JPS6121272B2 - - Google Patents

Info

Publication number
JPS6121272B2
JPS6121272B2 JP53129907A JP12990778A JPS6121272B2 JP S6121272 B2 JPS6121272 B2 JP S6121272B2 JP 53129907 A JP53129907 A JP 53129907A JP 12990778 A JP12990778 A JP 12990778A JP S6121272 B2 JPS6121272 B2 JP S6121272B2
Authority
JP
Japan
Prior art keywords
heat
alloy
storage system
heat storage
cani
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53129907A
Other languages
Japanese (ja)
Other versions
JPS5556181A (en
Inventor
Takashi Sakai
Naojiro Pponda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP12990778A priority Critical patent/JPS5556181A/en
Publication of JPS5556181A publication Critical patent/JPS5556181A/en
Publication of JPS6121272B2 publication Critical patent/JPS6121272B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は蓄熱材に関する。さらに詳しくは、
この発明は太陽熱等の熱エネルギーを利用する蓄
熱材において、蓄熱系(高温側)としてCaNi5
金水素化物あるいはその合金を、一方の貯蔵系
(低温側)としてCaxMm1−xNi5合金水素化物
(ただし、式中のMmはミツシユメタル、xは0.8
〜0.9の数値を意味する)を組合せて用いる蓄熱
材に関する。さらにこの発明によつて、太陽熱等
の熱エネルギーで蓄熱系のCaNi5合金水素化物を
脱水素化させ、発生した水素で貯蔵系のCaxMm1
−xNi5合金(ただし、式中のMm、xは前記と同
一意味)を水素化して熱を貯蔵し、熱を利用した
い際は、低温で水素化しうる蓄熱系の合金を、貯
蔵系の合金水素化物より発生する水素で水素化
し、発生する反応熱を利用することからなる蓄熱
方法およびその蓄熱槽を提供するものである。 従来、熱エネルギーの蓄熱方法としては種々考
えられ検討されているが、例えば太陽熱の熱エネ
ルギーを貯蔵するために水、岩石などの顕熱を利
する方法、また最近では顕熱以外に例えば
Na2SO4,5H2O,Na2SO4・1CH2Oなどのような
水和塩による潜熱を用いるものも研究されてい
る。 しかし両者とも断熱材を必要とし、しかも断熱
効果の優れた材料で蓄熱槽を作成してもかなりの
エネルギーを放熱するので蓄熱効果は劣り、短期
蓄熱用にしか用いられない。 ところで、上記のような断熱を必要としない蓄
熱方法として、金属もしくは合金あるいはそれら
の水素化物を蓄熱材とする蓄熱方法(例えば、小
野修一郎、化学の領域、Vol.31,No.1,39頁〜47
頁、1977年参照)が提案されている。この方法
は、長期蓄熱の画期的な方法として期待されるも
のであるが、実質的かつ具体的な検討例は無いに
等しい。この蓄熱方法における蓄熱系の金属また
は合金としては、水素化反応熱が大きく80℃〜
100℃近傍での脱水素化と室温での水素化とが可
能であるもの、また低コスト水素吸蔵能力が大き
くかつ制御しやすい水素ガス圧力(10Kg/cm2
下;水素化、脱水素化が左記圧力以下で行ないう
ることを意味する)であることが望まれる。 一方貯蔵系の金属もしくは合金としては、反応
熱は大きい必要はなく、室温付近で水素化され低
コストで水素吸蔵能力の大きなしかも制御しやす
い水素ガス圧力(10Kg/cm2以下)であることが望
まれる。 これらの要望条件に合致する蓄熱材として
LaNi5,FeTi,MmmNi5などの合金の組合せが比
較的有望であると考えられる。しかしLaNi5は高
価であり、FeTiは安価であるが空気中に放置す
ると再水素化が困難となりその取扱いに問題があ
る。まさMmNi5は高価なLaを安価なミツシユメ
タルに置き換えたものとして注目されるが、その
プラトー圧が30Kg/cm2(25℃)〜50Kg/cm2(60
℃)程度と比較的高く圧力的に取扱いがむつかし
く実用化には問題がある。 上記のような合金水素化物あるいはその合金を
蓄熱材として用いる蓄熱方法における欠点を除く
ために、本発明者等は、鋭意研究した結果この発
明に到達したものである。 すなわちこの発明の蓄熱材の特徴は、蓄熱系と
してCaNi5合金水素化物あるいはその合金を、貯
蔵系としてCaxMm1−xNi5水素化物(ただし、式
中Mmはミツシユメタル、xは0.8〜0.9の数値を
意味する)あるいはその合金を組合わせたことに
ある。 この発明の蓄熱系のCaNi5合金は安価で、
(LaNi5より安価、FeTi,MmNi5と同等)水素化
反応熱がLaNi5と同程度(7.6Kcal/molH2)であ
り、またプラトー圧も低い(80℃で3.5Kg/cm2
25℃で0.5Kg/cm2)ので比較的取扱い易く活性化
も容易である等の特性を有する。一方貯蔵系の
CaxMm1−xNi5合金は、特にxが0.8〜0.9の場合
高温時のプラトー圧が、CaNi5合金の25℃におけ
るプラトー圧0.5Kg/cm2より高く、しか80℃にお
けるCaNi5合金のプラトー圧3.5Kg/cm2よりも低く
比較的安価(この合金の価格はCaNi5と比べて
Mm分だけ高価であるがMmの含有量が少ないの
でCaNi5と大差がない)である等の特性を有す
る。なお、これら合金については、サンドロツ
ク・ジー・デイーによるワシントン特別区で1977
