JPS6053758A - Heat pump system utilizing metallic hydride - Google Patents

Heat pump system utilizing metallic hydride

Info

Publication number
JPS6053758A
JPS6053758A JP58162080A JP16208083A JPS6053758A JP S6053758 A JPS6053758 A JP S6053758A JP 58162080 A JP58162080 A JP 58162080A JP 16208083 A JP16208083 A JP 16208083A JP S6053758 A JPS6053758 A JP S6053758A
Authority
JP
Japan
Prior art keywords
metal hydride
hydrogen
hydrogen gas
tank
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58162080A
Other languages
Japanese (ja)
Other versions
JPH0316594B2 (en
Inventor
名迫 賢二
播磨 和彦
育郎 米津
本田 直二郎
酒井 貫史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58162080A priority Critical patent/JPS6053758A/en
Publication of JPS6053758A publication Critical patent/JPS6053758A/en
Publication of JPH0316594B2 publication Critical patent/JPH0316594B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は金属水素化物を利用するヒートポンプシステ
ムに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field This invention relates to a heat pump system that utilizes metal hydrides.

(ロ)従来技術 金属水素化物は、水素を貯蔵する材料と」2ての特性を
有するばかりでなく、エネルギー変換材料としても優れ
た特性を有し化学エネルギー、熱エネルギー、機械エネ
ルギーの3種のエネルギーを相互に変換する媒体として
の機能を有する。したがって金属水素化物は熱の貯蔵・
輸送、ヒートポンプ、太陽熱利用の冷暖房システム、熱
機関、コンプレッサーなどの媒体として期待され、現在
広く研究開発が行われている。
(b) Prior art Metal hydrides not only have the characteristics of hydrogen storage materials, but also have excellent characteristics as energy conversion materials, and can be used to generate three types of energy: chemical energy, thermal energy, and mechanical energy. It functions as a medium that mutually converts energy. Therefore, metal hydrides can be used for heat storage and
It is expected to be used as a medium for transportation, heat pumps, solar heating and cooling systems, heat engines, compressors, etc., and is currently being extensively researched and developed.

従来提案されているヒートポンプシステムは、基本的に
異なる2種類の金属水素化物を用いるものであり、排熱
などの熱源を特徴とする特開昭1’−用いるヒートポン
プシステムの場合には、熱源温度レベルに対して、大き
な温度上外が望めないという間頌点がある。
Conventionally proposed heat pump systems basically use two different types of metal hydrides. There is a memorandum about the fact that we can't expect a big rise in temperature compared to the current level.

(ハ)発明の目的 この発明は上記のような状況においてなされたもので、
金属水素化物を機械エネルギーから熱エネルギーに変換
するための材料として利用し、エネルギー的にはほとん
ど無価値の低温レベルの熱媒を用いて高温レベルの高温
熱負荷部と、該熱媒の湿度よりも低温の低温負荷部を稼
動しうるヒートポンプシステムを提供することを目的と
するものである。
(c) Purpose of the invention This invention was made under the above circumstances,
Metal hydride is used as a material to convert mechanical energy into thermal energy, and a low-temperature heat medium that is almost worthless in terms of energy is used to generate a high-temperature heat load section and the humidity of the heat medium. Another object of the present invention is to provide a heat pump system that can operate a low-temperature load section.

(ニ)発明の構成 この発明は、熱交換器付きの複数の金属水素化物槽と、
水素ガス強制移送手段と、この水素ガス強制移送手段を
介して各金属水素化物槽を連結する水素ガス移送管路と
、水素ガス強制移送手段のなる金属水素化物槽の熱交換
器より温熱をそれぞれ取り出しできるよう構成してなる
金属水素化物利用のヒートポンプシステムを提供するも
のである。
(d) Structure of the invention This invention comprises a plurality of metal hydride tanks equipped with heat exchangers,
A hydrogen gas forced transfer means, a hydrogen gas transfer pipe connecting each metal hydride tank via the hydrogen gas forced transfer means, and a heat exchanger for the metal hydride tank serving as the hydrogen gas forced transfer means, respectively. The present invention provides a heat pump system using metal hydride configured to allow extraction.

