JPH0480448B2 - - Google Patents

Info

Publication number
JPH0480448B2
JPH0480448B2 JP56175315A JP17531581A JPH0480448B2 JP H0480448 B2 JPH0480448 B2 JP H0480448B2 JP 56175315 A JP56175315 A JP 56175315A JP 17531581 A JP17531581 A JP 17531581A JP H0480448 B2 JPH0480448 B2 JP H0480448B2
Authority
JP
Japan
Prior art keywords
plasma treatment
polyester base
recording medium
metal thin
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56175315A
Other languages
Japanese (ja)
Other versions
JPS5877030A (en
Inventor
Tsunemi Ooiwa
Kenji Sumya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP56175315A priority Critical patent/JPS5877030A/en
Publication of JPS5877030A publication Critical patent/JPS5877030A/en
Publication of JPH0480448B2 publication Critical patent/JPH0480448B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、ポリエステルフイルムを基体とし
て使用する磁気記録媒体およびその製造方法に関
し、その目的とするところはポリエステルベース
フイルムと強磁性金属薄膜層との接着性に優れた
磁気記録媒体を提供することにある。 磁気記録媒体は、ポリエステルフイルムなどの
基体上に、コバルトなどの磁性金属を真空蒸着し
たりしてつくられている。 ところが、基体として一般に汎用されているポ
リエステルフイルムは結晶性が高く表面に不純物
および塵埃等が付着しているため強磁性金属薄膜
層との接着性が弱く、使用中に強磁性金属薄膜層
が剥離するおそれがある。これを解消するため従
来からポリエステルベースフイルムと強磁性金属
薄膜層との間に下塗り層を設けるなどして接着性
の改善が試みられているが未だ充分に満足できる
結果は得られていない。 この発明者らはかかる現状に鑑み種々検討を行
なつた結果、ポリエステルベースフイルムの表面
に120mA・sec/cm2以下の印加電流で水との接触
角が50度以下となるまでプラズマ処理を施こす
と、ポリエステルベースフイルムの表面に付着し
た不純物や塵埃等が充分に除去されるとともにポ
リエステルベースフイルムの表面が適度にエツチ
ングされ、その結果この上に強磁性金属薄膜層を
直接または下地層を介して形成すると強磁性金属
薄膜層とポリエステルベースフイルムとの接着性
が充分に向上されることを見いだし、この発明を
なすに至つた。 この発明において、ポリエステルベースフイル
ム表面のプラズマ処理は、真空槽内で、酸素ガ
ス、アルゴンガス、ヘリウムガス、ネオンガスま
たは窒素ガス雰囲気下に行なわれ、プラズマ処理
に当つて使用するガスとしてはこれらのガスがい
ずれも好適に使用され、いずれのガスを使用する
場合もポリエステルベースフイルムの表面に活性
基を生成して強磁性金属薄膜層との接着性が良好
になるが、特に酸素ガスはポリエステルベースフ
イルムの表面に活性基を生成しやすく、強磁性金
属薄膜層との接着性をより良好にするのでより好
適なものとして使用される。これらのガスの真空
槽内におけるガス圧は、1×10-3トールより低く
するとプラズマが発生せず、1トールより高くす
ると放電し、安定なプラズマが得られない。この
ため1×10-3〜1トールの範囲内にするのが好ま
しい。 このようなガス雰囲気下におけるこの発明のプ
ラズマ処理は、印加電流を120mA・sec/cm2以下
とし、ポリエステルベースフイルムの表面の水と
の接触角が50度以下となるまで行なうのが好まし
く、印加電流を120mA・sec/cm2より大きくする
とポリエステルベースフイルムの表面が過度にエ
ツチングされてかえつて強磁性金属薄膜層とポリ
エステルベースフイルムとの接着性が低下する。
またポリエステルベースフイルム表面の水との接
触角、即ち、ポリエステルベースフイルム上の直
径1〜3mmの水滴をモニターテレビに拡大し、前
進接触角θaと後退接触角θrを測定して下記の式 cosθ=(cosθa+cosθr)/2 から求めたθの値は付着した不純物や塵埃等がプ
ラズマ処理により除去されるに従つて小さくな
り、接触角が50度より大きい間は不純物や塵埃等
の除去が充分ではないが接触角が50度以下になる
までプラズマ処理が行なわれると不純物や塵埃等
がポリエステルベースフイルム表面から充分に除
去される。従つてポリエステルベースフイルムの
表面に120mA・sec/cm2引下の印加電流で水との
接触角が50度引下となるまでプラズマ処理が施こ
されると、ポリエステルベースフイルムの表面に
付着した不純物や塵埃等が充分に除去され、ポリ
エステルベースフイルムの表面に活性基が生成し
て活性化されるとともに、ポリエステルベースフ
イルムの表面が適度にエツチングされ、この上に
直接あるいは下地層を介して形成される強磁性金
属薄膜層との接着性が充分に向上される。 このようにプラズマ処理が施こされたポリエス
テルベースフイルムの表面に形成される強磁性金
属薄膜層は、鉄、コバルト、ニツケル等の磁性金
属またはそれらの合金を真空蒸着、イオンプレー
テイング、スパツタリング等の手段によつてポリ
エステルベースフイルムの表面に被着して形成さ
れる。また下地層は、アルミニウム、銅、チタ
ン、クロムなどの金属を真空蒸着、イオンプレー
テイング、スパツタリング等の手段によつてポリ
エステルベースフイルムの表面に被着して形成さ
れ、このような下地層を介して強磁性金属薄膜層
が形成されると、プラズマ処理されたポリエステ
ルベースフイルムと下地層との接着性が改善され
るため下地層を介して形成された強磁性金属薄膜
層とポリエステルベースフイルムの接着性も充分
に向上される。 次に、この発明の実施例について説明する。 実施例 1 第1図に示すように、真空槽1内に基板2と上
下一対のリング状の交流電極3および4とを両電
極間に基板2が位置するように配設し、かつ下部
にWボート5を配設してなる装置を使用し、基板
2の下面にポリエステルベースフイルム6をセツ
トして真空槽下底に配設した排気系7で真空槽1
内を10-7トールになるまで真空排気した。次い
で、真空槽1の側壁に取りつけたガス導入管8か
ら酸素ガスを真空槽1内に導入して真空槽1内の
酸素ガス圧を0.03トールとし、交流電源9により
約500Vの電圧で交流電極3および4に0.3mA/
cm2の電流を印加して時間を種々に変えてプラズマ
処理を施こした。第2図のグラフAはこのように
して酸素ガス存在下でプラズマ処理を施こして得
られた多数のポリエステルベースフイルムの水と
の接触角とプラズマ処理時間との関係を表わした
ものである。 次に、真空槽1内のWボート5上にコバルト1
0をセツトし、排気系7で真空槽1内を10-7トー
ルになるまで真空排気した。次いでガス導入管8
から酸素ガスを真空槽1内に導入して真空槽1内
の酸素ガス圧を1×10-5トールとした後Wボート
5を加熱してコバルト10を蒸発させ、前記のプ
ラズマ処理して得られた多数のポリエステルベー
スフイルム6の下面にコバルトを真空蒸着して
0.1μ厚のコバルトからなる強磁性金属薄膜層を形
成した。次にこれを所定の巾に裁断して磁気テー
プをつくつた。 このようにして得られた多数の磁気テープにつ
いて接着力を測定した。接着力の測定は、磁気テ
ープのポリエステルベースフイルム側をステンレ
ス鋼板にエポキシ樹脂で接着固定し、強磁性金属
薄膜層側を引き剥がし用腕杆にエポキシ樹脂で接
着してこの引き剥がし用腕杆の引張力で強磁性金
属薄膜層を引き剥がし、強磁性金属薄膜層が引き
剥がされるときの引張力を測定して行なつた。第
2図のグラフBはこのようにして得られた多数の
磁気テープの接着力とプラズマ処理時間との関係
を表わしたものである。 実施例 2 実施例1におけるプラズマ処理において、電圧