年8月28日〜9月2日に開催された第12回
IECEC会議議事録951頁〜958頁が参照される。 第1表にCaNi5合金とCaxMm1−xNi5合金の反
応温度とプラトー圧(解離圧)を示した。
The present invention relates to a heat storage material. For more details,
This invention relates to a heat storage material that utilizes thermal energy such as solar heat, and uses CaNi 5 alloy hydride or its alloy as the heat storage system (high temperature side) and CaNi 5 alloy hydride (CaxMm 1 -xNi 5 alloy hydride) as one storage system (low temperature side). However, Mm in the formula is Mitsushi Metal, x is 0.8
- 0.9)). Furthermore, according to this invention, the CaNi 5 alloy hydride in the heat storage system is dehydrogenated using thermal energy such as solar heat, and the generated hydrogen is used to dehydrogenate the CaNi 5 alloy hydride in the storage system.
-xNi 5 alloy (Mm and x in the formula have the same meanings as above) When you want to store and use heat by hydrogenating it, use a heat storage alloy that can be hydrogenated at low temperatures, or a storage alloy. The present invention provides a heat storage method comprising hydrogenating a hydride with hydrogen generated and utilizing the generated reaction heat, and a heat storage tank thereof. In the past, various methods of storing thermal energy have been considered and studied. For example, there are methods that utilize the sensible heat of water, rocks, etc. to store the thermal energy of solar heat, and recently, methods other than sensible heat, such as
Methods using latent heat from hydrated salts such as Na 2 SO 4 , 5H 2 O, Na 2 SO 4 .1CH 2 O, etc. are also being studied. However, both require heat insulating material, and even if the heat storage tank is made of a material with excellent heat insulating properties, it radiates a considerable amount of energy, so the heat storage effect is inferior, and it can only be used for short-term heat storage. By the way, as a heat storage method that does not require insulation as described above, there is a heat storage method using metals, alloys, or their hydrides as heat storage materials (for example, Shuichiro Ono, Chemistry Area, Vol. 31, No. 1, p. 39). ~47
Page, 1977) has been proposed. Although this method is expected to be an innovative method for long-term heat storage, there are almost no practical and concrete examples of studies. In this heat storage method, the heat storage metal or alloy has a large hydrogenation reaction heat of 80℃~
