JPS6049971B2 - magnetic recording medium - Google Patents

magnetic recording medium

Info

Publication number
JPS6049971B2
JPS6049971B2 JP5156178A JP5156178A JPS6049971B2 JP S6049971 B2 JPS6049971 B2 JP S6049971B2 JP 5156178 A JP5156178 A JP 5156178A JP 5156178 A JP5156178 A JP 5156178A JP S6049971 B2 JPS6049971 B2 JP S6049971B2
Authority
JP
Japan
Prior art keywords
magnetic
thin film
magnetic recording
recording medium
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5156178A
Other languages
Japanese (ja)
Other versions
JPS54143111A (en
Inventor
正敏 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5156178A priority Critical patent/JPS6049971B2/en
Publication of JPS54143111A publication Critical patent/JPS54143111A/en
Publication of JPS6049971B2 publication Critical patent/JPS6049971B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は高分子フィルムのような非磁性基体上にFe、
Co、Ni等の強磁性金属またはそれらの合金若しくは
金属間化合物を主体とする磁性体の薄膜を真空蒸着法、
電気メッキ法、化学メッキ法、スパッタリング法、イオ
ンブレーティング法等で形成した磁気テープ等の磁気記
録媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides Fe,
A thin film of a magnetic material mainly composed of ferromagnetic metals such as Co and Ni or their alloys or intermetallic compounds is formed by vacuum evaporation,
The present invention relates to magnetic recording media such as magnetic tapes formed by electroplating, chemical plating, sputtering, ion blating, etc.

最近、磁気テープの薄型化に伴い、高分子フィルムのよ
うな非磁性基体上にFe、Co、Ni等の強磁性金属ま
たはそれらの合金若しくは金属間化合物の磁性体薄膜を
真空蒸着法、電気メッキ法、化学メッキ法、スパッタリ
ング法、イオンブレーティング法等て形成し、磁気記録
媒体として用いることが行われている。
Recently, as magnetic tapes have become thinner, magnetic thin films of ferromagnetic metals such as Fe, Co, Ni, or their alloys or intermetallic compounds have been deposited on non-magnetic substrates such as polymer films by vacuum evaporation or electroplating. The magnetic recording medium is formed by a method such as a chemical plating method, a sputtering method, an ion blating method, etc., and is used as a magnetic recording medium.

しかし、このような薄膜型磁気記録媒体は、その性質上
、磁性体薄膜の酸化という現象を避けることができない
という問題がある。
However, due to the nature of such thin film magnetic recording media, there is a problem in that the phenomenon of oxidation of the magnetic thin film cannot be avoided.

そこで、酸化防止のために保護膜を磁性体層上に形成す
ることが試みられているが、その主なものとしては、磁
性体薄膜上に耐酸化性のある金属、例えばAu、Pt、
RhNPdNCr)Al、、Si等を真空蒸着法、電気
メッキ法等で作成することや、高分子被膜を塗布するこ
となどである。
Therefore, attempts have been made to form a protective film on the magnetic layer to prevent oxidation.
RhNPdNCr)Al, Si, etc. may be formed by vacuum evaporation, electroplating, or the like, or a polymer film may be applied.

しかし、前者の場合では、磁性体薄膜と保護層との界面
におけるなじみや、膜面内のピンホール、水溶中での濃
度変化による膜組成の変化等の問題があり、必ずしも耐
酸化性を満足するとは言えない。
However, in the former case, there are problems such as compatibility at the interface between the magnetic thin film and the protective layer, pinholes in the film plane, and changes in the film composition due to concentration changes in water solution, and the oxidation resistance is not always satisfied. I can't say that I will.

