ている。それに伴って熱伝導
性の良い絶縁性基板材料が要求されている。
Large-scale integrated circuits such as LSIs have become highly integrated and have high output, and as a result, the amount of heat generated per unit area of silicon devices has increased significantly. Therefore, a problem has begun to arise in which the normal operation of the silicon element is disturbed due to the heat generated by the current-carrying operation of the silicon element. Accordingly, insulating substrate materials with good thermal conductivity are required.

従来、絶縁性基板材料としては、一般にアルミナ焼結体
が最も多く使用されている。しかしながら、最近ではア
ルミナ基板は熱放散に関しては満足しているとは言えず
、さらに熱放散性(熱伝導性)の優れた絶縁性基板材料
の開発が要求されるよう罠なってきた。このような絶縁
基板材料としては熱伝導性が良い(熱伝導率が大きい)
、電気絶縁性である、熱膨張率がシリコン単結晶の値に
近い、機械的強度が大きい等の特性が要求される。
Conventionally, alumina sintered bodies have generally been most commonly used as insulating substrate materials. However, recently, alumina substrates cannot be said to be satisfactory in terms of heat dissipation, and there has been a growing demand for the development of insulating substrate materials with even better heat dissipation (thermal conductivity). Good thermal conductivity for such an insulating substrate material (high thermal conductivity)
It is required to have properties such as electrical insulation, a coefficient of thermal expansion close to that of a silicon single crystal, and high mechanical strength.

ところで、良好な熱伝導性を有することが知られている
窒化アルミニウムは熱膨張率が約4.3X10”−’/
’C(室温から400℃の平均値)でアルミナ焼結体の
約7 X 10−’/”CK比べて小さく、シリコン素
子の熱膨張率3.5〜4.0X10″/℃に近い。また
機械的強度も曲げ強さで約50Kg/rm”程度を有し
、アルミナ焼結体の値20〜30 Kq/I!1m” 
K比べ高強度である電気絶縁性に優れた材料である。
By the way, aluminum nitride, which is known to have good thermal conductivity, has a coefficient of thermal expansion of approximately 4.3X10"-'/
'C (average value from room temperature to 400°C) is smaller than that of an alumina sintered body, which is approximately 7 x 10'/'CK, and is close to the thermal expansion coefficient of a silicon element, which is 3.5 to 4.0 x 10'/'C. In addition, the mechanical strength is approximately 50 Kg/rm" in terms of bending strength, and the value of alumina sintered body is 20 to 30 Kq/I!1m"
It is a material with high strength and excellent electrical insulation properties compared to K.

従来、窒化アルミニウム(AJ!N)焼結体は窒化アル
ミニウムの粉末を成形、焼結して得られるのであるが、
窒化アルミニウムは難焼結性物質であるため、緻密な焼
結体を得ることが困難である。
Conventionally, aluminum nitride (AJ!N) sintered bodies are obtained by molding and sintering aluminum nitride powder.
Since aluminum nitride is a difficult-to-sinter substance, it is difficult to obtain a dense sintered body.

そして現在までに焼結助剤を加え、常圧焼結法やホット
プレス法により緻密な窒化アルミニウム焼結体を得る試
みがなされている。昭和59年窯業協会年会予稿集のP
2O3には酸化イツトリウム(YzOl)を焼結助剤と
して加える窒化アルミニウム焼結体の製造方法が示され
ている。この方法によると熱伝導率が100W/mk(
室温)の窒化アルミニウム焼結体が得られている。
Up to now, attempts have been made to obtain a dense aluminum nitride sintered body by adding a sintering aid and using pressureless sintering or hot pressing. P of the proceedings of the 1981 Ceramics Association Annual Meeting
2O3 discloses a method for producing an aluminum nitride sintered body in which yttrium oxide (YzOl) is added as a sintering aid. According to this method, the thermal conductivity is 100W/mk (
An aluminum nitride sintered body at room temperature) was obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、近年め集積回路技術の発達に伴い、さら
に高熱伝導性を有する熱放散用基板材料が求められてい
る。
However, with the recent development of integrated circuit technology, there has been a demand for heat dissipating substrate materials having even higher thermal conductivity.