It is possible to perform dehydrogenation at around 100℃ and hydrogenation at room temperature, and it also has low cost, large hydrogen storage capacity, and easy to control hydrogen gas pressure (10Kg/cm 2 or less; hydrogenation and dehydrogenation are possible. (meaning that it can be carried out at a pressure lower than the pressure shown on the left) is desirable. On the other hand, as storage metals or alloys, the heat of reaction does not need to be large, and the hydrogen gas pressure needs to be hydrogenated near room temperature, low cost, and have a large hydrogen storage capacity, as well as easy to control hydrogen gas pressure (10 kg/cm 2 or less). desired. As a heat storage material that meets these requirements
Combinations of alloys such as LaNi 5 , FeTi, and MmmNi 5 are considered to be relatively promising. However, LaNi 5 is expensive, and although FeTi is cheap, it is difficult to rehydrogenate it if left in the air, and there are problems in its handling. Masa MmNi 5 is attracting attention as a replacement of expensive La with inexpensive Mitsushi metal, but its plateau pressure is 30Kg/cm 2 (25℃) to 50Kg/cm 2 (60
℃), which makes it difficult to handle due to the pressure, which poses a problem for practical use. In order to eliminate the drawbacks of the heat storage method using an alloy hydride or its alloy as a heat storage material as described above, the present inventors conducted extensive research and arrived at the present invention. That is, the feature of the heat storage material of this invention is that CaNi 5 alloy hydride or its alloy is used as the heat storage system, and CaxMm 1 -xNi 5 hydride is used as the storage system (where Mm is Mitsushimetal and x is a value between 0.8 and 0.9. meaning) or a combination of their alloys. The CaNi 5 alloy for the heat storage system of this invention is inexpensive;
(Cheaper than LaNi 5 , equivalent to FeTi, MmNi 5 ) Hydrogenation reaction heat is similar to LaNi 5 (7.6 Kcal/molH 2 ), and plateau pressure is low (3.5 Kg/cm 2 at 80°C,
0.5Kg/cm 2 ) at 25°C, it has characteristics such as being relatively easy to handle and easy to activate. On the other hand, storage system
The CaxMm 1 -xNi 5 alloy has a plateau pressure at high temperature that is higher than the CaNi 5 alloy's plateau pressure at 25°C of 0.5 Kg/cm 2 , especially when x is 0.8 to 0.9, but the CaNi 5 alloy's plateau pressure at 80°C is 3.5Kg/ cm2 and relatively cheap (the price of this alloy is lower than CaNi 5
Although it is more expensive by the amount of Mm, it has characteristics such as being not much different from CaNi 5 because the Mm content is small. These alloys were developed in 1977 in the District of Columbia by Sandrock G.D.
The 12th event was held from August 28th to September 2nd.
Reference is made to IECEC meeting minutes, pages 951-958. Table 1 shows the reaction temperature and plateau pressure (dissociation pressure) of CaNi 5 alloy and CaxMm 1 -xNi 5 alloy.