また、後者でも磁性体薄膜と塗布被膜との界面における
密着性があまり良くなく、録音・再生時の損失を許容範
囲内に納められる程度に薄く塗布する時、すなわち、塗
布被膜の厚さを0.2μ以下にする時には、高分子被膜
を磁性体薄膜表面上に均一な厚さで塗布することは表面
張力による凝集、基体表面からの凹凸性の反映等により
困難であつた。本発明はこのような問題点に鑑み成され
たものであり、第1図に示すように高分子フィルムのよ
うな非磁性基体1上に形成した磁性体薄膜2上に、前記
非磁性基体1の凹凸に平行に均一な膜厚で窒化金属の薄
膜3を形成したものである。
In addition, even in the latter case, the adhesion at the interface between the magnetic thin film and the coated film is not very good, and when the coating is applied thinly enough to keep the loss during recording and playback within the allowable range, in other words, the thickness of the coated film is reduced to 0. When the thickness is less than .2 μm, it is difficult to apply a polymer film to a uniform thickness on the surface of a magnetic thin film due to agglomeration due to surface tension, reflection of irregularities from the substrate surface, etc. The present invention has been made in view of these problems, and as shown in FIG. A thin film 3 of metal nitride is formed with a uniform thickness parallel to the irregularities of the surface.

なお、本発明において窒化金属の薄膜3は、全・てが窒
化された金属てあつても、薄膜3の外部表面側または磁
性体薄膜2側の一部が窒化された金属であつてもよい。
ところで、従来、金属表面に窒化膜を形成させる方法と
しては、アンモニアガスの雰囲気中でi10000C以
上に加熱することが必要であつたが、磁気記録媒体の場
合は、高温中で熱処理を施した場合、極めて重大な磁気
特性の変化を生じさせることになる。
In addition, in the present invention, the metal nitride thin film 3 may be a metal that is entirely nitrided, or may be a metal that is partially nitrided on the outer surface side of the thin film 3 or on the side of the magnetic thin film 2. .
By the way, the conventional method of forming a nitride film on a metal surface required heating it to a temperature of 10000C or more in an ammonia gas atmosphere, but in the case of magnetic recording media, when heat treatment is performed at a high temperature, , resulting in extremely significant changes in magnetic properties.

従つて本発明では比較的低温で窒化膜の生成可能な窒素
またはアンモニア等の窒素化合物の蒸気中で、公知の真
空蒸着法、スパッタリング法、イオンブレーティング法
で金属の窒化物の薄膜の形成を行う。
Therefore, in the present invention, a thin film of a metal nitride is formed by a known vacuum evaporation method, sputtering method, or ion blasting method in a vapor of nitrogen or a nitrogen compound such as ammonia, which can form a nitride film at a relatively low temperature. conduct.

この場合、被蒸発物の蒸気若しくはイオンと窒素原子ま
たはイオンが直接化学反応を起こし窒化物を形成するの
で、基体および薄膜は100′C以下に保持することが
可能である。また、本発明においては、磁性体薄膜上に
緻密な窒化物薄膜を形成するのて金属の磁性体薄膜の酸
化を抑止することが可能である。たとえ、窒化膜中にピ
ンホールが生じたような場合においても、窒素および窒
素化合物の蒸気中に金属磁性体薄膜も曝されることにな
るのでピンホール部分でも磁性体薄膜自体に窒化物が形
成される。このような効果は、特にスパッタリングやイ
オンブレーティング等の窒素原子または窒素化合物のイ
オンが特に多く発生する方法において最も有効に発揮さ
れる。ところで、窒化物の特長としてその硬度が大きい
ことがあげられるが、本発明において作成した,磁気記
録媒体は、従来のAI,Auなどで被覆した金属薄膜型
磁気記録媒体が、いわゆる引つ掛きに対して弱いのに対
し、硬度が大きいことによる優れた耐摩耗性を示す。
In this case, the vapor or ions of the material to be evaporated and the nitrogen atoms or ions undergo a direct chemical reaction to form a nitride, so that the temperature of the substrate and thin film can be maintained at 100'C or less. Further, in the present invention, by forming a dense nitride thin film on the magnetic thin film, it is possible to suppress oxidation of the metal magnetic thin film. Even if a pinhole occurs in the nitride film, the metal magnetic thin film will also be exposed to the vapor of nitrogen and nitrogen compounds, so nitride will form in the magnetic thin film itself even in the pinhole area. be done. Such an effect is most effectively exhibited particularly in a method such as sputtering or ion blating that generates a particularly large amount of nitrogen atoms or nitrogen compound ions. By the way, one of the features of nitride is its high hardness, but the magnetic recording medium created in the present invention has a problem that conventional metal thin film magnetic recording media coated with AI, Au, etc. However, due to its high hardness, it exhibits excellent wear resistance.