本発明の目的は、高熱伝導性を有し、さらに種々の有用
な性質を有する窒化アルミニウム焼結体の製造方法を提
供することにある。
An object of the present invention is to provide a method for producing an aluminum nitride sintered body having high thermal conductivity and various useful properties.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の窒化アルミニウム焼結体の製造方法は、窒化ア
ルミニウム粉末に添加剤として希土類元素の酸化物のう
ち少くとも一種とアルカリ土類元素のフッ化物のうち少
くとも一種とを配合した混合粉末を形成後、非酸化性雰
囲気で焼成することを特徴とする。
The method for producing an aluminum nitride sintered body of the present invention includes a mixed powder containing at least one kind of rare earth element oxide and at least one alkaline earth element fluoride as an additive to aluminum nitride powder. After formation, it is characterized by being fired in a non-oxidizing atmosphere.

希土類元素の酸化物は、酸化ランタン、酸化セリウム、
酸化ネオジウム、酸化サマリウム、酸化ガドリニウムが
好ましい。
Oxides of rare earth elements include lanthanum oxide, cerium oxide,
Neodymium oxide, samarium oxide, and gadolinium oxide are preferred.

アルカリ土類元素のフッ化物はフッ化カルシウム、フッ
′化ストロンチウム、フッ化バリクムカ好ましい。
Preferred examples of the alkaline earth element fluoride include calcium fluoride, strontium fluoride, and fluoride.

希土類元素の酸化物の添加量の合計は0.05〜15重
量%が好ましく、アルカリ土類元素のフッ化物の添加量
の合計は0.05〜12重量%が好ましい。
The total amount of oxides of rare earth elements added is preferably 0.05 to 15% by weight, and the total amount of fluorides of alkaline earth elements added is preferably 0.05 to 12% by weight.

〔作用〕[Effect]

窒化アルミニウム原料は純度として高純度のも■、例え
ば98チ以上のもOが好ましいが、95〜98チ程度の
ものも使用可能である。平均粒径は10μm以下、好ま
しくは2μm程度のものが良い。
The aluminum nitride raw material preferably has a high purity, for example, 98% or more, but it is also possible to use aluminum nitride having a purity of about 95 to 98%. The average particle size is preferably 10 μm or less, preferably about 2 μm.

添加剤としては希土類元素の酸化物のうち少くとも一種
とアルカリ土類元素のフッ化物のうち少くとも一種との
両方を加えることが好ましい。それは、希土類元素の酸
化物とアルカリ土類元素のフッ化物とを適量複合使用す
る事により熱伝導率を著しく増大させることができるか
らである。
As additives, it is preferable to add both at least one kind of oxide of rare earth elements and at least one kind of fluoride of alkaline earth elements. This is because thermal conductivity can be significantly increased by using an appropriate amount of rare earth element oxide and alkaline earth element fluoride in combination.

希土類元素の酸化物は、例えば、酸化ランタン。Examples of rare earth element oxides include lanthanum oxide.

酸化セリウム、酸化ネオジウム、酸化サマリウム。Cerium oxide, neodymium oxide, samarium oxide.

酸化ガドリニウムが好ましく、又、アルカリ土類元素の
フッ化物は、フッ化カルシウム、7ツ化ストロンチウム
、フッ化バリウムが好ましい。
Gadolinium oxide is preferred, and the alkaline earth element fluoride is preferably calcium fluoride, strontium heptadide, or barium fluoride.

特に、希土類元素の酸化物の添加量の合計量を0.05
〜15重量%及びアルカリ土類元素の添加量の合計量を
0.05〜12重量%にする事により熱伝導率が140
W/mk (室温)以上となり、従来の窒化アルミニウ
ム焼結体より大きな値が得られる。
In particular, the total amount of rare earth element oxides added is 0.05
-15% by weight and the total amount of alkaline earth elements added is 0.05-12% by weight, the thermal conductivity is 140%.
W/mk (room temperature) or higher, which is larger than the conventional aluminum nitride sintered body.

希土類元素の酸化物の添加量の合計は0.05重jkチ
以下では熱伝導率が140(W/mk)以下で効果が少
なく、15重量−以上では異相が多くなるので熱伝導率
が140 (W/m k )以下で小さくなる。
If the total amount of rare earth element oxides added is less than 0.05 weight jk, the thermal conductivity will be less than 140 (W/mk), and the effect will be small, and if it is more than 15 weight, different phases will increase, so the thermal conductivity will be 140. (W/m k ) or less.

