JPS6046181B2 - Vacuum deposition method - Google Patents

Vacuum deposition method

Info

Publication number
JPS6046181B2
JPS6046181B2 JP55078593A JP7859380A JPS6046181B2 JP S6046181 B2 JPS6046181 B2 JP S6046181B2 JP 55078593 A JP55078593 A JP 55078593A JP 7859380 A JP7859380 A JP 7859380A JP S6046181 B2 JPS6046181 B2 JP S6046181B2
Authority
JP
Japan
Prior art keywords
present
glow discharge
vacuum
base material
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55078593A
Other languages
Japanese (ja)
Other versions
JPS573830A (en
Inventor
紘一 篠原
隆志 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP55078593A priority Critical patent/JPS6046181B2/en
Priority to DE8181302513T priority patent/DE3172124D1/en
Priority to EP81302513A priority patent/EP0041850B2/en
Priority to US06/272,119 priority patent/US4393091A/en
Publication of JPS573830A publication Critical patent/JPS573830A/en
Publication of JPS6046181B2 publication Critical patent/JPS6046181B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は、光学分野、装飾分野、磁気記録分野等に供
せられる高分子成形物基材上に蒸着層を有する複合材を
連続して長尺て得る方法の改良に関するもので、特に帯
電による後述する諸幣害を有効に防止せんとするもので
、蒸着方法の改良に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an improvement in a method for continuously obtaining a long composite material having a vapor deposited layer on a polymer molded substrate, which is used in the optical field, decorative field, magnetic recording field, etc. In particular, the purpose is to effectively prevent the various damage caused by electrification, which will be described later, and relates to improvements in vapor deposition methods.

従来、蒸着技術において利用されたグロー放電処理は
、蒸着層を付着させる表面層に係るもので、その主な目
的は、蒸着層の付着強度の改良にあつた。
Glow discharge treatments conventionally utilized in vapor deposition technology concern the surface layer to which the vapor deposited layer is attached, and its main purpose has been to improve the adhesion strength of the vapor deposited layer.

これらに関する提案は数多く、グロー放電の種類、放
電ガスの種類等について広範な検討がなされ、グロー放
電処理、プラズマ処理等の呼び名で知られ、広義には周
知のスパッタリング、イオンエッチングも含んでいる。
There have been many proposals regarding these, and extensive studies have been made on the types of glow discharge, the types of discharge gas, etc., and the process is known by names such as glow discharge treatment and plasma treatment, and in a broad sense also includes well-known sputtering and ion etching.

しかし、これらの処理のいずれを採用しても、高分子
成形物層と蒸着層の接着強度には限りがあり、ブロッキ
ングにより蒸着層の剥離現象が基材がひきさかれる等の
問題があつた。 特に光学分野や磁気記録分野等で用い
られる表面性の優れた基材は長尺化し、控目することに
より上記トラブルの発生が目立ち、解決が待たれていた
However, no matter which of these treatments is used, there is a limit to the adhesive strength between the polymer molded layer and the vapor deposited layer, and there are problems such as the peeling phenomenon of the vapor deposited layer due to blocking and the tearing of the base material. . In particular, substrates with excellent surface properties used in the optical field, magnetic recording field, etc. are becoming longer and shorter, making the above-mentioned problems more noticeable, and a solution has been awaited.

本発明は、このような問題解決のためになされたもの
で以下本発明を図面に沿つて詳述する。
The present invention has been made to solve such problems, and the present invention will be described in detail below with reference to the drawings.

