JPH0578822A - Production of thin film - Google Patents

Production of thin film

Info

Publication number
JPH0578822A
JPH0578822A JP24308391A JP24308391A JPH0578822A JP H0578822 A JPH0578822 A JP H0578822A JP 24308391 A JP24308391 A JP 24308391A JP 24308391 A JP24308391 A JP 24308391A JP H0578822 A JPH0578822 A JP H0578822A
Authority
JP
Japan
Prior art keywords
thin film
cylindrical
metal thin
electron beam
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24308391A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Honda
和義 本田
Kaji Maezawa
可治 前澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24308391A priority Critical patent/JPH0578822A/en
Publication of JPH0578822A publication Critical patent/JPH0578822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To form the thin film of metal in vacuum without thermal damage of a supporting base body such as a polymer base plate by solving such a problem that the supporting base body receives thermal damage and the thin film is not formed when the adhesive properties of both the support. ing base body and a cylindrical can are deficient in the case of forming the thin film on the supporting base body in a method for producing the thin film. CONSTITUTION:In the case of forming a thin film directly or via a primary coat on a long-sized supporting base body 1 while running the supporting base body 1 along a cylindrical can 3 in vacuum, the surface of this cylindrical can 3 is covered with an insulator 13 and irradiated with charged particles 15 such as electron beams and ion beams before the thin film is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気記録媒体や装飾用
包装紙等において用いる薄膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thin film used in magnetic recording media, decorative wrapping paper and the like.

【0002】[0002]

【従来の技術】近代社会において薄膜の果たす役割は大
きく、その利用範囲の中でも装飾包装紙や磁気記録媒体
などにおいては大面積の金属薄膜を高速度・低コストで
形成すことが要求されている。大面積の金属薄膜を形成
する代表的な方法の一つとして、真空蒸着法を応用した
連続蒸着法がある。
2. Description of the Related Art In modern society, thin films play a large role, and it is required to form a large area metal thin film at high speed and at low cost in decorative packaging papers and magnetic recording media in the range of use. .. As a typical method for forming a large-area metal thin film, there is a continuous vapor deposition method to which a vacuum vapor deposition method is applied.

【0003】図2は従来の薄膜の製造方法において使用
する装置を示すものであり、この装置による方法は図に
示すように長尺の支持基体1を真空中で供給ロール2よ
り巻き出しつつ円筒状キャン3に沿って走行させながら
所望の蒸気入射角で電子ビーム4を照射して蒸発源5よ
り金属薄膜の蒸着を行い、その後巻き取りロール6に巻
き取る方法であり、この方法を用いることにより、金属
薄膜を高速かつ連続して形成することができる。例えば
磁気テープの製造においては、図2でポリエチレンテレ
フタレート(PET)などの高分子フィルム基板よりな
る支持基体1が円筒状キャン3の周面に沿って走行中
に、磁性材料が充填された蒸発源5から磁性層を電子ビ
ーム蒸着することによって磁気テープの量産ができる。
なお、図において、7は支持基体1の走行方向、8は開
口部9を備えたマスク、10は排気系11によって真空
排気された真空槽である。
FIG. 2 shows an apparatus used in a conventional method for manufacturing a thin film. As shown in the figure, the apparatus is a cylinder in which a long supporting substrate 1 is unrolled from a supply roll 2 in a vacuum. This is a method of irradiating an electron beam 4 at a desired vapor incident angle while running along a can 3 to deposit a metal thin film from an evaporation source 5, and then winding the metal thin film on a winding roll 6. This method is used. Thereby, a metal thin film can be formed continuously at high speed. For example, in the manufacture of a magnetic tape, an evaporation source filled with a magnetic material while a supporting substrate 1 made of a polymer film substrate such as polyethylene terephthalate (PET) in FIG. 2 is running along the circumferential surface of a cylindrical can 3. The magnetic tape can be mass-produced by subjecting the magnetic layer 5 to electron beam evaporation.
In the figure, 7 is the traveling direction of the support base 1, 8 is a mask having an opening 9, and 10 is a vacuum chamber that is evacuated by an exhaust system 11.

【0004】[0004]

【発明が解決しようとする課題】連続法によって金属薄
膜を形成する場合、支持基体1と円筒状キャン3との密
着性は安定した金属薄膜形成のためには非常に重要な問
題である。すなわち高速度で薄膜の形成を行うので、支
持基体1に付着する原子の凝縮熱は非常に大きく、支持
基体1と円筒状キャン3の密着性が不十分であると支持
基体1は熱損傷を受けるという課題がある。
When a metal thin film is formed by a continuous method, the adhesion between the supporting substrate 1 and the cylindrical can 3 is a very important problem for stable metal thin film formation. That is, since the thin film is formed at a high speed, the heat of condensation of the atoms adhering to the supporting base 1 is very large, and if the adhesion between the supporting base 1 and the cylindrical can 3 is insufficient, the supporting base 1 will be damaged by heat. There is a challenge to receive.