アルカリ土類元素のフッ化物の添加量の合計は0.05
重xi以下では熱伝導率が140(W/mk)以下で効
果が少なく、12重景−以上では異相が多くなるので熱
伝導率が140 (W/mk )以下で小さくなる。
The total amount of fluoride added to alkaline earth elements is 0.05
When the weight is below xi, the effect is small when the thermal conductivity is below 140 (W/mk), and when it is above 12 x x i, there are many different phases, so the thermal conductivity becomes small when it is below 140 (W/mk).

以上の理由により、希土類元素の酸化物の添加量の合計
は0.05〜15重量%、アルカリ土類元素のフッ化物
の添加量の合計は0.05〜12重量%が好ましい。
For the above reasons, the total amount of rare earth element oxides added is preferably 0.05 to 15% by weight, and the total amount of alkaline earth element fluorides added is preferably 0.05 to 12% by weight.

次K、焼結は非酸化性雰囲気中で高温焼結することが必
要である。酸化性雰囲気中で焼結すると窒化アルミニウ
ムが酸化してしまい緻密な焼結体が得られない。非酸化
性雰囲気としては窒素ガス。
Next, sintering requires high temperature sintering in a non-oxidizing atmosphere. If sintered in an oxidizing atmosphere, aluminum nitride will be oxidized and a dense sintered body will not be obtained. Nitrogen gas is used as a non-oxidizing atmosphere.

ヘリウムガス、アルゴンガス、−液化炭素ガス。Helium gas, argon gas, - liquefied carbon gas.

水素ガス、真空雰囲気などが使用できるが、中でモ窒素
ガス、アルゴンガス、ヘリクムガス、真空算囲気が便利
で好ましい。焼結は1500〜2000℃で行われ、特
[1600〜2000℃が有効であるが、特にこれらの
温度範囲に限定されるものでは無い、また焼結は常圧焼
結法でも良いし、加圧焼結法によって本良い。加圧焼結
法としてはホットプレス法(−軸加工焼結法)とHIP
法(熱間静水圧加圧焼結法)のどちらでも可能である。
Hydrogen gas, vacuum atmosphere, etc. can be used, and nitrogen gas, argon gas, helium gas, and vacuum atmosphere are convenient and preferred. Sintering is performed at a temperature of 1,500 to 2,000°C, and 1,600 to 2,000°C is particularly effective, but it is not limited to these temperature ranges. Made using pressure sintering method. Pressure sintering methods include hot press method (-shaft processing sintering method) and HIP
Either method (hot isostatic pressing sintering method) is possible.

〔実施例〕〔Example〕

実施例1 平均粒径が2μmの窒化アルミニウム粉末KLa203
とCa Fzを添加し、次いでこの混合物粉末を室温で
2トン/−の圧力を加えて成形体とした。この成形体を
焼結炉において窒素ガス雰囲気下で2000℃で10時
間常圧焼結を行った。
Example 1 Aluminum nitride powder KLa203 with an average particle size of 2 μm
and CaFz were added thereto, and then a pressure of 2 tons/- was applied to this powder mixture at room temperature to form a compact. This compact was subjected to normal pressure sintering in a sintering furnace at 2000° C. for 10 hours in a nitrogen gas atmosphere.

第1図は第1の実施例による窒化アルミニウム焼結体の
室温での熱伝導率を示す特性図でおる。
FIG. 1 is a characteristic diagram showing the thermal conductivity at room temperature of the aluminum nitride sintered body according to the first example.

本発明の製造方法により室温での熱伝導率が140W/
mk以上の高熱伝導性窒化アルミニウム焼結体が得られ
た。熱膨張率は約4.3X10−6/’C1曲げ強度は
約2.6トン/CM1”以上であった。
By the manufacturing method of the present invention, the thermal conductivity at room temperature is 140W/
An aluminum nitride sintered body with high thermal conductivity of mk or more was obtained. The coefficient of thermal expansion was about 4.3 x 10-6/'C1, and the bending strength was about 2.6 tons/CM1'' or more.