第1図は、対象となる複合材の断面図で、高分子成形
物基材1の上に真空蒸着法で形成した薄膜層2を有する
構造体で、本発明に係る処理面はAで示される面である
。なお、本発明は真空蒸着法については、スパッタリン
グ、イオンブレーティング等の公知の薄膜形成法で真空
雰囲気を必要とするいずれの方法についても適用される
点、および薄膜層2の構成、材料についても何ら限定さ
れるものでないことは当然である。 第2図は、本発明
を実施するための装置の一例を示した構成図であるが、
後述するように本構成にこだわることなく多くの構成を
とることができるのは勿論であるが、必ず第1図でのA
面をグロー放電雰囲気にさらす構成をとらなくてはなら
ない。
FIG. 1 is a cross-sectional view of the target composite material, which is a structure having a thin film layer 2 formed by vacuum evaporation on a polymer molded substrate 1, and the treated surface according to the present invention is indicated by A. It is a side that can be used. The present invention applies not only to the vacuum evaporation method but also to any known thin film forming method such as sputtering or ion blating that requires a vacuum atmosphere, and also to the structure and material of the thin film layer 2. Naturally, there are no limitations. FIG. 2 is a configuration diagram showing an example of an apparatus for carrying out the present invention.
As will be described later, it is of course possible to adopt many configurations without being particular about this configuration, but be sure to use A in Figure 1.
The structure must be such that the surface is exposed to a glow discharge atmosphere.

また、好ましくは蒸着を終えて捲き取るまでの間て本発
明を実施するのが好結果を生むが、少なくとも一度はA
面をグロー放電雰囲気にさらす必要があり、従来公知の
表面グロー放電処理との組み合わせについても本発明の
範囲である。 第2図において、真空槽3の内部4は排
気装置5により実用的には10−”〜10−5TorT
範囲に保たれる。勿論スパッタリング、イオンブレーテ
ィング等の場合はこの限りではない。しかし、通常の蒸
着条件範囲では、内部4とグロー室6とはなんらかの手
段により差圧が保持されるように構成される。7は隔壁
を模式的に示すが、ガイドローラ8とのシール方法等に
ついては公知の手法のいずれによつてもいいのは勿論で
ある。
Further, it is preferable to carry out the present invention after the vapor deposition is completed and before the film is rolled up, which produces good results.
It is necessary to expose the surface to a glow discharge atmosphere, and the scope of the present invention also includes combinations with conventionally known surface glow discharge treatments. In FIG. 2, the interior 4 of the vacuum chamber 3 is practically heated to 10-" to 10-5 TorT by means of an exhaust device 5.
kept within range. Of course, this does not apply to sputtering, ion blating, etc. However, under normal vapor deposition conditions, the interior 4 and the glow chamber 6 are configured to maintain a differential pressure by some means. 7 schematically shows a partition wall, but it goes without saying that any known method may be used for sealing with the guide roller 8.

真空槽3内には、移動する高分子成形物基材1と蒸発源
9が対向して配設される。図では蒸発源9として電子ビ
ーム加熱方式を模式的に示しているが、勿論、公知のい
ずれの加熱方式をとることは何ら差し支えない。水冷銅
ハース10に装填された蒸発物質9″に電子源11より
発生させた電子ビームを加速衝撃させて、加熱蒸発させ
る仕組みになつている。蒸発源9に対向して移動する高
分子成形物基材1は捲き出し軸12より、捲き取り軸1
3へ矢印方向に捲き取られる間で、目的に応じた蒸着工
程を通る。蒸着された複合材は、捲き取られる以前にグ
ロー放電雰囲気に蒸着面と反対の面がさらされることに
より本発明の効果が発揮される。第2図て、14,15
は絶縁された電極を示すが、例えば外部よりグロー室6
に積極的に導入した酸素、窒素、アルゴン等の気体を適
当な圧力に保持しながら、交番電圧を電極14,15間
に印加することにより容易に目的を達することができる
。以下本発明の具体的実施例について説明する。実施例
1基 材:ポリエステルフイルム (厚さ5μ〜12μ) 蒸着物質:CO(500A) 加熱方法:電子ビーム16KW フィルム移動速度:257TL/Min 真空度:6×10−5T0rr の条件で、グロー放電処理ありの場合となしの場合のブ
ロッキング現象を調べたところ、下表のようであつた。
Inside the vacuum chamber 3, a moving polymer molded substrate 1 and an evaporation source 9 are arranged facing each other. Although the figure schematically shows an electron beam heating method as the evaporation source 9, it goes without saying that any known heating method may be used. The evaporative material 9'' loaded in the water-cooled copper hearth 10 is heated and evaporated by being accelerated and impacted by an electron beam generated from an electron source 11.The polymer molded material moves in opposition to the evaporation source 9. The base material 1 is moved from the winding shaft 12 to the winding shaft 1.
While being rolled up in the direction of the arrow 3, it passes through a vapor deposition process depending on the purpose. The effects of the present invention are exhibited by exposing the surface of the deposited composite material opposite to the deposition surface to a glow discharge atmosphere before being rolled up. Figure 2, 14, 15
indicates an insulated electrode, but for example, if the glow chamber 6 is
The purpose can be easily achieved by applying an alternating voltage between the electrodes 14 and 15 while maintaining a gas such as oxygen, nitrogen, or argon, which has been actively introduced into the electrode, at an appropriate pressure. Specific examples of the present invention will be described below. Example 1 Base material: Polyester film (thickness 5μ to 12μ) Vapor deposition substance: CO (500A) Heating method: Electron beam 16KW Film movement speed: 257TL/Min Degree of vacuum: Glow discharge treatment under the conditions of 6×10-5T0rr When we investigated the blocking phenomenon with and without it, we found the results shown in the table below.