【表】 次にこの発明を第1〜3図を用いて詳細に説明
する。まず第1図において一例として太陽熱集熱
器6により80℃に加熱された熱交換媒体5を熱交
換器6aに導き蓄熱系の合金水素化物1を加熱し
て脱水素化し、同時に蓄熱系2の水素ガス圧力が
第2図のP1からP2へと移動する。 次いで蓄熱系2と貯蔵系3の間のバルブ7を開
放し、P2の圧力下の水素を、貯蔵系3に導く。こ
の際貯蔵系として室温時のプラトー圧湾がP3でか
つP1<P3<P2の関係(第1,2図参照)を有する
合金水素化物を用いているので、(P2−P3)の水素
ガス圧力に相当する水素が蓄熱系の合金水素化物
より貯蔵系の合金へ移動し熱が貯蔵される。次に
熱を利用したい際は、室温下でバルブ7を開放す
ると(P3−P1)の水素ガス圧力に相当する水素
が、蓄熱系2へ移動し、そこで蓄熱系の合金と水
素とが反応し発生する熱が熱交換器8によつて利
用される。つまり具体的には、貯蔵系の合金水素
化物の25℃におけるプラトー圧が、蓄熱系の合金
水素化物の25℃におけるプラトー圧よりも高く、
かつ80℃における蓄熱系の合金水素化物のプラト
ー圧よりも低く、従つてこの水素サイクルにおい
てはP1<P3<P2の条件が満足されているので、圧
力差が水素移動のための駆動力となり、そのサイ
クル化がきわめて容易である。もちろんP1<P3
P2以外の条件では他の動力源例えば水素圧縮ポン
プによる加圧さらに合金の予備加熱等が必要であ
り、サイクル化が難しいわけである。 なお、10000Kcalの蓄熱量を想定し、蓄熱系の
合金水素化物をCaNi5H6とし、貯蔵系の合金水素
化物をCa0.9Mm0.1Ni5H6もしくはCa0.8Mm0.
2Ni5H6とした場合、それぞれの合金所要量の組合
せは、CaNi5145Kg〜195KgとCa0.9Mm0.1Ni5140Kg
〜190KgならびにCaNi5145Kg〜195KgとCa0.8Mm0.
2Ni5145Kg〜15Kgが好ましい。 次にこの発明を実施例で説明するがこの発明を
限定するものではない。 実施例 第1図の蓄熱系2つまり蓄熱槽にCaNi5合金1
を充填し、また貯蔵系3つまり貯蔵槽にCa0.
9Mm0.1Ni5合金4を充填して太陽熱蓄熱システム
を組立てた。ソーラーハウス(熱源;太陽熱)を
想定して、30000Kcal程度の蓄熱量に対応する蓄
熱系のCaNi5合金を510Kgならびに貯蔵系のCa0.
9Mm0.1Ni5合金を500Kg用意した(それぞれの合
金水素化物をCaNi5H6ならびにCa0.9Mm0.1Ni5H6
として算出した)。また蓄熱系ならびに貯蔵系の
槽の大きさは合金の充填率を50%とし、蓄熱系は
2.9m2(2.9L×1W×1Hm)、貯蔵系は2.8m2(2.8L
×1W×1Hm)とし、さらに水素使用による材料
劣化などを考慮し3mm厚のステンレスSUS 316を
使用した。 以上のシステムにおいて、まず集熱器6によつ
て約80℃に加温された熱交換媒体5、具体的には
水を蓄熱系2中の熱交換器6aに送り、蓄熱系の
合金水素化物1を脱水素化して3.5Kg/cm2の圧力
の水素を発生させ、バルブ7を開放し貯蔵系3に
該水素を導き室温下の貯蔵系の合金4を水素化し
て熱を貯蔵した。次いで室温においてバルブ7を
開放し貯蔵系の水素を蓄熱系に導き蓄熱系の合金
1を水素化し発熱させ、その熱で加熱された熱交
換媒体10、具体的には水を、放熱用熱交換器8
にに送り冷暖房および給湯用に使用した。この蓄
熱装置は、熱利用および蓄熱の試験で優れた熱効
率を示した。 なお、上記の実施例では二つの熱交換媒体5、
10の閉サイクルを用いて、集熱と放熱を行つて
いるが、夜間電力、排熱などを熱源として利用す
る場合、一つの熱交換媒体閉サイクルのみで両作
用を行わせることもできる。
[Table] Next, the present invention will be explained in detail using FIGS. 1 to 3. First, as an example in FIG. 1, the heat exchange medium 5 heated to 80°C by the solar heat collector 6 is introduced into the heat exchanger 6a to heat and dehydrogenate the alloy hydride 1 in the heat storage system, and at the same time Hydrogen gas pressure moves from P 1 to P 2 in Figure 2. Then, the valve 7 between the heat storage system 2 and the storage system 3 is opened, and hydrogen under the pressure of P 2 is introduced into the storage system 3. In this case, since an alloy hydride with a plateau pressure bay at room temperature of P 3 and a relationship of P 1 < P 3 < P 2 (see Figures 1 and 2) is used as a storage system, (P 2 − P 3 ) Hydrogen corresponding to the hydrogen gas pressure moves from the alloy hydride in the heat storage system to the alloy in the storage system, and heat is stored. Next, when you want to use heat, when you open the valve 7 at room temperature, hydrogen corresponding to the hydrogen gas pressure of (P 3 - P 1 ) moves to the heat storage system 2, where the alloy in the heat storage system and hydrogen interact. The heat generated by the reaction is utilized by the heat exchanger 8. Specifically, the plateau pressure at 25°C of the alloy hydride in the storage system is higher than the plateau pressure at 25°C of the alloy hydride in the heat storage system.
It is also lower than the plateau pressure of the alloy hydride in the heat storage system at 80°C, and therefore the condition of P 1 < P 3 < P 2 is satisfied in this hydrogen cycle, so the pressure difference is the driving force for hydrogen transfer. It is extremely easy to cycle. Of course P 1 <P 3 <
Conditions other than P 2 require pressurization from other power sources, such as a hydrogen compression pump, and preheating of the alloy, making it difficult to cycle. Assuming a heat storage amount of 10,000 Kcal, the alloy hydride in the heat storage system is CaNi 5 H 6 , and the alloy hydride in the storage system is Ca 0.9 Mm 0.1 Ni 5 H 6 or Ca 0.8 Mm 0 .