尚、La2O3CaFl系は、成形後の取扱いに充分な
る注意を要さないと、成形体が膨潤し、ノ・ンドリンク
性が悪くなる。
Note that if the La2O3CaFl type product is not handled with sufficient care after molding, the molded product will swell and the non-linkability will deteriorate.

実施例2 平均粒径が2μmの窒化アルミニウム粉末KLazO1
とCaF2. SrF2. BaF2の少くとも一種を
添加し、次いでこの混合物粉末を室温で2トン/an″
の圧力を加えて成形体とした。この成形体を焼結炉にお
いて窒素ガス雰囲気下で2000℃で10時間常圧焼結
を行った。
Example 2 Aluminum nitride powder KLazO1 with an average particle size of 2 μm
and CaF2. SrF2. At least one type of BaF2 is added, and then the mixture powder is mixed at room temperature with 2 tons/an''
A molded body was obtained by applying a pressure of . This compact was subjected to normal pressure sintering in a sintering furnace at 2000° C. for 10 hours in a nitrogen gas atmosphere.

第1表に第2の実施例による窒化アルミニウム焼結体の
室温での相対密度と熱伝導率を示す。
Table 1 shows the relative density and thermal conductivity at room temperature of the aluminum nitride sintered body according to the second example.

本発明の製造方法により室温での熱伝導率が140W/
mk以上の高熱伝導性窒化アルミニウム焼結体が得られ
た。熱膨張率は約43X10−6/’C1曲げ強度は約
2.6トン/aIl”以上であった。
By the manufacturing method of the present invention, the thermal conductivity at room temperature is 140W/
An aluminum nitride sintered body with high thermal conductivity of mk or more was obtained. The coefficient of thermal expansion was about 43 x 10-6/'C1, and the bending strength was about 2.6 tons/al'' or more.

尚、LazOs  CaF2 、 LawOs  5r
Fz系は、成形後の取扱いに充分なる注意を要さないと
、成形体が膨潤し、ハンドリング性が悪くなる。
In addition, LazOs CaF2, LawOs 5r
If the Fz type product is not handled with sufficient care after molding, the molded product will swell and the handling properties will deteriorate.

第   1   表 木印は比較例である。Chapter 1 Table The wooden seal is a comparative example.

実施例3 平均粒径が2μmの窒化アルミニウム粉末にCeO2と
CaFlを添加し、次いでこの混合物粉末を室温で2ト
ン/口3の圧力を加えて成形体とした。この成形体を焼
結炉において窒素ガス雰囲気下で2000℃で10時間
常圧焼結を行った。
Example 3 CeO2 and CaFl were added to aluminum nitride powder with an average particle size of 2 μm, and then this mixed powder was formed into a compact by applying a pressure of 2 tons/port 3 at room temperature. This compact was subjected to normal pressure sintering in a sintering furnace at 2000° C. for 10 hours in a nitrogen gas atmosphere.

第2図は第3の実施例による窒化アルミニウム焼結体の
室温での熱伝導率を示す特性図である。
FIG. 2 is a characteristic diagram showing the thermal conductivity at room temperature of the aluminum nitride sintered body according to the third example.

本発明の製造方法により室温での熱伝導率が140W/
mk以上の高熱伝導性窒化アルミニウム焼結体が得られ
た。熱膨張率は約4.3X10−’/℃、曲げ強度は約
2.6トン/−以上であった。
By the manufacturing method of the present invention, the thermal conductivity at room temperature is 140W/
An aluminum nitride sintered body with high thermal conductivity of mk or more was obtained. The coefficient of thermal expansion was about 4.3 x 10-'/°C, and the bending strength was about 2.6 tons/- or more.

実施例4 平均粒径が2μmの窒化アルミニウム粉末にCeChと
CaFl、 5rFz、 BaF2の少くとも一種を添
加し、次いでこの混合物粉末を室温で2トン/−の圧力
を加えて成形体とした。この成形体を焼結炉において窒
素ガス雰囲気下で2000℃で10時間常圧焼結を行っ
た。
Example 4 At least one of CeCh, CaFl, 5rFz, and BaF2 was added to aluminum nitride powder having an average particle size of 2 μm, and then this mixed powder was formed into a compact by applying a pressure of 2 tons/− at room temperature. This compact was subjected to normal pressure sintering in a sintering furnace at 2000° C. for 10 hours in a nitrogen gas atmosphere.