【0005】支持基体1から円筒状キャン3への熱の逃
げを十分にするために円筒状キャン3の表面を平滑にす
ることも一般に行われている。さらに支持基体1と円筒
状キャン3を静電引力によって張り付かせることも有効
である。その手段として、図3に示すように支持基体1
の表面に電子ビーム12を照射することが提案されてい
るが、支持基体1への電子打ち込みによる悪影響、特に
積層膜の場合の繰り返し電子照射によって支持基体1が
劣化するという課題がある。
It is also common practice to smooth the surface of the cylindrical can 3 in order to allow sufficient heat to escape from the support base 1 to the cylindrical can 3. Furthermore, it is also effective to stick the support base 1 and the cylindrical can 3 by electrostatic attraction. As a means for this, as shown in FIG.
It has been proposed to irradiate the surface of the substrate with the electron beam 12, but there is a problem that the supporting substrate 1 is deteriorated by the adverse effect of electron implantation into the supporting substrate 1, particularly repeated electron irradiation in the case of a laminated film.

【0006】本発明は上記課題を解決するものであり、
支持基体を何ら損傷することなく金属薄膜等を形成する
ことができる薄膜の製造方法を提供することを目的とす
る。
The present invention is intended to solve the above problems,
It is an object of the present invention to provide a thin film manufacturing method capable of forming a metal thin film or the like without damaging a supporting substrate.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
本発明は、真空中で長尺の支持基体を円筒状キャンに沿
って走行させつつ支持基体上に直接または下地層を介し
て金属薄膜を形成する薄膜の製造方法において、円筒状
キャンの表面を絶縁体で被覆し、金属薄膜の形成に先立
ち円筒状キャンの表面に荷電粒子を照射するものであ
る。
In order to achieve the above object, the present invention is directed to a metal thin film directly or on an underlayer while moving a long supporting substrate along a cylindrical can in a vacuum. In the method for producing a thin film for forming a metal film, the surface of the cylindrical can is covered with an insulator, and the surface of the cylindrical can is irradiated with charged particles prior to the formation of the metal thin film.

【0008】[0008]

【作用】したがって本発明によれば、表面が絶縁体であ
る円筒状キャンに荷電粒子を照射することにより、円筒
状キャン表面が帯電状態になり、この円筒状キャンに沿
って支持基体を走行させることによって支持基体は円筒
状キャンの表面に静電引力によって密着する。これによ
って蒸着時に支持基体が熱損傷を受けることなく、金属
薄膜が形成できる。また円筒状キャンに荷電粒子を照射
するので金属薄膜を積層形成する場合にも荷電粒子の繰
り返し照射による支持基体の劣化を防止することができ
る。
According to the present invention, therefore, by irradiating the cylindrical can whose surface is an insulator with charged particles, the surface of the cylindrical can becomes charged, and the supporting substrate is caused to travel along the cylindrical can. As a result, the supporting substrate is brought into close contact with the surface of the cylindrical can by electrostatic attraction. As a result, a metal thin film can be formed without heat damage to the supporting substrate during vapor deposition. Further, since the cylindrical can is irradiated with the charged particles, it is possible to prevent the deterioration of the supporting substrate due to the repeated irradiation of the charged particles even when the metal thin film is laminated.

【0009】[0009]

【実施例】以下、本発明の一実施例について図1ととも
に図2、図3と同一部分には同一番号を付して詳しい説
明を省略し、相違する点について説明する。図に示すよ
うに、排気系11によって真空排気された真空槽10の
中で供給ロール2から走行方向7に沿って巻出された長
尺の高分子基板よりなる支持基体1は金属薄膜形成用の
円筒状キャン3の周面に沿って走行中に電子ビーム4を
照射されている蒸発源5よりマスク8の開口部9より金
属薄膜の蒸着を受けた後に、巻き取りロール6に巻き取
られる。この際円筒状キャン3の周表面は絶縁体13で
覆われており、この部分に密着用電子ビーム源14から
電子ビーム15の照射を行う。また金属薄膜の多層化は
この工程を繰り返し行うことによって行われる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. 1 and FIG. 2 and FIG. As shown in the figure, a support base 1 made of a long polymer substrate unrolled along a traveling direction 7 from a supply roll 2 in a vacuum chamber 10 evacuated by an exhaust system 11 is for forming a metal thin film. After the metal thin film is vapor-deposited from the opening 9 of the mask 8 by the evaporation source 5 which is irradiated with the electron beam 4 while traveling along the peripheral surface of the cylindrical can 3, it is wound up by the winding roll 6. .. At this time, the peripheral surface of the cylindrical can 3 is covered with the insulator 13, and this portion is irradiated with the electron beam 15 from the contact electron beam source 14. The multi-layering of the metal thin film is performed by repeating this process.