2 Ni 5 H 6 , the combination of required amounts of each alloy is CaNi 5 145Kg ~ 195Kg and Ca 0.9 Mm 0.1 Ni 5 140Kg
~190Kg and CaNi 5 145Kg ~ 195Kg and Ca0.8 Mm0 .
2 Ni 5 145Kg to 15Kg is preferred. Next, this invention will be explained with examples, but this invention is not limited to this invention. Example: CaNi 5 alloy 1 is added to the heat storage system 2 in Figure 1, that is, the heat storage tank.
The storage system 3, that is, the storage tank, is filled with Ca 0 .
A solar heat storage system was assembled by filling with 9 Mm 0.1 Ni 5 alloy 4. Assuming a solar house (heat source: solar heat), 510 kg of CaNi 5 alloy for the heat storage system, which can store about 30,000 Kcal, and Ca 0 for the storage system.
500 kg of 9 Mm 0.1 Ni 5 alloy was prepared (respective alloy hydrides were prepared as CaNi 5 H 6 and Ca 0.9 Mm 0.1 Ni 5 H 6
). In addition, the size of the tanks for the heat storage system and the storage system is such that the filling rate of the alloy is 50%, and the heat storage system is
2.9 m 2 (2.9 L × 1 W × 1 H m), storage system is 2.8 m 2 (2.8 L
× 1 W × 1 H m), and 3 mm thick stainless steel SUS 316 was used in consideration of material deterioration due to the use of hydrogen. In the above system, first, the heat exchange medium 5, specifically water, heated to about 80°C by the heat collector 6 is sent to the heat exchanger 6a in the heat storage system 2, and the alloy hydride in the heat storage system is 1 was dehydrogenated to generate hydrogen at a pressure of 3.5 kg/cm 2 , valve 7 was opened to introduce the hydrogen into storage system 3, and alloy 4 in the storage system at room temperature was hydrogenated to store heat. Next, at room temperature, the valve 7 is opened and hydrogen in the storage system is introduced into the heat storage system to hydrogenate the alloy 1 in the heat storage system to generate heat, and the heat exchange medium 10 heated by the heat, specifically water, is transferred to the heat exchanger for heat radiation. Vessel 8
It was used for heating, cooling, and hot water. This heat storage device showed excellent thermal efficiency in heat utilization and heat storage tests. In addition, in the above embodiment, two heat exchange media 5,
Although 10 closed cycles are used to collect and radiate heat, if nighttime electricity, waste heat, or the like is used as a heat source, both functions can be performed using only one heat exchange medium closed cycle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の蓄熱材と使用する蓄熱装
置の一例を示す機能説明図で、第2図は蓄熱系の
水素化特性図、第3図は貯蔵系の水素化特性図で
ある。 1……蓄熱系の合金水素化物あるいはその合
金、2……蓄熱系、3……貯蔵系、4……貯蔵系
の合金水素化物あるいはその合金、5……熱交換
媒体、6……集熱器、6a……熱交換器、7……
バルブ、8……熱交換器、9……熱交換媒体輸送
用ポンプ、10……熱交換媒体。
FIG. 1 is a functional explanatory diagram showing an example of a heat storage device used with the heat storage material of the present invention, FIG. 2 is a hydrogenation characteristic diagram of the heat storage system, and FIG. 3 is a hydrogenation characteristic diagram of the storage system. 1... Alloy hydride for heat storage system or its alloy, 2... Heat storage system, 3... Storage system, 4... Alloy hydride for storage system or alloy thereof, 5... Heat exchange medium, 6... Heat collection vessel, 6a... heat exchanger, 7...
Valve, 8... Heat exchanger, 9... Pump for transporting heat exchange medium, 10... Heat exchange medium.