この発明のシステムに用いられる複数の金属水素化物槽
内に充填される金属水素化物の合金としては、同一湿度
においてほぼ同じ水素ガスプラトー圧を有するものであ
れば異なった金属でもよいが、一般に同一の金属が好ま
しい。例えばLaNiいMmNi5 (Ml!l tj
:ミツシュメタル)、lFeTiなどが挙げられる。
The metal hydride alloys filled in the plurality of metal hydride tanks used in the system of this invention may be different metals as long as they have approximately the same hydrogen gas plateau pressure at the same humidity, but generally they are the same. metals are preferred. For example, LaNi MmNi5 (Ml!l tj
: Mitsushmetal), lFeTi, etc.

各金属水素化物槽はいずれも水素ガス強制移送手段を介
l−て水素ガス流通管路で連結され、水素ガス強制移送
手段としては圧縮機(例えばロータリ一式コンプレッサ
ー、レシプロ式コンプレッサー)などが挙げられる。
Each metal hydride tank is connected by a hydrogen gas distribution pipe through a hydrogen gas forced transfer means, and the hydrogen gas forced transfer means includes a compressor (for example, a rotary compressor, a reciprocating compressor), etc. .

そして、比較的水素化の程度の高い金属水素化物(例え
ば水素で飽和されている)が充填されているひとつの金
属水素化物槽(水素取出し側)からもうひとつの比較的
水素化の程度の低い金属水素化物(例えば#1とんど水
素化されていないとか、飽和量の72程度の水素化がな
されている)の充填されているもうひとつの金属水素化
物槽(水素側の金属水素化物槽(A)内の金属水素化物
の脱水素化反応(吸熱反応)を行わせるとともに水素送
入側の金属水素化物槽(B)内の金属水素化物の水素化
反応(発熱反応)を行わせる。その結果A槽の具備する
熱交換器に導入される熱媒体(例えば水)が冷却されて
低湿負荷部(例えば冷房部など)に送られて利用され、
−万B槽の具備する熱交換器に導入される熱媒体は加熱
されて高温負荷部(例えば給湯部、暖房部など)に送ら
れて利用される。
Then, from one metal hydride tank (hydrogen extraction side) filled with metal hydride with a relatively high degree of hydrogenation (e.g. saturated with hydrogen), another with a relatively low degree of hydrogenation. Another metal hydride tank (metal hydride tank on the hydrogen side) filled with metal hydride (e.g., #1 is hardly hydrogenated or hydrogenated to about 72% of the saturation amount). A dehydrogenation reaction (endothermic reaction) of the metal hydride in (A) is performed, and a hydrogenation reaction (exothermic reaction) of the metal hydride in the metal hydride tank (B) on the hydrogen supply side is performed. As a result, the heat medium (e.g., water) introduced into the heat exchanger included in tank A is cooled and sent to a low humidity load section (e.g., air conditioner) for use.
- The heat medium introduced into the heat exchanger provided in the 10,000B tank is heated and sent to a high temperature load section (for example, a hot water supply section, a heating section, etc.) for use.

なおこの熱媒体はエネルギー的にほとんど無価値の室温
近傍のものでよい。
Note that this heat medium may be one that has almost no value in terms of energy and has a temperature close to room temperature.