【0010】(実施例1)支持基体1として厚さ10μ
mのポリエチレンテレフタレート基板(以下、PET基
板と記す)を用い、酸素ガスを導入しつつ蒸着を行うこ
とにより、金属薄膜として厚さ200nmのCo−O金
属薄膜(図示せず)を形成した。また、円筒状キャン3
の周表面は厚さ50μmのSiO2よりなる絶縁体13
で被覆した。密着用電子ビーム源14から円筒状キャン
3までの距離30cmから電子ビーム15を照射しなが
ら、膜堆積速度400nm/sで円筒状キャン3の温度
を変化させて蒸着を行った。
(Example 1) The supporting substrate 1 has a thickness of 10 μm.
A m-th polyethylene terephthalate substrate (hereinafter referred to as a PET substrate) was used to perform vapor deposition while introducing oxygen gas, thereby forming a 200 nm-thick Co—O metal thin film (not shown) as a metal thin film. Also, the cylindrical can 3
The peripheral surface of the insulator is made of SiO 2 and has a thickness of 50 μm.
Coated with. While irradiating the electron beam 15 from the contact electron beam source 14 to the cylindrical can 3 at a distance of 30 cm, vapor deposition was performed by changing the temperature of the cylindrical can 3 at a film deposition rate of 400 nm / s.

【0011】電子ビーム15を照射しない場合、円筒状
キャン3の温度が10゜C以下ではCo−O層の蒸着が
できたが、円筒状キャン3の温度が10゜Cを超えると
PET基板1の熱損傷が発生し、その温度が30゜C以
上ではPET基板1が分解して全く蒸着はできなかっ
た。
When the temperature of the cylindrical can 3 was 10 ° C. or lower, the Co—O layer could be vapor-deposited when the electron beam 15 was not irradiated, but when the temperature of the cylindrical can 3 exceeded 10 ° C., the PET substrate 1 was formed. When the temperature was 30 ° C. or higher, the PET substrate 1 was decomposed and vapor deposition could not be performed at all.

【0012】これに対して密着用電子ビーム源14を用
いて電子ビーム15を照射した場合には、例えば加速電
圧2kV、ビーム電流200mAとすることによって円
筒状キャン3の温度が30゜Cまで安定な蒸着を行うこ
とができた。同様の実験を円筒状キャン3の表面のSi
2よりなる絶縁体13の厚みのみを変えて行ったとこ
ろ、絶縁体13の厚さが10μmの時蒸着可能な円筒状
キャン3の温度は15゜C、20μmの時は20゜Cであ
った。
On the other hand, when the electron beam 15 is irradiated using the contact electron beam source 14, the temperature of the cylindrical can 3 is stabilized up to 30 ° C. by setting the acceleration voltage to 2 kV and the beam current to 200 mA, for example. It was possible to perform various vapor depositions. A similar experiment was conducted on the Si surface of the cylindrical can 3.
When only the thickness of the insulator 13 made of O 2 was changed, the temperature of the cylindrical can 3 capable of vapor deposition was 15 ° C when the thickness of the insulator 13 was 10 μm, and 20 ° C when it was 20 μm. It was

【0013】(実施例2)支持基体1として実施例と同
じPET基板を用い、酸素ガスを導入しつつ蒸着を行う
ことにより、金属薄膜として厚さ100nmのCo−O
金属薄膜を形成した。これを2回繰り返すことによって
200nmのCo−O金属薄膜を形成した。
(Embodiment 2) The same PET substrate as that used in the embodiment is used as the supporting base 1, and vapor deposition is carried out while introducing oxygen gas to form a metal thin film of Co-O having a thickness of 100 nm.
A metal thin film was formed. By repeating this twice, a Co-O metal thin film of 200 nm was formed.

