JPH02280310A - Manufacture of electrode material for electrolytic capacitor - Google Patents

Manufacture of electrode material for electrolytic capacitor

Info

Publication number
JPH02280310A
JPH02280310A JP10188189A JP10188189A JPH02280310A JP H02280310 A JPH02280310 A JP H02280310A JP 10188189 A JP10188189 A JP 10188189A JP 10188189 A JP10188189 A JP 10188189A JP H02280310 A JPH02280310 A JP H02280310A
Authority
JP
Japan
Prior art keywords
film
evaporation
electrode material
substrate
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10188189A
Other languages
Japanese (ja)
Other versions
JP2968800B2 (en
Inventor
Hiroshi Kawaguchi
河口 博
Jiyunji Kawafuku
川福 純司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1101881A priority Critical patent/JP2968800B2/en
Publication of JPH02280310A publication Critical patent/JPH02280310A/en
Application granted granted Critical
Publication of JP2968800B2 publication Critical patent/JP2968800B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve capacitance of a capacity by forming a Ti film by applying cathode are plasma deposit to a substrate surface under specified conditions. CONSTITUTION:When a Ti film is formed to a substrate surface to manufacture an electrode material of an electrolytic capacitor, the Ti film is formed to a substrate surface in a thickness of 0.1 to 1.6mum at a base pressure of 1X10<-4>Torr or below with arc discharge current of 60 to 120A without introducing reaction gas and inert gas by applying cathode arc plasma deposit method. That is, when a voltage is applied to an evaporation source 13 by an arc power source 17, arc spot moves on a surface of a metallic evaporation substance (cathode) 15, and the evaporation substance makes flash evaporation and is discharged from the evaporation source 13 to the substrate 1 to form a metallic film 2 on the substrate 1. A micro particle 21 which is discharged together with metallic atom and ion from the evaporation substrate 15 forms appropriate irregularities on a coat 2, thereby increasing capacitance of the electrode material.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は電解コンデンサ用電極材料の製造方法に関し、
殊に静電容量の増大を図ることのできる電極材料の製造
方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an electrode material for an electrolytic capacitor,
In particular, the present invention relates to a method of manufacturing an electrode material that can increase capacitance.

[従来の技術] 電解コンデンサの性能を向上させる手段としては、例え
ば特開昭59−167009号、同61〜1826号、
同61〜214420号等に見られる様な各種の技術が
提案されており、i極材料自体の静電容量の増大が検討
されている。
[Prior Art] As means for improving the performance of electrolytic capacitors, for example, Japanese Patent Laid-Open Nos. 59-167009, 61-1826,
Various techniques have been proposed, such as those seen in Japanese Patent Nos. 61-214420, and studies have been made to increase the capacitance of the i-electrode material itself.

電極材料の静電容量の増大を図る為のほぼ確立された考
“え方では、電極材料用基材の表面を粗面化して表面積
を増大させ、その表面に高誘電体皮膜を形成するのがも
っとも効果的であるとされる。また前記高話電体皮膜表
面に微細な凹凸を形成しておけば、該表面積の拡大によ
り、静電容量はより一層増大すると言われている。
An almost established idea for increasing the capacitance of electrode materials is to roughen the surface of the electrode material base material to increase the surface area, and then form a high dielectric film on that surface. It is said that if fine irregularities are formed on the surface of the high-talk telephone body film, the capacitance will further increase due to the enlargement of the surface area.

例えば特開昭61〜214420号に開示された技術で
は、エツチング法で粗面化された基材表面に真空蒸着法
1不活性ガス中蒸着法、スパッタリング法、イオンブレ
ーティング法等を適用して導電性金属皮膜を形成してい
る。この技術によれば、第2図に示す様に、粗面化され
た基材1の表面3上に金属皮膜2が形成され、従ってこ
の金属皮III 2には突出部5が形成され、この突出
部5は直径Rh旬、02〜1.OAtmO球頭状である
ことが好ましいとされる。そして金属皮膜2は酸化皮膜
となって高説電体となり、上記形状特性によって静電容
量が増大する。
For example, in the technique disclosed in JP-A-61-214420, a vacuum evaporation method 1 an inert gas evaporation method, a sputtering method, an ion blating method, etc. are applied to the surface of a base material that has been roughened by an etching method. Forms a conductive metal film. According to this technique, as shown in FIG. 2, a metal film 2 is formed on the roughened surface 3 of the base material 1, and therefore a protrusion 5 is formed on this metal film III 2. The protrusion 5 has a diameter Rh, 02 to 1. Preferably, OAtmO is spherical. Then, the metal film 2 becomes an oxide film and becomes a highly conductive material, and the capacitance increases due to the above-mentioned shape characteristics.