Claims (1)

【特許請求の範囲】[Claims] 1 太陽熱等の熱エネルギーを利用する蓄熱材に
おいて、蓄熱系としてCaNi5合金水素化物あるい
はその合金を、一方の貯蔵系としてCaxMm1
xNi5合金水素化物(ただし、式中のMmはミツシ
ユメタル、xは0.8〜0.9の数値を意味する)を組
合せて用いることを特徴とする蓄熱材。
1 In heat storage materials that utilize thermal energy such as solar heat, CaNi 5 alloy hydride or its alloy is used as the heat storage system, and CaxMm 1 - as one storage system.
A heat storage material characterized by using a combination of xNi 5 alloy hydride (in the formula, Mm is Mitsushimetal and x means a numerical value from 0.8 to 0.9).
JP12990778A 1978-10-20 1978-10-20 Heat-storing material Granted JPS5556181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12990778A JPS5556181A (en) 1978-10-20 1978-10-20 Heat-storing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12990778A JPS5556181A (en) 1978-10-20 1978-10-20 Heat-storing material

Publications (2)

Publication Number Publication Date
JPS5556181A JPS5556181A (en) 1980-04-24
JPS6121272B2 true JPS6121272B2 (en) 1986-05-26

Family

ID=15021333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12990778A Granted JPS5556181A (en) 1978-10-20 1978-10-20 Heat-storing material

Country Status (1)

Country Link
JP (1) JPS5556181A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104359231B (en) * 2013-10-22 2016-08-24 青岛玉兰祥商务服务有限公司 A kind of Solar Energy Heat Utilization System
CN104406308B (en) * 2013-10-22 2016-08-24 青岛玉兰祥商务服务有限公司 A kind of solar water heater system
CN104406223B (en) * 2013-10-22 2016-08-24 青岛玉兰祥商务服务有限公司 A kind of solar water heater system that radiator is set
CN103499150B (en) * 2013-10-22 2014-10-15 赵炜 Solar water heater system
CN104406307B (en) * 2013-10-22 2016-08-24 华北理工大学 A kind of solar heat water utilization system automatically controlling heating automatically
CN104359230B (en) * 2013-10-22 2016-08-24 青岛玉兰祥商务服务有限公司 A kind of solar water heater system

Also Published As

Publication number Publication date
JPS5556181A (en) 1980-04-24

Similar Documents

Publication Publication Date Title
Prasad et al. A critical review of high-temperature reversible thermochemical energy storage systems
Manickam et al. Future perspectives of thermal energy storage with metal hydrides
US4040410A (en) Thermal energy storage systems employing metal hydrides
CA1123293A (en) Reaction heat storage method for hydride tanks
JP3583857B2 (en) Hydrogen storage utilization equipment
JP2711274B2 (en) Heat storage, heat conversion and cold generation systems and methods
US4262739A (en) System for thermal energy storage, space heating and cooling and power conversion
Bhouri et al. Numerical investigation of H2 absorption in an adiabatic high-temperature metal hydride reactor based on thermochemical heat storage: MgH2 and Mg (OH) 2 as reference materials
Bao et al. Performance investigation of thermal energy storage systems using metal hydrides adopting multi-step operation concept
Choudhari et al. Metal hydrides for thermochemical energy storage applications
TW573107B (en) Atomically engineered hydrogen storage alloys having extended storage capacity at high pressures and high pressure hydrogen storage units containing variable amounts thereof
Bhouri et al. Feasibility analysis of a novel solid-state H2 storage reactor concept based on thermochemical heat storage: MgH2 and Mg (OH) 2 as reference materials
Bhogilla Numerical simulation of metal hydride based thermal energy storage system for concentrating solar power plants
JPS6121272B2 (en)
Chang et al. Numerical study on hydrogen and thermal storage performance of a sandwich reaction bed filled with metal hydride and thermochemical material
Suda Metal hydrides
Groll et al. Metal hydride devices for environmentally clean energy technology
US9777968B1 (en) Metal hydride-based thermal energy storage systems
TW305020B (en) The electric generator by using hydrogen-absorbing alloy and low heat
Cacciola et al. Chemical processes for energy storage and transmission
JPS5849496Y2 (en) heat storage device
JPS591947B2 (en) Heat exchange system using hydrogen storage metal and its operation method
Babu et al. A novel cascade resorption system for high temperature thermochemical energy storage and large temperature lift energy upgradation
CN114962993A (en) Hydrogen storage fuel cell air conditioning system and hydrogenation equipment
JPS5913512Y2 (en) heat storage device