【0014】円筒状キャン3の周表面は厚さ50μmの
SiO2よりなる絶縁体13で被覆し、密着用電子ビー
ム源14から円筒状キャン3までの距離30cmから電
子ビーム15を照射しながら膜堆積速度を400nm/
sで円筒状キャン温度を変化させて蒸着を行った。
The peripheral surface of the cylindrical can 3 is covered with an insulator 13 made of SiO 2 having a thickness of 50 μm, and a film is formed by irradiating the electron beam 15 from a distance 30 cm from the electron beam source 14 for adhesion to the cylindrical can 3. Deposition rate 400 nm /
Vapor deposition was performed by changing the cylindrical can temperature at s.

【0015】電子ビーム15を照射しない場合、2層目
形成時の円筒状キャン3の温度が0゜C以下ではCo−
O層の蒸着ができたが、その温度が0゜Cを超えるとP
ET基板1の熱損傷が発生し、2層目形成時の円筒状キ
ャン3の温度が15゜C以上になるとPET基板1が分
解して全く蒸着はできなかった。これに対して密着用電
子ビーム源14を用いて電子ビーム15を照射した場合
には、例えば加速電圧2kV、ビーム電流200mAと
することによって2層目形成時の円筒状キャン3の温度
が35゜Cまで安定な蒸着を行うことができた。
When the temperature of the cylindrical can 3 at the time of forming the second layer is not higher than 0 ° C. when the electron beam 15 is not irradiated, Co-
Deposition of the O layer was completed, but if the temperature exceeds 0 ° C, P
When the ET substrate 1 was thermally damaged and the temperature of the cylindrical can 3 at the time of forming the second layer was 15 ° C. or higher, the PET substrate 1 was decomposed and vapor deposition could not be performed at all. On the other hand, when the electron beam 15 is irradiated using the contact electron beam source 14, the temperature of the cylindrical can 3 at the time of forming the second layer is 35 ° by setting the acceleration voltage to 2 kV and the beam current to 200 mA, for example. It was possible to perform stable vapor deposition up to C.

【0016】(実施例3)支持基体1として厚さ10μ
mのポリイミド基板(以下、PI基板と記す)を用い、
金属薄膜として厚さ200nmのCo−Cr金属薄膜を
形成した。また円筒状キャン3の周表面は厚さ50μm
のSiO2よりなる絶縁体13で被覆した。密着用電子
ビーム源14から円筒状キャン3までの距離30cmか
ら電子ビーム15を照射しながら膜堆積速度600nm
/sで円筒状キャン3の温度を変化させて蒸着を行っ
た。
(Embodiment 3) The supporting substrate 1 has a thickness of 10 μm.
m polyimide substrate (hereinafter referred to as PI substrate)
A Co-Cr metal thin film having a thickness of 200 nm was formed as the metal thin film. The peripheral surface of the cylindrical can 3 has a thickness of 50 μm.
Was covered with an insulator 13 made of SiO 2 . A film deposition rate of 600 nm while irradiating the electron beam 15 from a distance 30 cm from the contact electron beam source 14 to the cylindrical can 3.
The vapor deposition was performed by changing the temperature of the cylindrical can 3 at / s.

【0017】電子ビーム15を照射しない場合、円筒状
キャン3の温度が50゜C以下ではCo−Cr層の蒸着
はできたが、その温度が50゜Cを超えるとPI基板1
の熱損傷が発生し、円筒状キャン3の温度が80゜C以
上ではPI基板1が分解して全く蒸着はできなかった。
これに対して密着用電子ビーム源14を用いて電子ビー
ム15を照射した場合には、例えば加速電圧2kV、ビ
ーム電流200mAとすることによって円筒状キャン3
の温度が250゜Cまで安定な蒸着を行うことができ
た。
When the electron beam 15 was not irradiated, the Co-Cr layer could be vapor-deposited when the temperature of the cylindrical can 3 was 50 ° C. or lower, but when the temperature exceeded 50 ° C., the PI substrate 1
When the temperature of the cylindrical can 3 was 80 ° C. or higher, the PI substrate 1 was decomposed and vapor deposition could not be performed at all.
On the other hand, when the electron beam 15 is irradiated by using the contact electron beam source 14, the cylindrical can 3 is formed by setting the acceleration voltage to 2 kV and the beam current to 200 mA, for example.
It was possible to perform stable vapor deposition up to a temperature of 250 ° C.