を約500Vから700Vに代え、酸素ガス圧を0.01ト
ールとし、印加電流を0.3mA/cm2から0.1mA/
cm2に代えた以外は実施例1と同様にしてプラズマ
処理を行ない、更に真空蒸着を行なつて磁気テー
プをつくつた。第3図のグラフAはこのようなプ
ラズマ処理を施こして得られた多数のポリエステ
ルベースフイルムの水との接触角とプラズマ処理
時間との関係を表わしたものであり、グラフBは
さらに真空蒸着を行なつて得られた多数の磁気テ
ープの接着力とプラズマ処理時間との関係を表わ
したものである。 実施例 3 実施例1におけるプラズマ処理において、酸素
ガスに代えてアルゴンガスを同じガス圧で使用し
た以外は実施例1と同様にしてプラズマ処理を行
ない、更に真空蒸着を行なつて磁気テープをつく
つた。第4図のグラフAはこのようなプラズマ処
理を施こして得られた多数のポリエステルベース
フイルムの水との接触角とプラズマ処理時間との
関係を表わしたものであり、グラフBはさらに真
空蒸着を行なつて得られた多数の磁気テープの接
着力とプラズマ処理時間との関係を表わしたもの
である。 実施例 4 実施例2におけるプラズマ処理において、酸素
ガスに代えてアルゴンガスを同じガス圧で使用し
た以外は実施例2と同様にしてプラズマ処理を行
ない、更に真空蒸着を行なつて磁気テープをつく
つた。第5図のグラフAはこのようなプラズマ処
理を施こして得られた多数のポリエステルベース
フイルムの水との接触角とプラズマ処理時間との
関係を表わしたものであり、グラフBはさらに真
空蒸着を行なつて得られた多数の磁気テープの接
着力とプラズマ処理時間との関係を表わしたもの
である。 以上のようにして得られた第2図乃至第5図の
グラフAおよびグラフBから明らかなように、い
ずれの場合においてもプラズマ処理時間が経過す
ると接触角が急激に低下し、接触角が50度以下で
は接着力が充分に良好になつており、このことか
ら接触角が50度以下になるまでプラズマ処理を行
なえばポリエステルベースフイルムと強磁性金属
薄膜層との接着性が充分に向上されることがわか
る。 実施例 5 実施例1において電圧約500Vで0.3mA/cm2
電流を15秒間印加してプラズマ処理したポリエス
テルベースフイルムを使用し、これを真空蒸着す
る前に、真空槽1内のWボート5上にアルミニウ
ムをセツトし、排気系7で真空槽1内を真空排気
した後ボート5を加熱しアルミニウムを蒸発させ
てポリエステルベースフイルム6の下面にアルミ
ニウムからなる0.02μ厚の下地層を形成した。次
いで実施例1と同様にして真空蒸着を行ない0.1μ
厚のコバルトからなる強磁性金属薄膜層を形成
し、これを所定の巾に裁断して磁気テープをつく
つた。 実施例 6 実施例5におけるプラズマ処理において、酸素
ガスに代えてアルゴンガスを同じガス圧で使用
し、電圧約500Vで0.3mA/cm2の電流を30秒間印
加した以外は実施例5と同様にしてプラズマ処理
を行ない、更にアルミニウムからなる下地層を形
成した後真空蒸着を行なつて磁気テープをつくつ
た。 実施例 7 実施例1におけるプラズマ処理において、酸素
ガスに代えてヘリウムガスを同じガス圧で使用
し、電圧約500Vで0.3mA/cm2の電流を30秒間印
加した以外は実施例1と同様にしてプラズマ処理
を行ない、更に真空蒸着を行なつて磁気テープを
つくつた。 比較例 実施例1において、プラズマ処理を省いた以外
は実施例1と同様にして真空蒸着を行ない、0.1μ
厚のコバルトからなる強磁性金属薄膜層を形成し
た後、所定の巾に裁断して磁気テープをつくつ
た。 実施例5乃至7においてプラズマ処理されたポ
リエステルベースフイルムの水との接触角を測定
し、また比較例で使用したポリエステルベースフ
イルムの水との接触角を測定して、実施例1で15
秒間プラズマ処理して得られたポリエステルベー
スフイルムおよび実施例2乃至4で30秒間プラズ
マ処理して得られたポリエステルベースフイルム
の水との接触角と比較した。また実施例5乃至7
で得られた磁気テープおよび比較例で得られた磁
気テープについて実施例1と同じ方法で接着力を
測定し、実施例1で15秒間プラズマ処理しさらに
真空蒸着して得られた磁気テープおよび実施例2
乃至4で30秒間プラズマ処理しさらに真空蒸着し
て得られた磁気テープの接着力と比較した。 下表はその結果である。
The present invention relates to a magnetic recording medium using a polyester film as a substrate and a method for manufacturing the same, and an object thereof is to provide a magnetic recording medium with excellent adhesion between a polyester base film and a ferromagnetic metal thin film layer. be. Magnetic recording media are made by vacuum-depositing a magnetic metal such as cobalt onto a substrate such as polyester film. However, polyester film, which is commonly used as a substrate, has high crystallinity and has impurities and dust attached to its surface, so it has weak adhesion to the ferromagnetic metal thin film layer, and the ferromagnetic metal thin film layer peels off during use. There is a risk of In order to solve this problem, attempts have been made to improve the adhesion by providing an undercoat layer between the polyester base film and the ferromagnetic metal thin film layer, but satisfactorily results have not yet been obtained. The inventors conducted various studies in view of the current situation, and as a result, plasma treatment was performed on the surface of a polyester base film with an applied current of 120 mA sec/cm 2 or less until the contact angle with water became 50 degrees or less. When rubbed, impurities and dust adhering to the surface of the polyester base film are sufficiently removed, and the surface of the polyester base film is appropriately etched. The present inventors have discovered that the adhesion between the ferromagnetic metal thin film layer and the polyester base film can be sufficiently improved by forming the ferromagnetic metal thin film layer by using a polyester base film. In this invention, the plasma treatment of the surface of the polyester base film is performed in a vacuum chamber in an atmosphere of oxygen gas, argon gas, helium gas, neon gas, or nitrogen