第2表に第4の実施例による窒化アルミニウム焼結体の
室温での相対密度と熱伝導率を示す。
Table 2 shows the relative density and thermal conductivity at room temperature of the aluminum nitride sintered body according to the fourth example.

本発明の製造方法により室温での熱伝導率が14oW/
mk以上の高熱伝導性窒化アルミニウム焼結体が得られ
た。熱膨張率は約4.3X10−’/’C1曲げ強度は
約2,6トン/axL”以上であった。
By the manufacturing method of the present invention, the thermal conductivity at room temperature is 14oW/
An aluminum nitride sintered body with high thermal conductivity of mk or more was obtained. The coefficient of thermal expansion was about 4.3 x 10-'/'C1 bending strength was about 2.6 tons/axL'' or more.

実施例5 平均粒径が2μmの窒化アルミニウム粉末にNd、0゜
とCaFsを添加し、次いでこの混合物粉末を室温で2
トン/dの圧力を加えて成形体とした。この成形体を焼
結炉において窒素ガス雰囲気下で2000℃で10時間
常圧焼結を行った。
Example 5 Nd, 0° and CaFs were added to aluminum nitride powder with an average particle size of 2 μm, and then the mixed powder was heated at room temperature for 2 μm.
A pressure of ton/d was applied to form a compact. This compact was subjected to normal pressure sintering in a sintering furnace at 2000° C. for 10 hours in a nitrogen gas atmosphere.

第3図は第5図の実施例による窒化アルミニウム焼結体
の室温での熱伝導率を示す特性図である。
FIG. 3 is a characteristic diagram showing the thermal conductivity at room temperature of the aluminum nitride sintered body according to the embodiment shown in FIG.

本発明の製造方法により室温での熱伝導車が140W/
mk以上の高熱伝導性窒化アルミニウム焼結体が得られ
た。熱膨張率は約4.3X10”−’/’C1曲げ強度
は約2.6トン/−以上であった。
By the manufacturing method of the present invention, the heat conduction vehicle at room temperature is 140W/
An aluminum nitride sintered body with high thermal conductivity of mk or more was obtained. The coefficient of thermal expansion was about 4.3 x 10"-'/'C1 bending strength was about 2.6 tons/- or more.

実施例6 平均粒径が2μmの窒化アルミニウム粉末にNd、O。Example 6 Nd and O in aluminum nitride powder with an average particle size of 2 μm.

とCaFl、 5rFz、 BaF2の少くとも一種を
添加し、次いでこの混合物粉末を室温で2トン/億8の
圧力を加えて成形体とした。この成形体を焼結炉におい
て窒素ガス雰囲気下で2000℃で10時間常圧焼結を
行った。
At least one of CaFl, 5rFz, and BaF2 was added thereto, and then this mixture powder was formed into a compact by applying a pressure of 2 tons/80 million at room temperature. This compact was subjected to normal pressure sintering in a sintering furnace at 2000° C. for 10 hours in a nitrogen gas atmosphere.

第3表に第6の実施例による窒化アルミニウム焼結体の
室温での相対密度と熱伝導率を示す。
Table 3 shows the relative density and thermal conductivity at room temperature of the aluminum nitride sintered body according to the sixth example.

本発明の製造方法により室温での熱伝導率がt4oW/
mk以上の高熱伝導性窒化アルミニウム焼結体が得られ
た。熱膨張率は約4.3X10−6/’C1曲げ強度は
約2.6トン/−以上であった。
By the manufacturing method of the present invention, the thermal conductivity at room temperature is t4oW/
An aluminum nitride sintered body with high thermal conductivity of mk or more was obtained. The coefficient of thermal expansion was about 4.3 x 10-6/'C1 bending strength was about 2.6 tons/- or more.

第   3   表 *印は比較例である。Table 3 *marks are comparative examples.