またこの発明のシステムでは、上記のように、水素化の
程度の高い金属水素化物を充填した水素取り出し側の金
属水素化物槽と、水素化の程度の低い金属水素化物を充
填した水素送入側の金属水素化物槽との一対が選択され
て行われるが、その選択切換えは、槽内の金属水素化物
の水素化の程度を検出し、その結果を利用し当該技術分
野で公知の方法で行われる。なお上記水素化の程度の検
出は、槽内に設置した金属水素化物の温度測定器と水素
圧測定器による金属水素化物の温度と水素圧とからめる
とか、水素ガス流通管路に設置した(例えば圧縮機の入
口側)水素ガス流量計による流量からめるなどして行わ
れる。
Furthermore, in the system of the present invention, as described above, there is a metal hydride tank on the hydrogen extraction side filled with metal hydride with a high degree of hydrogenation, and a hydrogen supply side filled with metal hydride with a low degree of hydrogenation. A pair of metal hydride tanks is selected and switched, and the selection is switched by detecting the degree of hydrogenation of the metal hydride in the tank and using the result by a method known in the art. be exposed. The degree of hydrogenation can be detected by measuring the temperature of the metal hydride and the hydrogen pressure using a temperature measuring device for the metal hydride and a hydrogen pressure measuring device installed in the tank, or by measuring the temperature of the metal hydride and the hydrogen pressure by using a device installed in the hydrogen gas distribution pipe (e.g. This is done by determining the flow rate using a hydrogen gas flow meter (on the inlet side of the compressor).

(ホ)実施例 この発明を実施例の図面によって説明するがこの発明を
限定するものではない。
(E) Embodiments The present invention will be explained with reference to drawings of embodiments, but the present invention is not limited to the drawings.

第1図は、二つの金属水素化物槽を有するこの発明のシ
ステムの一実施例の系統図である。(1)ハ水素ガス強
制移送手段の水素圧縮機(圧縮比10:1;矢印は水素
移送方向を示す)、(2a)(2b)は金属水素化物槽
、(3a)(3b)は熱交換器であり、金属水素化物槽
(2a)(2b)は水素圧縮機(1)を介し、開閉弁付
き水素ガス取り出し管路(4&)と開閉弁付き水素ガス
送入管路(5a)並びに開閉弁付き水素ガス取り出し管
路(4b)と開閉弁付き水素ガス送入管路(5b)K工
って金属水素化物(2&)から(2b)へ及び(2b)
から(2a)へ水素ガスを移送しうるように連結されて
いる。また(6)−は約25℃の水の熱媒源であり(7
)はその熱媒(水)を熱媒流通管路(8a)と(8b)
によって熱交換器(3a)と(3b)に送るポンプであ
る。
FIG. 1 is a diagram of one embodiment of the system of the present invention having two metal hydride tanks. (1) Hydrogen compressor for forced hydrogen gas transfer means (compression ratio 10:1; arrow indicates hydrogen transfer direction), (2a) and (2b) are metal hydride tanks, (3a and 3b) are heat exchangers The metal hydride tanks (2a) and (2b) are connected via the hydrogen compressor (1) to a hydrogen gas take-off pipe (4&) with an on-off valve, a hydrogen gas feed pipe (5a) with an on-off valve, and a hydrogen gas inlet pipe (5a) with an on-off valve. A hydrogen gas take-off pipe with a valve (4b) and a hydrogen gas feed pipe with an on-off valve (5b) are connected from the metal hydride (2&) to (2b) and (2b)
It is connected so that hydrogen gas can be transferred from to (2a). Also, (6)- is a heat medium source of water at about 25℃, and (7
) transfers the heat medium (water) to heat medium distribution pipes (8a) and (8b).
This pump sends heat to the heat exchangers (3a) and (3b).