しかも、上述のA],Au等の軟い金属では、磁気ヘッ
ドとの接触時に摩擦が冫大きくなることが知られており
、接触型磁気ヘッドを使用して録音再生を行う場合は適
していない。一方、本発明によれば、従来の磁性粉体を
塗布した磁気テープ等の磁気記録媒体と比べても、充分
な磁気ヘッドとのなじみ易さを持つ金属薄膜3型磁気記
録媒体とすることができる。 *ゝ なお、窒
化物の母体となる金属材料としては、下地となる磁性体
薄膜の金属と同じ輯感のものの方が窒化物と磁性体薄膜
との密着性が良い。一般に、磁性体薄膜としては、Fe
,CO,Ni等の強磁性金属またはこれらを主体とした
合金が用いられており、窒化物の母体金属もFe,CO
,Niを用いる。しかし、窒化物を形成するものはこれ
らの母体と同じ元素に限定されないことは言うまでもな
いことである。l 次に、本発明の具体的な実施例を説
明する。
Moreover, it is known that soft metals such as A] and Au, as mentioned above, cause a significant increase in friction when they come into contact with magnetic heads, making them unsuitable for recording and playing back using contact-type magnetic heads. . On the other hand, according to the present invention, it is possible to create a metal thin film type 3 magnetic recording medium that has sufficient compatibility with a magnetic head compared to conventional magnetic recording media such as magnetic tape coated with magnetic powder. can. *ゝ Note that as the metal material that serves as the base material for the nitride, a material that has the same flexibility as the metal of the underlying magnetic thin film has better adhesion between the nitride and the magnetic thin film. Generally, magnetic thin films are made of Fe.
, CO, Ni, etc. or alloys mainly composed of these metals are used, and the base metals of nitrides are also Fe, CO, etc.
, Ni is used. However, it goes without saying that the elements that form nitrides are not limited to the same elements as these base materials. l Next, specific examples of the present invention will be described.

公知の真空蒸着法で、50℃に保持された厚さ16μの
ポリエチレンテレフタレートフィルム上に膜厚0.2μ
鉄薄膜を形成し、さらにその上に鉄の窒化物を形成した
。窒化物の作成条件は、まず真空槽内を10−6T0r
r以下に排気した後、排気バルブを閉じないで窒素ガス
を真空度が10−5T0rrになるまで導入し、さらに
アンモニアガスを5×10−4T0rrになるまで導入
する。このような条件で鉄をタングステンボートで蒸発
させることによつて厚さ0.05μの部分的に窒化され
た鉄薄膜を作成した。窒化物薄膜により被された磁気記
録媒体の耐腐食性は純水中に浸したあと、温度40℃、
相対湿度90%の恒温槽中に150Ctf間保持したあ
とも、磁気特性は蒸着直後のものと変化しないことが判
明した。
A film with a thickness of 0.2μ was deposited on a 16μ thick polyethylene terephthalate film maintained at 50°C using a known vacuum deposition method.
An iron thin film was formed, and iron nitride was further formed on top of it. The conditions for creating nitride are: first, the temperature inside the vacuum chamber is 10-6T0r.
After evacuation to below r, nitrogen gas is introduced until the degree of vacuum reaches 10-5 T0rr without closing the exhaust valve, and further ammonia gas is introduced until the vacuum level reaches 5 x 10-4 T0rr. By evaporating iron in a tungsten boat under these conditions, a partially nitrided iron thin film with a thickness of 0.05 μm was prepared. The corrosion resistance of a magnetic recording medium coated with a nitride thin film is determined by immersing it in pure water at a temperature of 40°C.
It was found that even after being kept in a constant temperature bath with a relative humidity of 90% for 150 Ctf, the magnetic properties did not change from those immediately after vapor deposition.