[発明が解決しようとする課題] 第3図は不活性ガス中蒸着法を実施する為の装置を示す
概略説明図であり、図中10は真空容器、12はガス導
入管、13は蒸発源、14は電子銃、15は蒸発物質を
夫々示す。蒸発物質15(金属物質)は電子銃14から
放出された電子ビームによる加熱を受けて蒸発し、基材
1の表面に付着して金属皮膜2を形成する金属皮膜2に
前記突出部5を形成するには、Ar等の不活性ガスをガ
ス導入管12から導入することが不可欠である。即ち通
常の蒸着法においては雰囲気圧が低い場合には、皮膜が
平滑で緻密な膜となり表面拡大の効果が発揮されないの
で、不活性ガスを導入して皮膜を多孔質の柱状組織とし
、静電容量の増大に有効な突出部5を形成する様にして
いる。−船釣に真空蒸着法、スパッタリング法およびイ
オンブレーティング法では、金属が原子状態で蒸発して
基材表面に飛来し、該基材表面上に金属皮11i 2が
形成されるのであるが、形成される膜の形態は雰囲気圧
の影響を受けるから、雰囲気圧を適正に調整する為の不
活性ガスの導入は不可欠である。
[Problems to be Solved by the Invention] FIG. 3 is a schematic explanatory diagram showing an apparatus for carrying out an inert gas vapor deposition method, in which 10 is a vacuum vessel, 12 is a gas introduction pipe, and 13 is an evaporation source. , 14 represents an electron gun, and 15 represents an evaporated substance. The evaporated substance 15 (metallic substance) is heated by the electron beam emitted from the electron gun 14, evaporates, and adheres to the surface of the base material 1 to form the metal coating 2. The protrusion 5 is formed on the metal coating 2. In order to do this, it is essential to introduce an inert gas such as Ar through the gas introduction pipe 12. In other words, when the atmospheric pressure is low in the normal vapor deposition method, the film becomes smooth and dense and the effect of surface expansion is not exhibited. The protrusion 5 is formed to be effective in increasing the capacity. - In the vacuum evaporation method, sputtering method, and ion blating method for boat fishing, metal evaporates in an atomic state and flies to the surface of the base material, and a metal skin 11i 2 is formed on the surface of the base material. Since the form of the formed film is affected by the atmospheric pressure, it is essential to introduce an inert gas to properly adjust the atmospheric pressure.

上述の如く、これまで提案されてきた技術では、いずれ
の皮膜形成方法を採用するにしても、不活性ガスの導入
は不可欠である。しかしながら上記各種皮膜形成方法に
よって、第2図に示した様な好ましい皮膜形態を獲得す
る為には、不活性ガスの圧力・tL量等について微妙な
調整が必要であり、また蒸発源と基材間の距離によって
も皮膜形態が左右されることから、成膜条件の制御が困
難であるという欠点がある。また不活性ガスの費用も軽
視することはで籾ない。更に、こうして形成される多孔
質の柱状組織の皮膜は、基材との密着性が悪く、それ自
身の強度も低いことから、電解コンデンサの製作中に該
皮膜が損傷し、これが電解コンデンサの性能低下を招く
という問題もある。
As mentioned above, in the techniques proposed so far, introduction of an inert gas is essential no matter which film forming method is adopted. However, in order to obtain a preferable film form as shown in Fig. 2 using the various film forming methods described above, delicate adjustments are required in the pressure, tL amount, etc. of the inert gas, and the evaporation source and substrate Since the film form is also influenced by the distance between the two, there is a drawback that it is difficult to control the film forming conditions. Also, the cost of inert gas cannot be underestimated. Furthermore, the film with a porous columnar structure formed in this way has poor adhesion to the base material and has low strength, so the film can be damaged during the manufacture of electrolytic capacitors, which may affect the performance of the electrolytic capacitor. There is also the problem of causing a decline.

本発明はこうした技術的課題を解決する為になされたも
のであって、その目的は、上述の様な不都合を生じるこ
となく、電解コンデンサの静電容量の向上を図り得る様
な、電解材料を製造する方法を提供する点にある。
The present invention has been made to solve these technical problems, and its purpose is to develop an electrolytic material that can improve the capacitance of electrolytic capacitors without causing the above-mentioned disadvantages. The point is to provide a manufacturing method.