金属水素化物槽(2a)には、水素で飽和された金属水
素化物(TJ aN 15H6)約10に7が充填され
、一方金属水素化物槽(2b)にはほとんど水素化され
′工いない合金L aN isが約10Kg充填されて
おり、4.1 まず開閉弁(9b)(10b)を閉じ、開閉弁(9a)
(10a)を、開いておいて、水素圧縮機(1)を作動
させて、水、、、=; ’ 素ガス取り出し管路(4&)−水素圧縮機(1)−水素
ガス送入管路(5a) ’t−通じて水素ガスが金属水
素化物槽の(2a)から(2b)に50 l/!nin
の水素流量で移送さnる。その結果、金属水素化物槽(
2a)内の金属水素化物の脱水素化反応が起こり、一方
金属水素化物槽(2b)内の金属水素化物の水素化反応
が起こり、熱交換器(3a)(3b)それぞれに熱媒源
(6)から熱媒流通管路(8a)(8b)で送られる約
25℃の熱媒(約1b分)がそれぞれ冷却(約11℃)
及び加熱され(約39℃)、それぞれ低温負荷部(冷房
部)と高温負荷部(給湯部)に送られる。なお各熱交換
器に送る熱媒量を減少させれば熱交換器を通過した熱媒
温度は(3a)については低下し、(3b)Kついては
上昇させることができその逆も行える。
The metal hydride tank (2a) is filled with metal hydride saturated with hydrogen (TJ aN 15H6) of about 10 to 7, while the metal hydride tank (2b) is filled with mostly unhydrogenated alloy L. Approximately 10 kg of aN is is filled, 4.1 First, close the on-off valves (9b) (10b), and then close the on-off valve (9a).
(10a) is opened, the hydrogen compressor (1) is operated, and the water is... (5a) 't- Hydrogen gas flows from (2a) to (2b) of the metal hydride tank at 50 l/! nin
The hydrogen flow rate is n. As a result, a metal hydride tank (
A dehydrogenation reaction of the metal hydride in the metal hydride tank (2a) occurs, while a hydrogenation reaction of the metal hydride in the metal hydride tank (2b) occurs, and a heat medium source ( The approximately 25°C heat medium (approximately 1b minutes) sent through the heat medium distribution pipes (8a) and (8b) from 6) is cooled (approximately 11°C).
and heated (approximately 39°C) and sent to a low temperature load section (cooling section) and a high temperature load section (hot water supply section), respectively. Note that by reducing the amount of heat medium sent to each heat exchanger, the temperature of the heat medium passing through the heat exchanger can be lowered for (3a) and increased for (3b) K, and vice versa.

金属水素化物槽(2a)と(2b)内の金属水素化物の
脱水素化反応と水素化反応の少なくともいずれかが終了
したならば開閉が(9m)(10a)を閉じるが熱媒は
金属水素化物槽(2a)(2b)に送りつづける。
When at least one of the dehydrogenation reaction and hydrogenation reaction of the metal hydrides in the metal hydride tanks (2a) and (2b) is completed, the opening/closing switches (9m) and (10a) are closed, but the heating medium is metal hydrogen. Continue feeding to the chemical tanks (2a) and (2b).

・両槽内の金属水素化物の温度が熱媒の温度とほぼ同番
になった際に開閉弁(9b)(tob)を開いて水素、
7−1.。
・When the temperature of the metal hydride in both tanks becomes almost the same as the temperature of the heating medium, open the on-off valves (9b) (tob) to release hydrogen,
7-1. .

圧縮機(1)によって水素ガスが金属水素化物槽(2b
)がら(2a)K移送される。その結果前記とは逆に冷
却された熱媒が熱媒流通管路(8b)を通じて低温負荷
部へ、一方加熱され友熱媒が熱媒流通管路(8a)を通
じて高温負荷部へそれぞれ送られ冷却と加熱に利用され
る。
Hydrogen gas is transferred to the metal hydride tank (2b) by the compressor (1).
) is transferred (2a)K. As a result, contrary to the above, the cooled heat medium is sent to the low temperature load section through the heat medium distribution pipe (8b), and the heated friendly heat medium is sent to the high temperature load section through the heat medium flow pipe (8a). Used for cooling and heating.

上記の切換え操作は水素圧縮機(1)の入口側の水素流
通管路内に設けた水素ガス質量流量計によって測定した
水素ガス流量から両槽内の金属水素化物の水素化の程度
を検出し当該技術分野で公知の手段で行われる。
The above switching operation detects the degree of hydrogenation of the metal hydride in both tanks from the hydrogen gas flow rate measured by a hydrogen gas mass flow meter installed in the hydrogen flow pipe on the inlet side of the hydrogen compressor (1). This is done by means known in the art.

次に第2図に三つの金属水素化物槽を有するこの発明の
他の実施例の系統図を示した。
Next, FIG. 2 shows a system diagram of another embodiment of the present invention having three metal hydride tanks.