gas, and these gases are used for plasma treatment. Any of these gases is preferably used, and when using either gas, active groups are generated on the surface of the polyester base film, resulting in good adhesion with the ferromagnetic metal thin film layer. It is more suitable for use because it easily generates active groups on the surface and improves adhesion to the ferromagnetic metal thin film layer. When the gas pressure of these gases in the vacuum chamber is lower than 1×10 -3 Torr, no plasma is generated, and when it is higher than 1 Torr, discharge occurs and stable plasma cannot be obtained. For this reason, it is preferable to set it within the range of 1×10 −3 to 1 Torr. The plasma treatment of the present invention in such a gas atmosphere is preferably performed at an applied current of 120 mA·sec/cm 2 or less until the contact angle with water on the surface of the polyester base film becomes 50 degrees or less. If the current is made larger than 120 mA·sec/cm 2 , the surface of the polyester base film will be excessively etched, and the adhesion between the ferromagnetic metal thin film layer and the polyester base film will deteriorate.
In addition, the contact angle with water on the surface of the polyester base film, that is, a water droplet with a diameter of 1 to 3 mm on the polyester base film is magnified on a monitor TV, and the advancing contact angle θ a and receding contact angle θ r are measured using the following formula. The value of θ calculated from cosθ = (cosθ a + cosθ r )/2 decreases as attached impurities and dust are removed by plasma treatment, and as long as the contact angle is greater than 50 degrees, the value of θ decreases as the attached impurities and dust are removed. Although the removal is not sufficient, if the plasma treatment is performed until the contact angle becomes 50 degrees or less, impurities, dust, etc. will be sufficiently removed from the surface of the polyester base film. Therefore, when the surface of a polyester base film is subjected to plasma treatment with an applied current of 120 mA sec/cm 2 until the contact angle with water is reduced by 50 degrees, the surface of the polyester base film becomes attached to the surface of the polyester base film. Impurities, dust, etc. are sufficiently removed, active groups are generated and activated on the surface of the polyester base film, and the surface of the polyester base film is appropriately etched. The adhesion with the ferromagnetic metal thin film layer is sufficiently improved. The ferromagnetic metal thin film layer formed on the surface of the plasma-treated polyester base film is produced by applying magnetic metals such as iron, cobalt, and nickel, or their alloys, by vacuum evaporation, ion plating, sputtering, etc. It is formed by being adhered to the surface of a polyester base film by means of a method. The base layer is formed by depositing metal such as aluminum, copper, titanium, chromium, etc. on the surface of the polyester base film by means such as vacuum evaporation, ion plating, or sputtering. When a ferromagnetic metal thin film layer is formed, the adhesion between the plasma-treated polyester base film and the underlayer is improved. The performance is also sufficiently improved. Next, embodiments of the invention will be described. Example 1 As shown in FIG. 1, a substrate 2 and a pair of upper and lower ring-shaped AC electrodes 3 and 4 are arranged in a vacuum chamber 1 so that the substrate 2 is located between the two electrodes. Using a device equipped with a W boat 5, a polyester base film 6 is set on the bottom surface of the substrate 2, and the vacuum chamber 1 is opened with an exhaust system 7 disposed at the bottom of the vacuum chamber.