【0018】(実施例4)支持基体1として実施例3と
同じPI基板を用い、金属薄膜として厚さ100nmの
Co−Cr金属薄膜を形成した。これを2回繰り返すこ
とによって200nmのCo−Cr金属薄膜を形成し
た。円筒状キャン3の周表面は厚さ50μmのSiO2
よりなる絶縁体13で被覆し、密着用電子ビーム源14
から円筒状キャン3までの距離30cmから電子ビーム
15を照射しながら膜堆積速度600nm/sで円筒状
キャン3の温度を変化させて蒸着を行った。
Example 4 As the supporting substrate 1, the same PI substrate as in Example 3 was used, and a Co-Cr metal thin film having a thickness of 100 nm was formed as a metal thin film. By repeating this twice, a 200 nm Co-Cr metal thin film was formed. The peripheral surface of the cylindrical can 3 is made of SiO 2 having a thickness of 50 μm.
Electron beam source 14 for adhesion, which is covered with an insulator 13 made of
The vapor deposition was performed by changing the temperature of the cylindrical can 3 at a film deposition rate of 600 nm / s while irradiating the electron beam 15 from a distance of 30 cm from the cylindrical can 3 to the cylindrical can 3.

【0019】電子ビーム15を照射しない場合、2層目
形成時の円筒状キャン3の温度が30゜C以下ではCo
−Cr層の蒸着はできたが、その温度が30゜Cを超え
るとPI基板1の熱損傷が発生し、2層目形成時の円筒
状キャン3の温度が50゜C以上ではPI基板1が分解
して全く蒸着はできなかった。これに対して密着用電子
ビーム源14を用いて電子ビーム15を照射した場合に
は、例えば加速電圧2kV、ビーム電流200mAとす
ることによって2層目形成時の円筒状キャン3の温度が
300゜Cまで安定な蒸着を行うことができた。
When the temperature of the cylindrical can 3 at the time of forming the second layer is not higher than 30 ° C. when the electron beam 15 is not irradiated, Co
-Although the Cr layer was vapor-deposited, if the temperature exceeded 30 ° C, the PI substrate 1 was thermally damaged, and if the temperature of the cylindrical can 3 during the formation of the second layer was 50 ° C or higher, the PI substrate 1 was formed. Was decomposed and no vapor deposition was possible. On the other hand, when the electron beam 15 is irradiated using the contact electron beam source 14, the temperature of the cylindrical can 3 at the time of forming the second layer is 300 ° by setting the acceleration voltage to 2 kV and the beam current to 200 mA. It was possible to perform stable vapor deposition up to C.

【0020】(実施例5)支持基体1として厚さ6μm
を有する実施例1と同じPET基板を用い、金属薄膜と
して厚さ50nmのCo−O金属薄膜を形成した。これ
を4回繰り返すことにより200nmのCo−O金属薄
膜を形成した。円筒状キャン3の周表面は厚さ50μm
のSiO2より絶縁体13で被覆し、密着用電子ビーム
源14から円筒状キャン3までの距離30cmから電子
ビーム15を照射しながら膜堆積速度400nm/sで
円筒状キャン3の温度を変化させて蒸着を行った。
(Embodiment 5) The supporting substrate 1 has a thickness of 6 μm.
Using the same PET substrate as in Example 1 having Example 1, a Co—O metal thin film having a thickness of 50 nm was formed as a metal thin film. By repeating this 4 times, a 200 nm Co-O metal thin film was formed. The peripheral surface of the cylindrical can 3 has a thickness of 50 μm.
Of SiO 2 is covered with an insulator 13, and the temperature of the cylindrical can 3 is changed at a film deposition rate of 400 nm / s while irradiating the electron beam 15 from a distance of 30 cm from the contact electron beam source 14 to the cylindrical can 3. Vapor deposition was performed.

【0021】電子ビーム15を照射しない場合、2層目
形成時の円筒状キャン3の温度を0゜Cとした場合でも
PET基板1の熱損傷がひどく金属薄膜の形成はできな
かった。また図3に示す従来の製造方法によって4層の
積層を行った場合には、円筒状キャン3の温度が15゜
Cを超えると積層を繰り返すにしたがってPET基板1
の熱損傷が顕著に認められるが、本発明の方法を用いた
場合には円筒状キャン3の温度が25゜Cにおいても4
層の積層がPET基板1の熱損傷なしに行うことができ
た。
When the electron beam 15 was not irradiated, the PET substrate 1 was severely damaged by heat even when the temperature of the cylindrical can 3 at the time of forming the second layer was set to 0 ° C., and a metal thin film could not be formed. Further, when four layers are laminated by the conventional manufacturing method shown in FIG. 3, when the temperature of the cylindrical can 3 exceeds 15 ° C., the PET substrate 1 is laminated as the lamination is repeated.
However, when the method of the present invention is used, even if the temperature of the cylindrical can 3 is 25 ° C.
The lamination of layers could be done without thermal damage to the PET substrate 1.