グロー放電の条件については、圧力範囲:10−1〜1
0−4T0rT′周波数 :直流〜44MHz 電圧:10■〜3KVp−9 電流密度:1〜600μA/電極単位面積ガスの種類:
残留気体,酸素,アルゴン,窒 素,二酸
化炭素等について調べたが、裏面をグロー放電処理する
ことが基本的に重要であり、その条件については、フィ
ルムの移動速度に応じて電流密度を増加させる点に留意
すればよく、特別な条件による有意性はないので、最も
実用に供し易い商用周波数・で残留気体雰囲気てのグロ
ー放電を用いて他の基材、蒸着条件についても本発明の
効果を確かめた。
Regarding glow discharge conditions, pressure range: 10-1 to 1
0-4T0rT' Frequency: DC ~ 44MHz Voltage: 10■ ~ 3KVp-9 Current density: 1 ~ 600μA/electrode unit area Gas type:
We investigated residual gas, oxygen, argon, nitrogen, carbon dioxide, etc., but it is fundamentally important to perform glow discharge treatment on the back side, and the conditions for this are as follows: increasing the current density according to the moving speed of the film. The effects of the present invention can be demonstrated for other substrates and deposition conditions by using glow discharge in a residual gas atmosphere at the most practical commercial frequency, since there is no significance due to special conditions. I confirmed it.

実施例2 基 材:ポリイミドフイルム(厚さ25μ)蒸着物質
:T1(400A)加熱方法:電子ビーム16KW フィルム移動速度:16rn,/Min 真空度 :1.5×10−5T0rr 実施例3 基 材:ポリプロピレンフイルム (厚さ4μ〜10μ)蒸着物質:A
1(500〜1000A) 加熱方法:誘導加熱6KW フィルム移動速度:60T1./Min 真空度 :8×10−5T0rr 実施例4 基 材:ポリエステルフイルム (厚さ5μ〜12μ)蒸着物質:
NlCr(600A)蒸 着:スパツタリング蒸着 (Ar,lO−2T0rr,1KW)フィル
ム移動速度:16m/Min上記いずれの実施例でも、
表面性が良くなる(およそ平均粗さで0.1μ以下)と
、生じてきたブロッキングの現象が本発明により解決さ
れることが明白になつた。
Example 2 Base material: Polyimide film (thickness 25μ) Vapor deposition material: T1 (400A) Heating method: Electron beam 16KW Film movement speed: 16rn,/Min Vacuum degree: 1.5×10-5T0rr Example 3 Base material: Polypropylene film (thickness 4μ~10μ) Deposited material: A
1 (500-1000A) Heating method: induction heating 6KW Film movement speed: 60T1. /Min Vacuum degree: 8×10-5T0rr Example 4 Base material: Polyester film (thickness 5μ to 12μ) Vapor deposition material:
NlCr (600A) deposition: Sputtering deposition (Ar, 1O-2T0rr, 1KW) Film moving speed: 16m/Min In any of the above examples,
It has become clear that as the surface properties improve (approximately average roughness of 0.1 μm or less), the phenomenon of blocking that has occurred can be solved by the present invention.