(ロ)は水素圧縮機(圧縮比No : l ;矢印は水
素移送方向を示す)、(12a)(12b)(12a)
は金属水素化物槽、(13a)(13b)(13c)は
熱交換器である。
(b) is a hydrogen compressor (compression ratio No: l; the arrow indicates the direction of hydrogen transfer), (12a) (12b) (12a)
is a metal hydride tank, and (13a), (13b), and (13c) are heat exchangers.

三つの金属水素化物槽(12a)(12b)(12o)
から延出する水素ガス取シ出し管路(14a)(14b
)(14c)は合流して水素圧縮機(ロ)の入口側に連
結され、−−シてひとつの金属水素化物槽から他のすべ
ての槽であり(ロ)はその熱媒を熱媒流通管路(18a
)(18b)(18o)によって熱交換器(13a)(
13b)(13c)に送るポンプである。
Three metal hydride tanks (12a) (12b) (12o)
Hydrogen gas extraction pipes (14a) (14b) extending from
) (14c) are joined together and connected to the inlet side of the hydrogen compressor (b), and - from one metal hydride tank to all other tanks, (b) is used to distribute the heat medium through the heat medium. Pipeline (18a
) (18b) (18o) heat exchanger (13a) (
13b) (13c).

金属水素化物槽(12a)Kは水素で飽和された金属水
素化物(r、aNj、H,)約1oKyが充填され、(
12b)は飽和量のほぼ4量の水素で水素化された同金
属水素化物約10に7が(12o )にはほとんど水素
化されていない同金属水素化物が約1oKy充填されて
いる。まず(12a)と(1,2b)の金属水素化物槽
が選択され作動される。すなわち開閉弁(19a)と(
20b )を開いて他を閉じ、水素圧縮機σ9を作動さ
せて、水素ガス取出し管路(14a)−水素圧縮機Qη
−水素ガス送入管路(15b)f:通じて水素ガスを金
属水素化物槽の(12a)から(12b)に移送される
。その結果、金属水素化物4+!11(12a)内の金
属水素化物の脱水素化反応が起こり、一方金属水素化物
楢(12b)1(図示せず)に送られて冷却と加熱に利
用される。
The metal hydride tank (12a) K is filled with about 10Ky of metal hydride (r, aNj, H,) saturated with hydrogen, (
12b) is filled with about 10 to 7 of the same metal hydride hydrogenated with approximately 4 of the saturated amount of hydrogen, while (12o) is filled with about 1 oKy of the same metal hydride which is hardly hydrogenated. First, metal hydride tanks (12a) and (1, 2b) are selected and operated. That is, the on-off valve (19a) and (
20b) and close the others, operate the hydrogen compressor σ9, and connect the hydrogen gas extraction pipe (14a) to the hydrogen compressor Qη.
- Hydrogen gas feed pipe (15b) f: Through which hydrogen gas is transferred from (12a) to (12b) of the metal hydride tank. As a result, metal hydride 4+! A dehydrogenation reaction of the metal hydride in 11 (12a) takes place, while the metal hydride is sent to the metal hydride tray (12b) 1 (not shown) for cooling and heating.

なお各金属水素化物槽の熱交換器に送る熱媒体の誉を変
化させることによって、各負荷部に送られる熱媒の温度
を適宜変化させることができる。
Note that by changing the temperature of the heat medium sent to the heat exchanger of each metal hydride tank, the temperature of the heat medium sent to each load section can be changed as appropriate.