[課題を解決する為の手段] 上記目的を達成し得た本発明とは、基材表面にTi皮膜
を形成して電解コンデンサ用電極材料を製造するに当た
り、陰極アークプラズマ蒸着法を適用し、ベース圧力を
1xlO−4Torr以下とすると共に、反応ガスおよ
び不活性ガスのいずれも導入しない状態でアーク放電々
流を80〜120Aとし、基材表面にTi皮膜を厚さ0
.1〜1.0μm形成する工程を含む点に要旨を有する
電解コンデンサ用電極材料の製造方法である。
[Means for Solving the Problems] The present invention has achieved the above object by applying a cathodic arc plasma deposition method to produce an electrode material for an electrolytic capacitor by forming a Ti film on the surface of a base material. The base pressure was set to 1xlO-4 Torr or less, and the arc discharge flow was set to 80 to 120 A without introducing any reactive gas or inert gas, and a Ti film was applied to the base material surface to a thickness of 0.
.. This is a method for manufacturing an electrode material for an electrolytic capacitor, the gist of which is that it includes a step of forming an electrode material with a thickness of 1 to 1.0 μm.

[作用] 本発明は上述の如く構成されるが、要するにベース圧力
およびアーク放電々流を適切な範囲に設定しつつ、反応
ガス(この点については後述する)や不活性ガスのいず
れをも導入しない状態で陰極アークプラズマ蒸′着法を
実行して基材上にTi皮膜を形成すれば;希望する形態
の電極材料が得られることを見出し、ここに本発明を完
成した。
[Function] The present invention is constructed as described above, but in short, it is possible to introduce either a reactive gas (this point will be described later) or an inert gas while setting the base pressure and arc discharge current within appropriate ranges. It has been discovered that if a Ti film is formed on a substrate by performing a cathodic arc plasma evaporation method without using a Ti film, an electrode material in the desired form can be obtained, and the present invention has now been completed.

陰極アークプラズマ蒸着法は、例えば特公昭58−30
33号に開示された「アーク堆積方法」として知られる
、真空での薄膜形成法の一種であり、蒸発粒子のイオン
化率が高く、高密度・高付着力の膜を比較的低温の基材
の上に形成できるという特徴を有する。この蒸着法は、
N2゜CH4等の反応性ガス雰囲気中でTiN。
The cathodic arc plasma deposition method is described in Japanese Patent Publication No. 58-30, for example.
It is a type of thin film forming method in vacuum known as the "arc deposition method" disclosed in No. It has the characteristic that it can be formed on top. This vapor deposition method is
TiN in a reactive gas atmosphere such as N2°CH4.

Tic、T1CN、ZrN、CrN等の化合物からなる
耐摩耗性膜、耐食性膜、装飾膜を形成する為に主に利用
されており、特に切削工具への耐摩耗性膜のコーティン
グ技術として広く適用されている。
It is mainly used to form wear-resistant films, corrosion-resistant films, and decorative films made of compounds such as Tic, T1CN, ZrN, and CrN, and is especially widely applied as a coating technology for wear-resistant films on cutting tools. ing.

第4図は本発明を実施する為に構成される陰極アークプ
ラズマ蒸着装置を示す概略説明図、第5図は蒸発の様子
を示す原理図である。尚図中110.13.15は前記
第3図に付したのと同一の参照符号を付しており、また
17はアーク電源、18はバイアス電源、19は陰極点
120は陽極、21はマクロパーティクルを夫々示す。
FIG. 4 is a schematic explanatory diagram showing a cathodic arc plasma deposition apparatus configured to carry out the present invention, and FIG. 5 is a principle diagram showing the state of evaporation. In the figure, 110, 13, and 15 are given the same reference numerals as in FIG. Particles are shown respectively.