これは表面上のよい基材ほど顕著な剥離帯電現象の緩和
により、フィルム捲回時の軸に直角な方向の圧力緩和に
つながることが主原因と考えられるが、帯電そのものは
一時的なものであれ、永久的なものであれ、その効果は
同様であることを確認しており、帯電のメカニズムを問
わナに適用できるものであり、近年要求の高まつてきて
いる光学,装飾,磁気記録分野等における表面の平滑度
の高い基材への各種材料の蒸着、スパッタリング等にお
いて、その効果をいかんなく発揮するものである。
The main reason for this is thought to be that the better the base material on the surface, the more pronounced the peeling electrification phenomenon, which is alleviated, leading to the relaxation of pressure in the direction perpendicular to the axis during film winding, but the electrification itself is temporary. It has been confirmed that the effect is the same whether it is permanent or permanent, and it can be applied regardless of the charging mechanism, and it can be used in the fields of optics, decoration, and magnetic recording, where demand has been increasing in recent years. It fully demonstrates its effectiveness in vapor deposition, sputtering, etc. of various materials on substrates with high surface smoothness, etc.

以上のように本発明の真空蒸着方法によれば、帯電によ
る種々の弊害を除去した部材を提供することができるも
のであり、各種分野への応用価値は大なるものである。
As described above, according to the vacuum evaporation method of the present invention, it is possible to provide a member in which various harmful effects caused by charging are eliminated, and it has great application value in various fields.

図面の簡単な説明第1図は本発明の真空蒸着方法を適用
できる複合材の一例の断面図、第2図は本発明の真空蒸
着方法を実施するために使用する装置の一実施例の断面
正面図てある。
BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view of an example of a composite material to which the vacuum vapor deposition method of the present invention can be applied, and Fig. 2 is a cross-sectional view of an example of an apparatus used to carry out the vacuum vapor deposition method of the present invention. There is a front view.

1・・・・・・高分子成形物基材、2・・・・・・薄膜
層、3・・・・・・真空槽、6・・・・・・グロー室、
9・・・・・・蒸発源、14,15・・・・・電極。
1... Polymer molded product base material, 2... Thin film layer, 3... Vacuum chamber, 6... Glow chamber,
9... Evaporation source, 14, 15... Electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 真空雰囲気内を移動する高分子成形物基材に連続し
て薄膜を形成する前または後に、前記高分子成形物基材
の薄膜形成側の面と反対側の面をグロー放電雰囲気に露
呈することを特徴とする真空蒸着方法。
1. Before or after continuously forming a thin film on a polymer molded base material moving in a vacuum atmosphere, exposing the surface of the polymer molded base material opposite to the thin film forming side to a glow discharge atmosphere. A vacuum deposition method characterized by:
JP55078593A 1980-06-10 1980-06-10 Vacuum deposition method Expired JPS6046181B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP55078593A JPS6046181B2 (en) 1980-06-10 1980-06-10 Vacuum deposition method
DE8181302513T DE3172124D1 (en) 1980-06-10 1981-06-05 A method of vacuum depositing a layer on a plastics film substrate
EP81302513A EP0041850B2 (en) 1980-06-10 1981-06-05 A method of vacuum depositing a layer on a plastics film substrate
US06/272,119 US4393091A (en) 1980-06-10 1981-06-10 Method of vacuum depositing a layer on a plastic film substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55078593A JPS6046181B2 (en) 1980-06-10 1980-06-10 Vacuum deposition method