The inside was evacuated to 10 -7 Torr. Next, oxygen gas is introduced into the vacuum chamber 1 from the gas introduction tube 8 attached to the side wall of the vacuum chamber 1 to make the oxygen gas pressure in the vacuum chamber 1 0.03 Torr, and the AC electrode is connected to the AC power source 9 at a voltage of about 500V. 0.3mA/3 and 4
Plasma treatment was performed by applying a current of cm 2 and varying the time. Graph A in FIG. 2 shows the relationship between the contact angle with water and the plasma treatment time for a number of polyester base films obtained by plasma treatment in the presence of oxygen gas. Next, cobalt 1 is placed on the W boat 5 in the vacuum chamber 1.
0, and the inside of the vacuum chamber 1 was evacuated using the exhaust system 7 until the pressure reached 10 -7 Torr. Next, gas introduction pipe 8
After introducing oxygen gas into the vacuum chamber 1 to set the oxygen gas pressure in the vacuum chamber 1 to 1×10 -5 Torr, the W boat 5 is heated to evaporate the cobalt 10, which is obtained by the plasma treatment described above. Cobalt is vacuum-deposited on the lower surface of a large number of polyester base films 6.
A ferromagnetic metal thin film layer made of cobalt with a thickness of 0.1μ was formed. Next, this was cut to a predetermined width to make magnetic tape. The adhesive strength of a large number of magnetic tapes thus obtained was measured. To measure the adhesive strength, the polyester base film side of the magnetic tape is fixed to a stainless steel plate using epoxy resin, and the ferromagnetic metal thin film layer side is adhered to a peeling arm using epoxy resin. The ferromagnetic metal thin film layer was peeled off using a tensile force, and the tensile force when the ferromagnetic metal thin film layer was peeled off was measured. Graph B in FIG. 2 shows the relationship between the adhesive strength of a large number of magnetic tapes obtained in this way and the plasma processing time. Example 2 In the plasma treatment in Example 1, the voltage was changed from about 500 V to 700 V, the oxygen gas pressure was changed to 0.01 Torr, and the applied current was changed from 0.3 mA/cm 2 to 0.1 mA/cm 2 .
Plasma treatment was carried out in the same manner as in Example 1 except that cm 2 was used, and vacuum evaporation was further carried out to produce a magnetic tape. Graph A in Figure 3 shows the relationship between the contact angle with water and plasma treatment time for a large number of polyester base films obtained by performing such plasma treatment, and graph B shows the relationship between the contact angle with water and the plasma treatment time for a large number of polyester base films obtained by performing such plasma treatment. This figure shows the relationship between the adhesive strength of a large number of magnetic tapes obtained by performing the above process and the plasma processing time. Example 3 Plasma treatment was performed in the same manner as in Example 1 except that argon gas was used at the same gas pressure instead of oxygen gas in the plasma treatment in Example 1, and vacuum evaporation was further performed to form a magnetic tape. Ivy. Graph A in Figure 4 shows the relationship between the contact angle with water and plasma treatment time for a number of polyester base films obtained by performing such plasma treatment, and graph B shows the relationship between the contact angle with water and the plasma treatment time for a large number of polyester base films obtained by performing such plasma treatment. This figure shows the relationship between the adhesive strength of a large number of magnetic tapes obtained by performing the above process and the plasma processing time. Example 4 Plasma