アーク電源17によって蒸発源13に電圧を印加すると
、金属製蒸発物質(カソード)15の表面上を陰極点(
アークスポット)19がランダムに動きまわり、この陰
極点19にアーク電流が集中する。陰極点19の大きさ
は一般に1〜3μmφ程度であり、この陰極点19中の
電流は10A/μm2程度である。この様な大電流密度
が陰極点19に集中する結果、蒸発物質はフラッシュ蒸
発する。この蒸発気体中には、電子、イオン、中性蒸気
原子および0.2〜1.0μm程度の粒子(以下これを
マクロパーティクルと呼ぶ)等が含まれる。蒸発気体は
第4図に示す様に、蒸発源13から基材lに向かって放
出され、基材1の表面に?ff1j突して、基材1上に
金属皮膜2を形成する。この様にして形成される金属皮
膜2の模式図を第1図に示す。尚図中21はマクロパー
ティクルを示す。またバイアス電源は必要に応じて基材
1に負のバイアス電圧を付加する為のものであり、基材
1への金属皮膜2の密着性を向上させるのに効果的であ
る。
When a voltage is applied to the evaporation source 13 by the arc power source 17, a cathode point (
The arc spot 19 moves around randomly, and the arc current concentrates on this cathode spot 19. The size of the cathode spot 19 is generally about 1 to 3 μmφ, and the current in this cathode spot 19 is about 10 A/μm 2 . As a result of such a large current density being concentrated at the cathode spot 19, the evaporated substance flash evaporates. This evaporated gas contains electrons, ions, neutral vapor atoms, particles of about 0.2 to 1.0 μm (hereinafter referred to as macroparticles), and the like. As shown in FIG. 4, the evaporated gas is emitted from the evaporation source 13 toward the base material 1, and is deposited on the surface of the base material 1. ff1j Finally, a metal film 2 is formed on the base material 1. A schematic diagram of the metal film 2 formed in this manner is shown in FIG. In addition, numeral 21 in the figure indicates a macroparticle. Further, the bias power supply is for applying a negative bias voltage to the base material 1 as necessary, and is effective for improving the adhesion of the metal coating 2 to the base material 1.

この様に陰極アークプラズマ蒸着法を適用し、反応ガス
および不活性ガスのいずれも導入しない状態で基材1表
面上に金属皮11M2を形成すれば、蒸発物質15から
金属原子やイオンと共に放出されたマクロパーティクル
21が金属皮1112に適度な凹凸を形成し、これが電
極材料の静電容量の増大に寄与する。また反応ガスや不
活性ガスの導入が不要であることから、蒸発源13と基
材1間の影響も小さく、操業の安定化が図れる。さらに
この方法によって形成される皮膜は、密着性および強度
も十分なものが得られる。
If the cathodic arc plasma deposition method is applied in this way and the metal skin 11M2 is formed on the surface of the base material 1 without introducing any reactive gas or inert gas, the metal skin 11M2 is released from the evaporated substance 15 together with metal atoms and ions. The macroparticles 21 form appropriate irregularities on the metal skin 1112, which contributes to an increase in the capacitance of the electrode material. Furthermore, since it is not necessary to introduce a reactive gas or an inert gas, the influence between the evaporation source 13 and the base material 1 is small, and the operation can be stabilized. Furthermore, the film formed by this method has sufficient adhesion and strength.

元来、耐摩耗性膜、耐食性膜および装fiii fil
を形成するに当たっては、蒸発物質のマクロパーティク
ルは膜の不均一性や表面粗度の悪化等の原因となり、好
ましいものではないとされており、陰極アークプラズマ
蒸着法による膜形成の欠点とされていた。そこで陰極ア
ークプラズマ蒸着法で上記各種膜を形成するに際しては
、第3図に示した如く反応性ガスを真空容器10内に導
入して行なうのが一般的であり、これによってマクロパ
ーティクルの発生を大幅に減少し、実用上支障のない程
度の均一な膜の製造が実施されてきた。この理由は反応
性ガスを導入すると、金属製蒸発物質(カソード)の表
面に反応生成物例えばTiNやTiCの膜が形成され、
これらの生成物は金属製蒸発物質よりも高い融点を持っ
ているため、陰極点(アークスポット)での溶融が減少
し、マクロパーティクルが減少するものと考えられる。
Originally, wear-resistant membrane, corrosion-resistant membrane and fiii fil
When forming a film, macroparticles of evaporated substances are considered to be undesirable as they cause non-uniformity of the film and deterioration of the surface roughness, and are considered to be a drawback of film formation by cathodic arc plasma deposition. Ta. Therefore, when forming the various films mentioned above using the cathodic arc plasma deposition method, it is common to introduce a reactive gas into the vacuum chamber 10 as shown in FIG. 3, thereby preventing the generation of macroparticles. The production of uniform membranes has been carried out that has significantly reduced the amount of heat and has no problem in practical use. The reason for this is that when a reactive gas is introduced, a film of reaction products such as TiN or TiC is formed on the surface of the metal evaporator (cathode).
Since these products have a higher melting point than the metal vaporized material, it is thought that melting at the cathode point (arc spot) is reduced and macroparticles are reduced.