実施例7 平均粒径が2μmの窒化アルミニウム粉末にSm2O3
とCaF2を添加し、次いでこの混合物粉末を室温で2
トン/3″の圧力を加えて成形体とした。この成形体を
焼結炉において窒素ガス雰囲気下で2000℃で10時
間常圧焼結を行った。
Example 7 Sm2O3 in aluminum nitride powder with an average particle size of 2 μm
and CaF2, and then the mixture powder was heated at room temperature for 2
A pressure of ton/3" was applied to form a compact. This compact was subjected to normal pressure sintering in a sintering furnace at 2000° C. for 10 hours in a nitrogen gas atmosphere.

第4図は第7の実施例による窒化アルミニウム焼結体の
室温での熱伝導率を示す特性図である。
FIG. 4 is a characteristic diagram showing the thermal conductivity at room temperature of the aluminum nitride sintered body according to the seventh example.

本発明の製造方法により室温での熱伝導率が140W/
mk以上の高熱伝導性窒化アルミニウム焼結体が得られ
た。熱膨張率は約4.3X10−’/℃、曲げ強度は約
2.6トン/−以上であった。
By the manufacturing method of the present invention, the thermal conductivity at room temperature is 140W/
An aluminum nitride sintered body with high thermal conductivity of mk or more was obtained. The coefficient of thermal expansion was about 4.3 x 10-'/°C, and the bending strength was about 2.6 tons/- or more.

実施例8 平均粒径が2μmの窒化アルミニウム粉末K Sm* 
OsとCaFl、 5rF1. BaFzの少くとも一
種を添加し、次いでこの混合物粉末を室温で2トン/c
m” C)圧力を加えて成形体とした。この成形体を焼
結炉において窒素ガス雰囲気下で2000℃で10時間
常圧焼結を行った。
Example 8 Aluminum nitride powder K Sm* with an average particle size of 2 μm
Os and CaFl, 5rF1. At least one type of BaFz is added, and then the mixture powder is mixed at room temperature at 2 tons/c.
C) Pressure was applied to form a molded body. This molded body was subjected to normal pressure sintering in a sintering furnace at 2000° C. for 10 hours in a nitrogen gas atmosphere.

第4表に第8の実施例による窒化アルミニウム焼結体の
室温での相対密度と熱伝導率を示す。
Table 4 shows the relative density and thermal conductivity at room temperature of the aluminum nitride sintered body according to the eighth example.

本発明の製造方法により室温での熱伝導率が140W/
mk以上の高熱伝導性窒化アルミニウム焼結体が得られ
た。熱膨張率は約4.3X10−’/’C1曲げ強度は
約2.6トン/−以上であった。
By the manufacturing method of the present invention, the thermal conductivity at room temperature is 140W/
An aluminum nitride sintered body with high thermal conductivity of mk or more was obtained. The coefficient of thermal expansion was about 4.3×10-'/'C1 bending strength was about 2.6 tons/- or more.

第   4   表 実施例9 平均粒径が2μmの窒化アルミニウム粉末KGdsOs
、!−CaFxt添加し、次いでこの混合物粉末を室温
で2トン/(!!I”の圧力を加えて成形体とした。こ
の成形体を焼結炉において窒素ガス雰囲気下で2000
℃で10時間常圧焼結を行った。
Table 4 Example 9 Aluminum nitride powder KGdsOs with an average particle size of 2 μm
,! -CaFxt was added, and then this mixture powder was made into a compact by applying a pressure of 2 tons/(!! I" at room temperature. This compact was heated to 2000 m
Normal pressure sintering was performed at ℃ for 10 hours.

第5図は第9の実施例による窒化アルミニウム焼結体の
室温での熱伝導率を示す特性図である。
FIG. 5 is a characteristic diagram showing the thermal conductivity at room temperature of the aluminum nitride sintered body according to the ninth example.

本発明の製造方法により室温での熱伝導率が140W/
mk以上の高熱伝導性窒化アルミニウム焼結体が得られ
た。熱膨張率は約4.3X 10−’/℃、曲げ強度は
約2.6トン/an″以上であった。
By the manufacturing method of the present invention, the thermal conductivity at room temperature is 140W/
An aluminum nitride sintered body with high thermal conductivity of mk or more was obtained. The coefficient of thermal expansion was about 4.3 x 10-'/°C, and the bending strength was about 2.6 tons/an'' or more.