treatment was performed in the same manner as in Example 2, except that argon gas was used at the same gas pressure instead of oxygen gas in the plasma treatment in Example 2, and vacuum evaporation was further performed to form a magnetic tape. Ivy. Graph A in Figure 5 shows the relationship between the contact angle with water and the plasma treatment time for a large number of polyester base films obtained by performing such plasma treatment, and graph B shows the relationship between the contact angle with water and plasma treatment time for a number of polyester base films obtained by performing such plasma treatment. This figure shows the relationship between the adhesive strength of a large number of magnetic tapes obtained by performing the above process and the plasma processing time. As is clear from graphs A and B in FIGS. 2 to 5 obtained as described above, in both cases, as the plasma treatment time elapses, the contact angle rapidly decreases, and the contact angle decreases to 50 If the contact angle is below 50°, the adhesion is sufficiently good, and this means that if plasma treatment is performed until the contact angle is below 50°, the adhesion between the polyester base film and the ferromagnetic metal thin film layer will be sufficiently improved. I understand that. Example 5 A polyester base film that was plasma-treated by applying a voltage of about 500 V and a current of 0.3 mA/cm 2 for 15 seconds in Example 1 was used. Aluminum was set on top, and after evacuating the inside of the vacuum chamber 1 using the exhaust system 7, the boat 5 was heated to evaporate the aluminum to form a base layer of aluminum with a thickness of 0.02 μm on the lower surface of the polyester base film 6. Next, vacuum evaporation was performed in the same manner as in Example 1 to give a thickness of 0.1μ.
A thick ferromagnetic metal thin film layer made of cobalt was formed, and this was cut to a predetermined width to create a magnetic tape. Example 6 The plasma treatment in Example 5 was performed in the same manner as in Example 5, except that argon gas was used at the same gas pressure instead of oxygen gas, and a current of 0.3 mA/cm 2 was applied for 30 seconds at a voltage of about 500 V. After plasma treatment was performed, an underlayer of aluminum was formed, and vacuum evaporation was performed to produce a magnetic tape. Example 7 The plasma treatment in Example 1 was performed in the same manner as in Example 1, except that helium gas was used in place of oxygen gas at the same gas pressure, and a current of 0.3 mA/cm 2 was applied for 30 seconds at a voltage of about 500 V. A magnetic tape was produced by plasma treatment and vacuum deposition. Comparative Example Vacuum deposition was carried out in the same manner as in Example 1, except that the plasma treatment was omitted.
After forming a thick ferromagnetic metal thin film layer made of cobalt, it was cut to a predetermined width to create a magnetic tape. The contact angle with water of the plasma-treated polyester base film was measured in Examples 5 to 7, and the contact angle with water of the polyester base film used in the comparative example was measured.
The contact angles with water of the polyester base films obtained by plasma treatment for 2 seconds and the polyester base films obtained by plasma treatment for 30 seconds in Examples 2 to 4 were compared. Also, Examples 5 to 7
The adhesive strength of the magnetic tape obtained in Example 1 and the magnetic tape obtained in Comparative Example was measured in the same manner as in Example 1. Example 2
The adhesion strength of the magnetic tape obtained by plasma treatment for 30 seconds and vacuum deposition was compared in No. 4 to No. 4. The table below shows the results.