【0022】(実施例6)支持基体1として実施例1と
同じPET基板を用い、酸素ガスを導入しつつ蒸着を行
うことにより、金属薄膜として厚さ200nmのCo−
O金属薄膜を形成した。また円筒状キャン3の周表面は
厚さ50μmのSiO2よりなる絶縁体12で被覆し
た。図1に示す密着用電子ビーム源14の代わりにイオ
ン源を用い、イオン源から円筒状キャン3までの距離3
0cmから電子ビーム15の代わりにイオンビームを照
射しながら膜堆積速度400nm/sで円筒状キャン3
の温度を変化させて蒸着を行った。
(Embodiment 6) The same PET substrate as in Embodiment 1 is used as the supporting base 1, and vapor deposition is carried out while introducing oxygen gas to form a metal thin film of Co-- having a thickness of 200 nm.
An O metal thin film was formed. The peripheral surface of the cylindrical can 3 was covered with an insulator 12 made of SiO 2 having a thickness of 50 μm. An ion source is used instead of the contact electron beam source 14 shown in FIG. 1, and the distance 3 from the ion source to the cylindrical can 3 is set.
Cylindrical can 3 at a film deposition rate of 400 nm / s while irradiating an ion beam from 0 cm instead of the electron beam 15.
The vapor deposition was performed by changing the temperature of.

【0023】イオンビームを照射しない場合、円筒状キ
ャン3の温度が10゜C以下ではCo−O層の蒸着がで
きたが、円筒状キャン3の温度が10゜Cを超えるとP
ET基板1の熱損傷が発生し、円筒状キャン3の温度が
30゜C以上ではPET基板1が分解して全く蒸着はで
きなかった。これに対してイオンビームを照射した場合
には、例えばビーム電圧500V、ビーム電流100m
Aとすることによって円筒状キャン3の温度が25゜C
まで安定な蒸着を行うことができた。
When the temperature of the cylindrical can 3 was 10 ° C. or less, the Co—O layer could be vapor-deposited when the ion beam was not irradiated, but when the temperature of the cylindrical can 3 exceeded 10 ° C.
When the ET substrate 1 was thermally damaged and the temperature of the cylindrical can 3 was 30 ° C. or higher, the PET substrate 1 was decomposed and vapor deposition could not be performed at all. On the other hand, when the ion beam is irradiated, for example, the beam voltage is 500 V and the beam current is 100 m.
By setting A, the temperature of the cylindrical can 3 is 25 ° C.
It was possible to perform stable vapor deposition.

【0024】このように上記実施例によれば、真空中で
長尺の支持基体1を円筒状キャン3に沿って走行させつ
つ金属薄膜を形成する際に、円筒状キャン3の表面を絶
縁体13で被覆し、円筒状キャン3の表面に電子ビーム
15やイオンビーム等の荷電粒子を照射することによ
り、支持基体1と円筒状キャン3との密着性を高め、支
持基体1の熱損傷を小さくして金属薄膜の形成を行うこ
とができる。
As described above, according to the above-mentioned embodiment, when the metal thin film is formed while the long supporting substrate 1 is moved along the cylindrical can 3 in vacuum, the surface of the cylindrical can 3 is made into an insulator. By covering the cylindrical can 3 with 13 and irradiating the surface of the cylindrical can 3 with charged particles such as an electron beam 15 or an ion beam, the adhesion between the supporting base 1 and the cylindrical can 3 is increased, and the thermal damage to the supporting base 1 is prevented. The size can be reduced to form a metal thin film.

【0025】支持基体1と円筒状キャン3の密着性は円
筒状キャン3の表面の絶縁体13と支持基体1上に形成
されている金属薄膜層との間の静電引力による。したが
って、支持基体1上に予め金属薄膜層が形成されている
場合には金属薄膜層の形成初期から支持基体1と円筒状
キャン3は強い密着状態にあるが、支持基体1上に予め
金属薄膜層が形成されていない場合には真空プロセスで
の製膜によって金属薄膜層が多少形成されてより後に支
持基体1と円筒状キャン3との静電引力による密着が得
られる。
The adhesion between the supporting base 1 and the cylindrical can 3 is due to the electrostatic attraction between the insulator 13 on the surface of the cylindrical can 3 and the metal thin film layer formed on the supporting base 1. Therefore, when the metal thin film layer is previously formed on the support base 1, the support base 1 and the cylindrical can 3 are in a strong contact state from the initial stage of forming the metal thin film layer, but the metal thin film is previously formed on the support base 1. When the layer is not formed, the metal thin film layer is formed to some extent by the film formation in the vacuum process, and thereafter the support base 1 and the cylindrical can 3 are brought into close contact with each other by electrostatic attraction.