本発明における陰極アークプラズマ蒸着法の適用は、同
方法のこれまでの一般的な実施様式によるものではなく
、従来欠点とされていた特徴即ち反応性ガス(または不
活性ガス)の存在しない状態で生成し易いマクロパーテ
ィクルを積極的に利用したものである。
The application of the cathodic arc plasma deposition method in the present invention is not based on the previously common practice of the method, but is based on a characteristic previously considered disadvantageous, namely, in the absence of reactive gases (or inert gases). It actively utilizes macroparticles that are easy to generate.

本発明で各要件を限定した理由は次の通りである。The reasons for limiting each requirement in the present invention are as follows.

まずベース圧力はI X 10−’To r r (0
,013Pa)以下とする必要がある。これはベース圧
力が1xlO−4Torrを超えると真空容器内に存在
する残留ガスの皮膜への影響が顕著になるからである。
First, the base pressure is I X 10-'To r r (0
, 013 Pa) or less. This is because when the base pressure exceeds 1xlO-4 Torr, the influence of residual gas present in the vacuum container on the film becomes significant.

即ち残留ガスとTiの反応生成物(例えばTiNやTi
02)が膜に不純物として混入したり、基材表面に付着
している残留ガスの為に膜の付着力が低下する。尚ここ
でベース圧力は、蒸発開始時の圧力の意味であり、この
ベース圧力を所定の値に設定してお籾さえすれば成膜中
のガス導入は不要であるから、圧力の制御は不要である
In other words, reaction products of residual gas and Ti (e.g. TiN and Ti
02) is mixed into the film as an impurity, and the adhesion of the film is reduced due to residual gas adhering to the surface of the base material. Note that the base pressure here refers to the pressure at the start of evaporation, and as long as the base pressure is set to a predetermined value and rice is harvested, there is no need to introduce gas during film formation, so pressure control is unnecessary. It is.

アーク放電々流が増大するほどマクロパーティクルが増
加する傾向を示すが、電極材料に希望する形態を与えて
静電容量の増大効果を得る為には、アーク放電々流は8
0A以上とする必要がある。しかしながらアーク放電々
流が100A程度となるとマクロパーティクルの増加は
飽和状態となり、更に120Aを超えると陰極点が2つ
以上に分かれる可能性が大きくなり静電容量の低下を招
く。
Macro particles tend to increase as the arc discharge current increases, but in order to give the electrode material the desired shape and obtain the effect of increasing capacitance, the arc discharge current must be 8.
It needs to be 0A or more. However, when the arc discharge current reaches about 100 A, the increase in macroparticles reaches a saturated state, and when it further exceeds 120 A, the possibility that the cathode spot is divided into two or more increases, resulting in a decrease in capacitance.

陰極アークプラズマ蒸着法によれば、Ti以外にもTa
、Cu、Fe等の金属皮III 2を形成することもで
きるが、酸化によって生じるTiO2の誘電率が大きい
ことおよび他の金属に比べて耐久性や強度の点に優れて
いることから、本発明では基材1上に形成する金属皮膜
2をTIに限定した。また金属皮膜2の厚さは静電容量
にそれほど大きな影響を及ぼすものではないが、0.1
μm未満であると、静電容量のばらつき(膜厚分布の影
響)が現われ、これに対し1.0μmを超えるとTiタ
ーゲットのコストの増大を招き好ましくない。従って本
発明ではTi皮膜の厚さは0.1〜1.0μmに設定し
た。
According to the cathodic arc plasma deposition method, in addition to Ti, Ta
Although it is also possible to form a metal layer III 2 of metal such as Cu, Fe, etc., the present invention uses TiO2, which is produced by oxidation, because it has a high dielectric constant and is superior in durability and strength compared to other metals. Here, the metal film 2 formed on the base material 1 was limited to TI. Furthermore, the thickness of the metal film 2 does not have a large effect on the capacitance, but is 0.1
If it is less than 1.0 μm, variations in capacitance (effects of film thickness distribution) will appear, whereas if it exceeds 1.0 μm, the cost of the Ti target will increase, which is undesirable. Therefore, in the present invention, the thickness of the Ti film is set to 0.1 to 1.0 μm.