一方、窒化物処理を施さなかつた試料では150時間の
同条件で恒温槽で保持した後の保持力Hcと飽和磁束B
sにおいて約10%の減少が見られた。次表にその時の
特性を示す。
On the other hand, for the sample that was not subjected to nitride treatment, the coercive force Hc and saturation magnetic flux B after being held in a constant temperature bath under the same conditions for 150 hours
A decrease of approximately 10% was observed in s. The characteristics at that time are shown in the table below.

次に、本実施例において窒化膜を磁性体薄膜上4′に作
成したものについて、先端に4φの鋼球を取付け任意に
荷重をかけられる装置を用い、磁気記録媒体上に荷重を
かけてセットした後、磁気記録媒体を水平に1c!n移
動させた時の磁性体薄膜の剥雅量を比較したところ、第
2図に示すように窒化吻薄膜のない磁気記録媒体は曲線
aに示すようにその磁性体薄膜は80qの荷重で0.1
8wnの剥離が生じ、12011以上の荷重をかけた場
合は0.2T0n以上のIり離が生じた。
Next, in this example, the nitride film formed on the magnetic thin film 4' was set on the magnetic recording medium by applying a load using a device that attached a 4φ steel ball to the tip and could apply an arbitrary load. After that, horizontally move the magnetic recording medium to 1c! A comparison of the amount of peeling of the magnetic thin film when the magnetic thin film is moved by n, as shown in FIG. 1
Peeling of 8wn occurred, and when a load of 12011 or more was applied, I peeling of 0.2T0n or more occurred.

また、窒化物薄膜を設けた本発明による磁気記録媒体は
曲線bに示すようにその磁性体薄膜は80yの荷重で0
.17077!の剥離が生じ、120y以上の荷重をか
けた場合、その剥離量は除々に増加したが、窒化物薄膜
を形成したことにより、いわゆる引つ掛きによる剥離量
を大幅に減少させることができることを確認した。
Further, in the magnetic recording medium according to the present invention provided with a nitride thin film, as shown by curve b, the magnetic thin film becomes zero under a load of 80y.
.. 17077! When a load of 120y or more was applied, the amount of peeling gradually increased, but by forming a nitride thin film, the amount of peeling due to so-called catching can be significantly reduced. confirmed.

なお実施例では鉄の窒化物についてのみ記述したが、チ
タン、クロム、マンガン、ニッケル、コバルト、ニオブ
、タンタル等の窒化物を形成し易い元素あるいは合金に
よいても同様の効果を確認した。
In the examples, only iron nitrides were described, but similar effects were confirmed with elements or alloys that easily form nitrides, such as titanium, chromium, manganese, nickel, cobalt, niobium, and tantalum.

以上のように本発明によれば、磁気記録媒体の耐腐食性
および耐摩耗性を向上させることができるとともに、磁
気的特性の劣化を防止することができる非常に優れた磁
気記録媒体を得ることができる。
As described above, according to the present invention, it is possible to obtain an extremely excellent magnetic recording medium that can improve the corrosion resistance and wear resistance of the magnetic recording medium and prevent deterioration of magnetic properties. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による磁気記録媒体を示す断
面図、第2図は従来の磁気記録媒体と本発明による磁気
記録媒体とにおける磁性体薄膜に”加える荷重と剥離量
との関係を示す図である。 1・・・・・・非磁性基体、2・・・・・・磁性体薄膜
、3・・・・・窒化金属の薄膜。
FIG. 1 is a cross-sectional view showing a magnetic recording medium according to an embodiment of the present invention, and FIG. 2 is a relationship between the load applied to the magnetic thin film and the amount of peeling in a conventional magnetic recording medium and a magnetic recording medium according to the present invention. 1: Non-magnetic substrate, 2: Magnetic thin film, 3: Metal nitride thin film.