金属水素化物槽(12a)内の金属水素化物の水素のほ
ぼ1/2量が脱水素化されるとともに金属水素化物槽(
12b)内の金属水素化物がほとんど水素で飽和される
と、金属水素化物槽の(x2b)が(12C)に切換え
られて連続して金属水素化物槽の(12a)と(12c
)とが作動される。すなわち、開閉弁(19a)と(2
0(1)が開かれ他の開閉弁を閉じ水素圧縮機(ロ)の
作動で水素取出し管路(14a)−水素圧縮機(11)
 −水素ガス送入管路(15a)を通じて水素ガスが金
属水素化物槽の(12a )から(12c)に移送さ扛
る。
Approximately half of the hydrogen in the metal hydride in the metal hydride tank (12a) is dehydrogenated and the metal hydride tank (12a) is dehydrogenated.
When the metal hydride in 12b) is almost saturated with hydrogen, (x2b) in the metal hydride tank is switched to (12C) and the metal hydride tank (12a) and (12c) are switched in succession.
) is activated. That is, the on-off valve (19a) and (2
0 (1) is opened and the other on-off valves are closed and the hydrogen compressor (b) is activated to connect the hydrogen extraction pipe (14a) to the hydrogen compressor (11).
- Hydrogen gas is transferred from (12a) to (12c) of the metal hydride tank through the hydrogen gas feed line (15a).

その結果、金属水素化物@(12a)内の金属水素化物
が引続き脱水素化され、一方金属水素化物槽(120)
内の金属水素化物の水素化反応が起こり、熱交換器(1
3a)(13c)それぞれに熱媒源(イ)から熱媒流通
管路(18a)(18c)で送られる約25℃の水]−
ト却と加熱に利用される。その間金属水素化物槽(12
b)の熱交換器(13’b)にも25℃の水の熱媒がさ
、れる。
As a result, the metal hydride in the metal hydride tank (12a) continues to be dehydrogenated, while the metal hydride in the metal hydride tank (120)
The hydrogenation reaction of the metal hydride in the heat exchanger (1
3a) (13c) Water at approximately 25°C sent from the heat medium source (a) through the heat medium distribution pipes (18a) and (18c), respectively]-
Used for cooling and heating. Meanwhile, the metal hydride tank (12
A heat medium of 25°C water is also introduced into the heat exchanger (13'b) of b).

金属水素化物槽(12a)内の金属水素化物の残りの水
素(飽和蓋の約/2量)のほぼ全量が脱水素化されると
ともに金属水素化物槽(12c)内の金属水素化物が飽
和蓋のほぼ1/2Itの水素で水素化されると、金属水
素化物槽が切換えられ金属水素化物槽の(12b)と(
120)が作動される。すなわち開閉弁(19b)(2
0o)が開かれ、他の開閉弁を閉じ水素圧縮機Q乃の作
動によって水素取り出し管路(14b)−水素圧縮機(
ロ)−水素送入管路(15c)を通じて水素ガスが金属
水素化物槽の(12b)から(12c)に移送される。
Almost all of the remaining hydrogen in the metal hydride tank (12a) (approximately half the amount of the saturated lid) is dehydrogenated, and the metal hydride in the metal hydride tank (12c) is removed from the saturated lid. After hydrogenation with approximately 1/2 It of hydrogen, the metal hydride tank is switched and the metal hydride tank (12b) and (
120) is activated. That is, the on-off valve (19b) (2
0o) is opened, and the other on-off valves are closed and the hydrogen compressor Q is operated to connect the hydrogen extraction pipe (14b) to the hydrogen compressor (
b) - Hydrogen gas is transferred from (12b) to (12c) of the metal hydride tank through the hydrogen feed pipe (15c).

その結果、金属水素化物槽(12b)内の金属水素化物
が脱水素化され、一方金属水素化物槽(12n)内の金
属水素化物が引続いて水素化され、熱交換器(13b)
(13c)そtl−ぞれに熱媒源(7)から熱媒流通管
路(18b)(18c)で送られる前記水の熱媒がそれ
ぞれ冷却及び加熱され低温負 12− 背部と高温負荷部に送られて冷却と加熱に利用される。
As a result, the metal hydride in the metal hydride tank (12b) is dehydrogenated, while the metal hydride in the metal hydride tank (12n) is subsequently hydrogenated and the metal hydride in the heat exchanger (13b)
(13c) The water heat medium sent from the heat medium source (7) through the heat medium flow pipes (18b) and (18c) is cooled and heated, respectively, to the low temperature negative region.12- Back and high temperature load section and used for cooling and heating.