【表】 上表から明らかなように、この発明で得られた
磁気テープ(実施例1〜7)は従来の磁気テープ
(比較例)に比し、いずれも接触角が50度以下で
小さく、又接着力が大きく、このことからこの発
明によつて得られる磁気記録媒体はポリエステル
ベースフイルムと強磁性金属薄膜層との接着性が
一段と向上されていることがわかる。
[Table] As is clear from the above table, the magnetic tapes obtained by the present invention (Examples 1 to 7) all had smaller contact angles of 50 degrees or less, compared to the conventional magnetic tapes (Comparative Examples). Furthermore, the adhesive strength is large, which indicates that the magnetic recording medium obtained by the present invention has a much improved adhesive property between the polyester base film and the ferromagnetic metal thin film layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の製造方法を実施するために
使用する装置の一実施例を示す概略断面図、第2
図乃至第5図は実施例1乃至4で得られたポリエ
ステルベースフイルムおよび磁気テープの接触角
および接着力とプラズマ処理時間との関係図であ
る。 1……真空槽、3,4……交流電極、5……W
ボート、6……ポリエステルベースフイルム。
FIG. 1 is a schematic sectional view showing one embodiment of the apparatus used to carry out the manufacturing method of the present invention, and FIG.
Figures 5 to 5 are graphs showing the relationship between the contact angle and adhesive force of the polyester base films and magnetic tapes obtained in Examples 1 to 4, and the plasma treatment time. 1... Vacuum chamber, 3, 4... AC electrode, 5... W
Boat, 6... Polyester base film.