Claims (1)

【特許請求の範囲】[Claims] 1 金属またはそれらの合金若しくは金属間化合物を主
体とする磁性体薄膜を非磁性基体上に形成し、かつその
磁性体薄膜上に一部または全部が窒化された金属の薄膜
を形成したことを特徴とする磁気記録媒体。
1. A magnetic thin film mainly composed of metals, alloys thereof, or intermetallic compounds is formed on a non-magnetic substrate, and a thin film of metal that is partially or completely nitrided is formed on the magnetic thin film. magnetic recording media.
JP5156178A 1978-04-27 1978-04-27 magnetic recording medium Expired JPS6049971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5156178A JPS6049971B2 (en) 1978-04-27 1978-04-27 magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5156178A JPS6049971B2 (en) 1978-04-27 1978-04-27 magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS54143111A JPS54143111A (en) 1979-11-08
JPS6049971B2 true JPS6049971B2 (en) 1985-11-06

Family

ID=12890388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5156178A Expired JPS6049971B2 (en) 1978-04-27 1978-04-27 magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6049971B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130238A (en) * 1981-02-05 1982-08-12 Semiconductor Energy Lab Co Ltd Manufacture of magnetic recording medium
JPS57141025A (en) * 1981-02-20 1982-09-01 Sekisui Chem Co Ltd Production for magnetic recording medium
JPS57150130A (en) * 1981-03-12 1982-09-16 Fuji Photo Film Co Ltd Magnetic recording medium
JPS57153411A (en) * 1981-03-17 1982-09-22 Hitachi Maxell Ltd Magnetic recording medium and its manufacture
JPS57167172A (en) * 1981-04-07 1982-10-14 Victor Co Of Japan Ltd High density information recording and reproducing system
JPS57181428A (en) * 1981-04-30 1982-11-08 Hitachi Maxell Ltd Magnetic recording medium and its manufacture
DE3370710D1 (en) * 1982-11-19 1987-05-07 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPH061540B2 (en) * 1984-08-24 1994-01-05 富士写真フイルム株式会社 Magnetic recording medium
JPH061541B2 (en) * 1984-08-24 1994-01-05 富士写真フイルム株式会社 Magnetic recording medium
JPH061551B2 (en) * 1984-08-24 1994-01-05 富士写真フイルム株式会社 Method of manufacturing magnetic recording medium
JPH07101494B2 (en) * 1984-09-18 1995-11-01 松下電器産業株式会社 Metal thin film magnetic recording medium

Also Published As

Publication number Publication date
JPS54143111A (en) 1979-11-08

Similar Documents

Publication Publication Date Title
JPS6049971B2 (en) magnetic recording medium
JPS5819739A (en) Thin film magnetic recording medium
JPS5837615B2 (en) magnetic recording medium
JPS5897133A (en) Magnetic recording medium
JPH038164A (en) Sliding member for magnetic tape
JPH02172015A (en) Magnetic recording medium
JPS58138794A (en) Article having lubricating layer
JPS6154020A (en) Magnetic recording medium
JPH0621343B2 (en) Method for forming high corrosion resistant thin film
JPS58211324A (en) Magnetic recording medium
JPS59172160A (en) Magnetic recording medium
JPH01139761A (en) Sputtering target
JPS6233647B2 (en)
JPH0312817A (en) Magnetic recording medium
JPS59185028A (en) Magnetic recording medium
JPH0112834B2 (en)
JPS62183034A (en) Production of magnetic recording medium
JPS6066320A (en) Magnetic recording medium
JPS5847769B2 (en) magnetic recording medium
JPH07111773B2 (en) Magnetic recording medium
JPH065574B2 (en) Magnetic recording medium
JPH038111A (en) Magnetic tape
JPS6334723A (en) Magnetic recording medium
JPS63231716A (en) Magnetic recording medium
JPS60154331A (en) Magnetic recording medium