【0026】したがって、熱損傷防止の効果は支持基体
1上に予め金属薄膜層が形成されている場合の方が大き
い。したがって、どちらかといえば本発明は多層膜の積
層時により大きな効果を発揮するものであり、(実施例
1)、(実施例2)の結果もこれを示唆している。(実
施例3)、(実施例4)の比較においても同様である。
Therefore, the effect of preventing heat damage is greater when the metal thin film layer is previously formed on the support base 1. Therefore, if anything, the present invention exerts a greater effect when the multilayer films are laminated, and the results of (Example 1) and (Example 2) also suggest this. The same applies to the comparison between (Example 3) and (Example 4).

【0027】また、その際に円筒状キャン3の表面の絶
縁体13の厚みはある程度大きいほうがより強い密着性
が得られ、円筒状キャン3の温度が高くても蒸着可能で
あることが(実施例1)の結果から分かる。これは次の
理由によると考察される。
Further, at that time, if the thickness of the insulator 13 on the surface of the cylindrical can 3 is large to some extent, stronger adhesion can be obtained, and vapor deposition is possible even if the temperature of the cylindrical can 3 is high (implementation). It can be seen from the result of Example 1). This is considered to be due to the following reasons.

【0028】電子ビーム15やイオンビーム等の荷電粒
子の照射による静電引力は絶縁体13と円筒状キャン3
の本体間、および絶縁体13と支持基体1の表面の金属
薄膜層間の両方に働くが、実際に熱損傷防止に寄与する
後者の静電引力の成分が、絶縁体13の厚みの増加とと
もに大きくなるためと思われる。
The electrostatic attraction due to the irradiation of the charged particles such as the electron beam 15 and the ion beam is caused by the insulator 13 and the cylindrical can 3.
Of the latter, which acts both between the body of the insulator and between the insulator 13 and the metal thin film layer on the surface of the support substrate 1, but the latter component of electrostatic attraction that actually contributes to the prevention of thermal damage increases as the thickness of the insulator 13 increases. It seems to be.

【0029】したがって絶縁体13の厚みは支持基体1
の厚みと同等以上であることがより好ましい。
Therefore, the thickness of the insulator 13 is determined by the support base 1
It is more preferable that the thickness is equal to or more than the thickness.

【0030】なお、実施例としては、支持基体1として
ポリエチレンテレフタレート(PET)・ポリイミド
(PI)を用いた場合についてのみ述べてきたが、ポリ
エチレンナフタレート、ポリアミド,アラミド等の他の
基板を用いた場合にも同様の効果が得られる。
Although only the case where polyethylene terephthalate (PET) / polyimide (PI) is used as the supporting substrate 1 has been described as an example, other substrates such as polyethylene naphthalate, polyamide, and aramid are used. In this case, the same effect can be obtained.

【0031】また、金属薄膜としてCo−O,Co−C
rを形成する場合についてのみ述べたが、そのほかの磁
性材料および磁性材料以外の金属薄膜や、非金属薄膜を
形成する場合にも本発明が有効であることは言うまでも
ない。
Co-O and Co-C are used as the metal thin film.
Although only the case of forming r has been described, it goes without saying that the present invention is also effective when forming other magnetic materials, metal thin films other than magnetic materials, and non-metal thin films.

【0032】また真空製膜法としては、真空蒸着法につ
いてのみ述べたが、スパッタ法,イオンプレーティング
法,クラスターイオンビーム蒸着法などの真空蒸着法以
外の真空製膜方法についても有効であることは言うまで
もない。
As the vacuum film forming method, only the vacuum evaporation method has been described, but the vacuum film forming method other than the vacuum evaporation method such as the sputtering method, the ion plating method and the cluster ion beam evaporation method is also effective. Needless to say.

【0033】[0033]

【発明の効果】上記実施例より明らかなように本発明
は、円筒状キャンの表面を絶縁体で被覆し、支持基体上
に金属薄膜を形成するときに円筒状キャンの表面に荷電
粒子を照射するものであり、支持基体に熱損傷を与える
ことなく薄膜を形成することができる。
As is apparent from the above embodiments, according to the present invention, the surface of the cylindrical can is covered with an insulator, and when the metal thin film is formed on the supporting substrate, the surface of the cylindrical can is irradiated with charged particles. Therefore, the thin film can be formed without causing thermal damage to the supporting substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の薄膜の製造方法を実施する
ための装置の部分断面正面図
FIG. 1 is a partial cross-sectional front view of an apparatus for carrying out a thin film manufacturing method according to an embodiment of the present invention.