実施例10 平均粒径が2μmの窒化アルミニウム粉末にGdz03
とCaFz、 5rF1 、 BaFzの少くとも一種
を添加し、次いでこの混合粉末を室温で2トン/(m”
の圧力を加えて成形体とした。この成形体を焼結炉にお
いて窒素ガス雰囲気下で2000℃で10時間常圧焼結
を行った。
Example 10 Gdz03 was added to aluminum nitride powder with an average particle size of 2 μm.
and at least one of CaFz, 5rF1, and BaFz, and then this mixed powder was mixed at room temperature at a rate of 2 tons/(m”
A molded body was obtained by applying a pressure of . This compact was subjected to normal pressure sintering in a sintering furnace at 2000° C. for 10 hours in a nitrogen gas atmosphere.

第5表に第10の実施例による窒化アルミニウム焼結体
の室温での相対密度と熱伝導率を示す。
Table 5 shows the relative density and thermal conductivity at room temperature of the aluminum nitride sintered body according to the tenth example.

本発明の製造方法により室温での熱伝導率が140W/
mk以上の高熱伝導性窒化アルミニウム焼結体が得られ
た。熱膨張率は約4.3X10−’/’C1曲げ強度は
約2.6トン/−以上であった。
By the manufacturing method of the present invention, the thermal conductivity at room temperature is 140W/
An aluminum nitride sintered body with high thermal conductivity of mk or more was obtained. The coefficient of thermal expansion was about 4.3×10-'/'C1 bending strength was about 2.6 tons/- or more.

第   5   表 *印は比較例である。Table 5 *marks are comparative examples.

実施例11 平均粒径が2μmの窒化アルミニウム粉末K L a 
20 、+CeO2、Nd2O5、SmzOs 、 G
dtOsを1〜5樵と、CaFt、 SrF2. Ba
Fzを1〜3種添加し、次いでこの混合物粉末を室温で
2トン/Q!l”の圧力を加えて成形体とした。この成
形体を焼結炉において窒素ガス雰囲気下で2000℃で
10時間常圧焼結を行った。
Example 11 Aluminum nitride powder K La with an average particle size of 2 μm
20, +CeO2, Nd2O5, SmzOs, G
dtOs, CaFt, SrF2. Ba
1 to 3 types of Fz are added, and then this mixed powder is mixed at room temperature at a rate of 2 tons/Q! A pressure of 1" was applied to obtain a compact. This compact was subjected to normal pressure sintering in a sintering furnace at 2000° C. for 10 hours in a nitrogen gas atmosphere.

第6表に第11の実施例による窒化アルミニウム焼結体
の室温での相対密度と熱伝導率を示す。
Table 6 shows the relative density and thermal conductivity at room temperature of the aluminum nitride sintered body according to the eleventh example.

本発明の製造方法により室温での熱伝導率が140W/
mk以上の高熱伝導性窒化アルミニウム焼結体が得られ
た。熱膨張率は約4.3X10=/1::、曲げ強度は
約2.6トン/an”以上でありた。
By the manufacturing method of the present invention, the thermal conductivity at room temperature is 140W/
An aluminum nitride sintered body with high thermal conductivity of mk or more was obtained. The coefficient of thermal expansion was about 4.3×10=/1::, and the bending strength was about 2.6 tons/an” or more.

〔発明の効果〕〔Effect of the invention〕

本発明の製造方法で製造した窒化アルミニウム焼結体は
高密度で熱伝導性に優れ、熱的特性、電気的特性9機械
的特性にも良好であったため、半導体工業等の放熱材料
としての応用以外にるつげ。
The aluminum nitride sintered body produced by the production method of the present invention has high density and excellent thermal conductivity, and has good thermal properties, electrical properties, and mechanical properties, so it can be applied as a heat dissipation material in the semiconductor industry, etc. Other than boxwood.