Claims (1)

【特許請求の範囲】 1 プラズマ処理により表面を清浄化し活性化す
るとともに適度にエツチングして乾燥状態での水
との接触角を50度以下にしたポリエステルベース
フイルム上に、真空成膜法で強磁性金属薄膜層を
直接あるいは下地層を介して形成してなる磁気記
録媒体。 2 乾燥状態での水との接触角が33〜50度のポリ
エステルベースフイルムを使用する特許請求の範
囲第1項記載の磁気記録媒体。 3 強磁性金属薄膜層が鉄、コバルト、ニツケル
等の金属またはこれらの合金からなる強磁性金属
薄膜層である特許請求の範囲第1項記載の磁気記
録媒体。 4 アルミニウム、銅、チタン、クロムから選ば
れる金属からなる下地層を介してポリエステルベ
ースフイルム上に、真空成膜法で強磁性金属薄膜
層を形成した特許請求の範囲第1項記載の磁気記
録媒体。 5 ポリエステルベースフイルムの表面を120m
A・sec/cm2以下の印加電流で乾燥状態での水と
の接触角が50度以下となるまでプラズマ処理し、
この上に強磁性金属薄膜層を直接あるいは下地層
を介して形成することを特徴とする磁気記録媒体
の製造方法。 6 プラズマ処理が真空槽内で酸素ガス、アルゴ
ンガス、ヘリウムガス、ネオンガス、窒素ガスの
少なくとも1種を含むガス雰囲気下で行われる特
許請求の範囲第5項記載の磁気記録媒体の製造方
法。 7 プラズマ処理が1×10-3〜1トールの真空度
で行われる特許請求の範囲第5項記載の磁気記録
媒体の製造方法。
[Scope of Claims] 1 A strong film is formed using a vacuum film forming method on a polyester base film whose surface has been cleaned and activated by plasma treatment and has been appropriately etched so that the contact angle with water in a dry state is 50 degrees or less. A magnetic recording medium formed by forming a magnetic metal thin film layer directly or through an underlayer. 2. The magnetic recording medium according to claim 1, which uses a polyester base film having a contact angle with water of 33 to 50 degrees in a dry state. 3. The magnetic recording medium according to claim 1, wherein the ferromagnetic metal thin film layer is a ferromagnetic metal thin film layer made of a metal such as iron, cobalt, nickel, or an alloy thereof. 4. The magnetic recording medium according to claim 1, wherein a ferromagnetic metal thin film layer is formed by a vacuum deposition method on a polyester base film via an underlayer made of a metal selected from aluminum, copper, titanium, and chromium. . 5 120m of surface of polyester base film
Plasma treatment is performed with an applied current of A sec/cm 2 or less until the contact angle with water in a dry state is 50 degrees or less,
A method for manufacturing a magnetic recording medium, comprising forming a ferromagnetic metal thin film layer thereon directly or via an underlayer. 6. The method for manufacturing a magnetic recording medium according to claim 5, wherein the plasma treatment is performed in a vacuum chamber under a gas atmosphere containing at least one of oxygen gas, argon gas, helium gas, neon gas, and nitrogen gas. 7. The method of manufacturing a magnetic recording medium according to claim 5, wherein the plasma treatment is performed at a degree of vacuum of 1×10 −3 to 1 Torr.
JP56175315A 1981-10-31 1981-10-31 Magnetic recording medium and production thereof Granted JPS5877030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56175315A JPS5877030A (en) 1981-10-31 1981-10-31 Magnetic recording medium and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56175315A JPS5877030A (en) 1981-10-31 1981-10-31 Magnetic recording medium and production thereof