この間金属水素化物槽(12a )の熱交換器第2図の
システムでは、以上のようにまず金属“ス−・ 水素化物槽の(12a)から(12b )へ水素ガスが
送ちれて作動され〔これを(12a) = (12b)
で表わ西 71す〕、次いで(12a) −= (12c)、(1
2b) −(12c)、と順次切換え、さらに(12b
)−(12a)、(12c)−−(12a)、(12c
)−(12b)と順次切換えられ、その後もとにも°ど
って同様の順に連続的に切換えて低温負荷部と高温負荷
部とを同時に稼動させることができる。また必要に応じ
てどちらかの負荷部だけを稼動させることもできる。
During this time, the heat exchanger system in Figure 2 for the metal hydride tank (12a) is operated by first sending hydrogen gas from (12a) to (12b) of the metal hydride tank as described above. [This (12a) = (12b)
West 71], then (12a) −= (12c), (1
2b) - (12c), and then (12b)
)-(12a), (12c)--(12a), (12c
) - (12b), and then return to the original state and continuously switch in the same order to operate the low temperature load section and the high temperature load section at the same time. Further, it is also possible to operate only one of the load sections as necessary.

なお上記の一連の榴の選択作動は、水素圧縮機の入口側
に連結された水素流通管路内に設けた質量流量計によっ
て検出した水素ガス流量から作動中の2槽内の金属水素
化物の水素化の程度をめて当該技術分野で公知の技術に
よって行うことができる。
The above series of selective operations is based on the hydrogen gas flow rate detected by a mass flow meter installed in the hydrogen flow pipe connected to the inlet side of the hydrogen compressor. The degree of hydrogenation can be determined by techniques known in the art.

なおこの発明のシステムの他の実施例として、四つ以上
の金属水素化物槽とひとつの水素ガス強制移送手段を有
するものもこの発明に含まれる。
Furthermore, as other embodiments of the system of the present invention, systems having four or more metal hydride tanks and one hydrogen gas forced transfer means are also included in the present invention.

いずれにしても同時に低温負荷部と高温負荷部と−に変
換することによって、はとんど利用価値の
In any case, by converting the low-temperature load section and the high-temperature load section at the same time, the utility value can be maximized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図はこの発明の実施例のヒートポンプシス
テムの系統図である。 (1) −−−−−・水素圧縮機、(2a)(2b)(
12a)(12b)(12c)・−−−金属水素化物槽
、(3a)(3b)(13a)(13b)(13c)−
’=’熱交換器、(4a)(4b)(14a)(14b
)(14c)・・・・・・水素ガス取出し管路、(5a
)(5b)(15a)(15b)(15c)−・・=水
系ガス送入管路、(6)(ト)・・・・・・熱媒源、(
7] Q7J・・・・・・ポンプ、(8a)(8b)(
18a)(18b)(18o) −熱媒流通管路、及び
(9a)(9b)(10a)(10b)(19a)(1
9b)(19o)(20a)(20b)(20c) −
−−−−−開閉弁。 tト李ト御ジ丁9−J販 工”Julイ・r温良 ハ1
1ヲ〕 、メ絆(113第1図
FIGS. 1 and 2 are system diagrams of a heat pump system according to an embodiment of the present invention. (1) -------・Hydrogen compressor, (2a) (2b) (
12a) (12b) (12c)---Metal hydride tank, (3a) (3b) (13a) (13b) (13c)-
'='Heat exchanger, (4a) (4b) (14a) (14b
)(14c)...Hydrogen gas extraction pipe, (5a
)(5b)(15a)(15b)(15c)--=water-based gas feed pipe, (6)(g)...heating medium source, (
7] Q7J...Pump, (8a) (8b) (
18a) (18b) (18o) - heat medium flow pipe, and (9a) (9b) (10a) (10b) (19a) (1
9b) (19o) (20a) (20b) (20c) −
−−−−−Opening/closing valve. tToritoMijicho9-JSales 工”Jul Lee・R Onryo Ha1
1ヲ〕, Me-kizuna (113 Fig. 1)