蒸着容器、耐熱ジグ高温部材等の高温材料としての応用
も可能であるなど、工業的に多くの利点を有するもので
ある。
It has many industrial advantages, such as being able to be used as a high-temperature material for vapor deposition containers, heat-resistant jigs, high-temperature members, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第5図はそれぞれ本発明の第1.第3、第5
.第7.第9の実施卸による窒化アルミニウム焼結体の
室温での熱伝導率を示す特性図である。 代理人 弁理士  内 原   音 ¥1図 ^Fz(重量比) cah(重量比) CaFz (重量比) C(zFz (重量比少 CaFz(重量比] 手続補正書(自発)
1 to 5 respectively show the first embodiment of the present invention. 3rd, 5th
.. 7th. FIG. 9 is a characteristic diagram showing the thermal conductivity at room temperature of an aluminum nitride sintered body according to a ninth embodiment. Agent Patent Attorney Uchihara Oto ¥1 Figure ^ Fz (weight ratio) cah (weight ratio) CaFz (weight ratio) C(zFz (weight ratio small CaFz (weight ratio) Procedural amendment (voluntary)

Claims (1)

【特許請求の範囲】[Claims]  窒化アルミニウム粉末に添加剤として希土類元素の酸
化物の群の中から選ばれた少なくとも一種とアルカリ土
類元素のフッ化物の群の中から選ばれた少くとも一種と
を用いることを特徴とする窒化アルミニウム焼結体の製
造方法。
Nitriding characterized by using at least one selected from the group of oxides of rare earth elements and at least one selected from the group of fluorides of alkaline earth elements as additives to aluminum nitride powder. Method for producing aluminum sintered body.
JP63051076A 1988-03-03 1988-03-03 Production of sintered aluminum nitride Pending JPH01224268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63051076A JPH01224268A (en) 1988-03-03 1988-03-03 Production of sintered aluminum nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63051076A JPH01224268A (en) 1988-03-03 1988-03-03 Production of sintered aluminum nitride

Publications (1)

Publication Number Publication Date
JPH01224268A true JPH01224268A (en) 1989-09-07

Family

ID=12876718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63051076A Pending JPH01224268A (en) 1988-03-03 1988-03-03 Production of sintered aluminum nitride

Country Status (1)

Country Link
JP (1) JPH01224268A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209959A (en) * 1985-03-13 1986-09-18 株式会社東芝 Manufacture of aluminum nitride
JPS6241766A (en) * 1985-08-13 1987-02-23 株式会社トクヤマ Aluminum nitride sintered body and manufacture
JPS6252180A (en) * 1985-08-30 1987-03-06 株式会社トクヤマ Aluminum nitride composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209959A (en) * 1985-03-13 1986-09-18 株式会社東芝 Manufacture of aluminum nitride
JPS6241766A (en) * 1985-08-13 1987-02-23 株式会社トクヤマ Aluminum nitride sintered body and manufacture
JPS6252180A (en) * 1985-08-30 1987-03-06 株式会社トクヤマ Aluminum nitride composition

Similar Documents

Publication Publication Date Title
JPS6353151B2 (en)
JPS61209959A (en) Manufacture of aluminum nitride
JPS6331434B2 (en)
JPH01224268A (en) Production of sintered aluminum nitride
JPH0336782B2 (en)
JPH0196067A (en) Production of aluminum nitride sintered body
JPH01215760A (en) Production of aluminum nitride sintered form
JPH02149469A (en) Production of aluminum nitride sintered body
JPH0328174A (en) Aluminum nitride sintered material
JPS63233079A (en) Black aluminum nitride sintered body and manufacture
JPS61261270A (en) Manufacture of aluminum nitride sintered body
JPS61201669A (en) Aluminum nitride sintered body and manufacture
JPS63218585A (en) High heat-conductive aluminum nitride sintered body and manufacture
KR20230037070A (en) Composition for manufacturing AlN ceramics including Sc2O3 as sintering aid and the AlN ceramics and the manufacturing method of the same
JPH02107569A (en) Production of aluminum nitride sintered body
JPS62246867A (en) Manufacture of aluminum nitride sintered body
JPH04275980A (en) Production of aluminum nitride sintered body
JPS61286266A (en) Manufacture of aluminum nitride base sintered body
JPH02204368A (en) Aluminum nitride sintered body and production thereof
JPH01301564A (en) Sintered material of aluminum nitride and production thereof
JPS61201670A (en) Aluminum nitride sintered body and manufacture
JP2876521B2 (en) Manufacturing method of aluminum nitride sintered body
JPH01115875A (en) Production of aluminum nitride sintered form
JPH0832593B2 (en) Manufacturing method of aluminum nitride sintered body
JPH0328173A (en) Aluminum nitride sintered material