【図2】従来の薄膜の製造方法に使用される装置の部分
断面正面図
FIG. 2 is a partial cross-sectional front view of an apparatus used in a conventional thin film manufacturing method.

【図3】同他の装置の部分断面正面図FIG. 3 is a partial sectional front view of the other device.

【符号の説明】[Explanation of symbols]

1 支持基体 3 円筒状キャン 10 真空槽 13 絶縁体 15 電子ビーム(荷電粒子) 1 Support Substrate 3 Cylindrical Can 10 Vacuum Chamber 13 Insulator 15 Electron Beam (Charged Particle)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】真空中で長尺の支持基体を円筒状キャンに
沿って走行させつつ前記支持基体上に直接または下地層
を介して金属薄膜を形成する薄膜の製造方法において、
前記円筒状キャンの表面を絶縁体で被覆し、前記金属薄
膜の形成に先立ち前記円筒状キャンの表面に荷電粒子を
照射することを特徴とする薄膜の製造方法。
1. A method for producing a thin film, which comprises forming a metal thin film directly on the supporting base or through an underlayer while running a long supporting base along a cylindrical can in vacuum.
A method for producing a thin film, characterized in that the surface of the cylindrical can is covered with an insulator, and the surface of the cylindrical can is irradiated with charged particles prior to the formation of the metal thin film.
【請求項2】円筒状キャンの表面を被覆する絶縁体の厚
みが支持基体の厚みと同等以上であることを特徴とする
請求項1記載の薄膜の製造方法。
2. The method for producing a thin film according to claim 1, wherein the thickness of the insulator covering the surface of the cylindrical can is equal to or more than the thickness of the supporting substrate.
【請求項3】支持基体上に下地層として予め金属薄膜層
が形成されていることを特徴とする請求項1または2記
載の薄膜の製造方法。
3. The method for producing a thin film according to claim 1, wherein a metal thin film layer is previously formed as a base layer on the supporting substrate.
JP24308391A 1991-09-24 1991-09-24 Production of thin film Pending JPH0578822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24308391A JPH0578822A (en) 1991-09-24 1991-09-24 Production of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24308391A JPH0578822A (en) 1991-09-24 1991-09-24 Production of thin film

Publications (1)

Publication Number Publication Date
JPH0578822A true JPH0578822A (en) 1993-03-30

Family

ID=17098530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24308391A Pending JPH0578822A (en) 1991-09-24 1991-09-24 Production of thin film

Country Status (1)

Country Link
JP (1) JPH0578822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263740A (en) * 2008-04-28 2009-11-12 Toray Ind Inc Method and apparatus for producing sheet with metal oxide thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263740A (en) * 2008-04-28 2009-11-12 Toray Ind Inc Method and apparatus for producing sheet with metal oxide thin film

Similar Documents

Publication Publication Date Title
US5087476A (en) Method of producing thin film
JPH0578822A (en) Production of thin film
JPH0834001B2 (en) Method of manufacturing magnetic recording medium
JPH02239428A (en) Production of metal thin film
JPS63255362A (en) Device for producing thin metallic film
JPH06103571A (en) Production of magnetic recording medium
JPS61187127A (en) Manufacture of magnetic recording medium
JP2650300B2 (en) Method for manufacturing perpendicular magnetic recording medium
JPH01243234A (en) Production of magnetic recording medium
JPS59172163A (en) Production of vertical magnetic recording medium
JPS63310960A (en) Production of thin metal film
JPS62219234A (en) Production of magnetic recording medium
JPH0214424A (en) Production of magnetic recording medium
JPH10105964A (en) Production of magnetic recording medium
JPH10112024A (en) Production of magnetic recording medium and producing device therefor
JPH0246528A (en) Manufacture of magnetic recording medium
JPS63307258A (en) Production of thin metallic film
JPH0765372A (en) Method and device for producing magnetic recording medium
JPH11161953A (en) Production of magnetic recording medium
JP2000339676A (en) Manufacture and manufacturing device of magnetic recording medium
JPH0246529A (en) Manufacture of perpendicular magnetic recording medium
JPH07238378A (en) Device for producing metallic thin film body
JPS6124023A (en) Manufacture of magnetic recording medium
JP2000030964A (en) Device and method for manufacturing magnetic recording medium
JPH1041177A (en) Manufacture of magnetic recording medium