Publications (2)

Publication Number Publication Date
JPS573830A JPS573830A (en) 1982-01-09
JPS6046181B2 true JPS6046181B2 (en) 1985-10-15

Family

ID=13666200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55078593A Expired JPS6046181B2 (en) 1980-06-10 1980-06-10 Vacuum deposition method

Country Status (1)

Country Link
JP (1) JPS6046181B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191104A (en) * 2015-03-31 2016-11-10 住友金属鉱山株式会社 Sputtering filming method, metallized resin film manufacturing method using the former method, and sputtering filming apparatus
KR20170101796A (en) * 2016-02-29 2017-09-06 스미토모 긴조쿠 고잔 가부시키가이샤 Method for forming a film and method for manufacturing a laminate substrate using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922385A (en) * 1972-06-21 1974-02-27
JPS5342009A (en) * 1976-09-28 1978-04-17 Matsushita Electric Ind Co Ltd Preparation of magnetic recording medium
JPS5385403A (en) * 1977-01-07 1978-07-27 Matsushita Electric Ind Co Ltd Manufacture of magnetic recording medium
JPS53116115A (en) * 1977-03-18 1978-10-11 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS54137073A (en) * 1978-04-17 1979-10-24 Daicel Chem Ind Ltd Antistatic treatment of plastic molded article having abrasion resistant coating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922385A (en) * 1972-06-21 1974-02-27
JPS5342009A (en) * 1976-09-28 1978-04-17 Matsushita Electric Ind Co Ltd Preparation of magnetic recording medium
JPS5385403A (en) * 1977-01-07 1978-07-27 Matsushita Electric Ind Co Ltd Manufacture of magnetic recording medium
JPS53116115A (en) * 1977-03-18 1978-10-11 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS54137073A (en) * 1978-04-17 1979-10-24 Daicel Chem Ind Ltd Antistatic treatment of plastic molded article having abrasion resistant coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191104A (en) * 2015-03-31 2016-11-10 住友金属鉱山株式会社 Sputtering filming method, metallized resin film manufacturing method using the former method, and sputtering filming apparatus
KR20170101796A (en) * 2016-02-29 2017-09-06 스미토모 긴조쿠 고잔 가부시키가이샤 Method for forming a film and method for manufacturing a laminate substrate using the same

Also Published As

Publication number Publication date
JPS573830A (en) 1982-01-09

Similar Documents

Publication Publication Date Title
US4393091A (en) Method of vacuum depositing a layer on a plastic film substrate
JPH055894B2 (en)
EP0387904B1 (en) Method of producing thin film
JPH0318254B2 (en)
JPS6046181B2 (en) Vacuum deposition method
JPH0480448B2 (en)
JPH02247383A (en) Production of thin film
JPS5753539A (en) Method and apparatus for forming coating film in vacuum
JPS62185877A (en) Thin film vacuum forming device
JPH03153859A (en) Surface-modified plastic
JPH0382747A (en) Formation of thin metal-surface film excellent in corrosion resistance and adhesive strength
JPS6256567A (en) Production of metallic thin film
JPH02239428A (en) Production of metal thin film
JPS5831078A (en) Method and device for pretreatment of film substrate
JPS6112992B2 (en)
JPS58222439A (en) Magnetic recording medium and its manufacture
JPH0143446B2 (en)
JP2987406B2 (en) Film forming method and film forming apparatus
JPS63307258A (en) Production of thin metallic film
JPH01166329A (en) Production of magnetic recording medium
JP2003301260A (en) Winding type electron beam vacuum vapor deposition device
JPH0121540B2 (en)
JPS60184674A (en) Vacuum device for forming continuous thin film
JPS6247477A (en) Sputtering device
JPH0578822A (en) Production of thin film