Claims (1)

【特許請求の範囲】 L 熱交換器付きの複数の金属水素化物槽と、水素ガス
強制移送手段と、この水素ガス強制移送水素ガス取出し
対象となる金属水素化物槽の熱交換器より冷熱を、水素
ガス送入対象となる金属水素化物槽の熱交換器より温熱
をそれぞれ取り出しできるよう構成してなる金属水素化
物利用のヒートポンプシステム。 2.3つの金属水素化物Mを有する特許請求の範囲第1
項記載のシステム。
[Scope of Claims] L A plurality of metal hydride tanks equipped with heat exchangers, hydrogen gas forced transfer means, and cold heat from the heat exchanger of the metal hydride tank from which the hydrogen gas is forcibly transferred and hydrogen gas is taken out. A heat pump system using metal hydrides that is configured to extract heat from each heat exchanger of the metal hydride tank to which hydrogen gas is supplied. 2. Claim 1 having three metal hydrides M
System described in section.
JP58162080A 1983-09-05 1983-09-05 Heat pump system utilizing metallic hydride Granted JPS6053758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58162080A JPS6053758A (en) 1983-09-05 1983-09-05 Heat pump system utilizing metallic hydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58162080A JPS6053758A (en) 1983-09-05 1983-09-05 Heat pump system utilizing metallic hydride

Publications (2)

Publication Number Publication Date
JPS6053758A true JPS6053758A (en) 1985-03-27
JPH0316594B2 JPH0316594B2 (en) 1991-03-05

Family

ID=15747700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58162080A Granted JPS6053758A (en) 1983-09-05 1983-09-05 Heat pump system utilizing metallic hydride

Country Status (1)

Country Link
JP (1) JPS6053758A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819954A (en) * 1981-07-29 1983-02-05 Toshiba Corp Data processing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819954A (en) * 1981-07-29 1983-02-05 Toshiba Corp Data processing device

Also Published As

Publication number Publication date
JPH0316594B2 (en) 1991-03-05

Similar Documents

Publication Publication Date Title
JPH046357A (en) Operation method of heat utilizing apparatus using hydrogen-occlusion alloy
EP0388132B1 (en) Thermal utilization system using hydrogen absorbing alloys
JPS6053758A (en) Heat pump system utilizing metallic hydride
Syed et al. Thermodynamic and heat‐hydrogen transfer analyses of novel multistage hydrogen‐alloy sorption heat pump
US9777968B1 (en) Metal hydride-based thermal energy storage systems
JPS6121272B2 (en)
JPS638391B2 (en)
JPH01305273A (en) Metal hydride heat pump
EP1329416A1 (en) Method of absorption-desorption of hydrogen storage alloy and hydrogen storage alloy and fuel cell using said method
CA1127857A (en) Hydrogen-hydride absorption systems and methods for refrigeration and heat pump cycles
JP2643235B2 (en) Metal hydride heating and cooling equipment
KR100386470B1 (en) Heat pump system using a metal hydride and apparatus
JPS6249163A (en) Metallic-hydride utilizing air-conditioning hot-water supplydevice
JPH02110263A (en) Heat-utilizing system utilizing hydrogen storage alloy and operation thereof
JPS5849493Y2 (en) heat storage device
JPH0355749B2 (en)
JPH07243717A (en) Hydrogen absorbing alloy heat pump
JPS591947B2 (en) Heat exchange system using hydrogen storage metal and its operation method
JP3518963B2 (en) Operating method of heat storage system using hydrogen storage alloy
JPS6223239B2 (en)
JPS5849496Y2 (en) heat storage device
JPS61134551A (en) Metallic hydride heat pump device
JPS5945914B2 (en) heat converter
JPS6186542A (en) Intermittent operation type heat pump device
JPH07218030A (en) Heat recovery/storage system by use of hydrogen adsorbing alloy