Publications (2)

Publication Number Publication Date
JPS5877030A JPS5877030A (en) 1983-05-10
JPH0480448B2 true JPH0480448B2 (en) 1992-12-18

Family

ID=15993939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56175315A Granted JPS5877030A (en) 1981-10-31 1981-10-31 Magnetic recording medium and production thereof

Country Status (1)

Country Link
JP (1) JPS5877030A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223932A (en) * 1983-06-02 1984-12-15 Matsushita Electric Ind Co Ltd Production of magnetic recording medium
US4575475A (en) * 1983-07-12 1986-03-11 Tdk Corporation Magnetic recording medium
JPS60119635A (en) * 1983-11-30 1985-06-27 Hitachi Condenser Co Ltd Manufacture of magnetic recording medium
JPH0687300B2 (en) * 1984-08-02 1994-11-02 ティーディーケイ株式会社 Magnetic recording method
JPH0610856B2 (en) * 1984-08-04 1994-02-09 ティーディーケイ株式会社 Magnetic recording medium
JPH0778865B2 (en) * 1984-10-15 1995-08-23 株式会社東芝 Magnetic recording medium and manufacturing method thereof
JPS61156519A (en) * 1984-12-27 1986-07-16 Konishiroku Photo Ind Co Ltd Magnetic recording medium and its production
GB2168911B (en) * 1984-12-29 1989-06-07 Tdk Corp Magnetic recording medium
CA2022027A1 (en) * 1989-07-28 1991-01-29 Yoshinori Suga Substrate of optical disc
WO2002046281A1 (en) * 2000-12-05 2002-06-13 Learonal Japan Inc. Resin composite material and method of forming the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084677A (en) * 1973-11-28 1975-07-08
JPS52103474A (en) * 1976-02-27 1977-08-30 Teijin Ltd Method of manufacture of polyester film as magnetic recording material
JPS5317533A (en) * 1976-07-31 1978-02-17 Nippon Steel Corp Production method of electrootin plate
JPS5671831A (en) * 1979-11-13 1981-06-15 Sekisui Chem Co Ltd Manufacture for magnetic recording medium
JPS5864381A (en) * 1981-10-09 1983-04-16 Matsushita Electric Ind Co Ltd Vacuum depositing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084677A (en) * 1973-11-28 1975-07-08
JPS52103474A (en) * 1976-02-27 1977-08-30 Teijin Ltd Method of manufacture of polyester film as magnetic recording material
JPS5317533A (en) * 1976-07-31 1978-02-17 Nippon Steel Corp Production method of electrootin plate
JPS5671831A (en) * 1979-11-13 1981-06-15 Sekisui Chem Co Ltd Manufacture for magnetic recording medium
JPS5864381A (en) * 1981-10-09 1983-04-16 Matsushita Electric Ind Co Ltd Vacuum depositing device

Also Published As

Publication number Publication date
JPS5877030A (en) 1983-05-10

Similar Documents

Publication Publication Date Title
JPH0480448B2 (en)
JPS59126779A (en) Method of roughening copper surface
EP0035894A1 (en) Process for producing a magnetic recording medium
JPH02280310A (en) Manufacture of electrode material for electrolytic capacitor
JPH01184722A (en) Production of magnetic recording medium
JPH0253936B2 (en)
JPS60212847A (en) Diamond parts
JPH0382747A (en) Formation of thin metal-surface film excellent in corrosion resistance and adhesive strength
JPS63103061A (en) Deposition and formation of thin metallic film on plastic film surface
JP2000006297A (en) Gas barrier film and its manufacture, and laminated material in which gas barrier film is used
JP3374402B2 (en) Tape traveling roller and method of manufacturing the same
JP2530694B2 (en) Method for manufacturing reflective film for optical recording disk
JPS61227231A (en) Production of magnetic recording body
JPS6046181B2 (en) Vacuum deposition method
JP2910954B2 (en) Manufacturing method of magnetic head
JPH01243234A (en) Production of magnetic recording medium
JPH01147055A (en) Manufacture of metal-coated plastic film
JPH0551739A (en) Production of magneto-optical disk
JPH01102734A (en) Manufacture of magnetic recording medium
JPS5931592B2 (en) Target for sputtering
JPS6383255A (en) Formation of thin metallic film
JPS58133372A (en) Apparatus for ion plating
JPH02240829A (en) Production of magnetic recording medium
JPS6164874A (en) Formation of spatter film
JPS58222437A (en) Magnetic recording medium and its manufacture