一方本発明で使用する基材1についてはこれまで用いら
れてきた基材を用いればよく特に限定するものではない
が、表面をエツチング処理したアルミニウム箔が最も一
般的である。但し、基材には導電性材料の他に、非導電
性材料を用いることもできる。即ち電極材料として要求
される電気的導通能は基材1表面の金属皮1i2(Ti
皮膜)で行なわれるので、基材1そのものには導電性で
あることか要求される訳ではない。
On the other hand, the base material 1 used in the present invention is not particularly limited as long as it can be any base material that has been used up to now, but aluminum foil whose surface has been etched is most commonly used. However, in addition to the conductive material, a non-conductive material can also be used for the base material. In other words, the electrical conductivity required for the electrode material is the metal layer 1i2 (Ti) on the surface of the base material 1.
The substrate 1 itself is not required to be electrically conductive.

尚本発明を実施する為の装置としては、前記第4図に示
した様なバッチ式のものに限らず、例えばN6図に示す
様なロールコータ方式のものであってもよく、この様な
装置であれば、巻出しロール321巻取りロール33お
よび冷却ロール34によってコイル状基材31を送給し
つつ金属皮膜2の連続的な形成が達成され、生産性の向
上が図れる。
The apparatus for carrying out the present invention is not limited to the batch type as shown in Fig. 4, but may be a roll coater type as shown in Fig. With this device, continuous formation of the metal coating 2 can be achieved while feeding the coiled base material 31 by the unwinding roll 321, the take-up roll 33, and the cooling roll 34, and productivity can be improved.

以下本発明を実施例によって更に詳細に説明するが、下
記実施例は本発明を限定する性質のものではなく、前・
後記の趣旨に徴して設計変更することはいずれも本発明
の技術的範囲に含まれるものである。
Hereinafter, the present invention will be explained in more detail with reference to examples, but the following examples are not intended to limit the present invention.
Any design changes for the purposes described below are included within the technical scope of the present invention.

[実施例] 表面をエツチング処理したアルミニウム箔を基材1とし
て用い、アーク放電々流を様々に変え、第4図に示した
装置によって基材1上に様々なTi皮膜を形成した。尚
このときのベース圧力(残留ガス)は5.5 X 10
−’To r rであり、反応ガスおよび不活性ガスは
導入せず、バイアス電圧は印加しない状態であった。
[Example] An aluminum foil whose surface had been etched was used as the base material 1, and various Ti films were formed on the base material 1 by changing the arc discharge current using the apparatus shown in FIG. The base pressure (residual gas) at this time is 5.5 x 10
-'Torr, no reaction gas or inert gas was introduced, and no bias voltage was applied.

得られた電極材料の静電容量を測定したところ、第1表
に示す結果が得られた。尚第1表中には比較例の1つと
して、Ti皮膜を形成しない電第1表 第1表から明らかな様に、本発明で規定する要件を満足
する実施例(No、1.4〜6)は、いずれも大きな静
電容量が得られている。
When the capacitance of the obtained electrode material was measured, the results shown in Table 1 were obtained. In Table 1, as one of the comparative examples, examples (No. 1.4 to 6), a large capacitance was obtained in all cases.

[発明の効果] 以上に述べた如く本発明方法によれば、従来技術で示し
た様な不都合を生じることなく、最適な電解コンデンサ
用電極材が実現できた。
[Effects of the Invention] As described above, according to the method of the present invention, an optimal electrode material for electrolytic capacitors could be realized without causing the disadvantages shown in the prior art.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法によって形成される金属皮膜2を示
す模式図、第2図は従来の金属皮膜2の形態を示す模式
図、第3図は不活性ガス中蒸着法を実施する為の装置を
示す概略説明図、第4図は本発明方法を実施する為に構
成される陰極アークプラズマ蒸着装置を示す概略説明図
、第5図は陰極アークプラズマ蒸着法における金属蒸発
の様子を示す原理図、第6図は本発明方法を実施する為
に構成される陰極アークプラズマ蒸着装置の他の例を示
す概略説明図である。 1.31・・・基材   2・・・金属皮膜10・・・
真空容器   13・・・蒸発源5・・・蒸発物質  
 17・・・アーク電源8・・・バイアス電源 19・
・・陰極点0・・・陽極 1・・・マクロパーティクル
Fig. 1 is a schematic diagram showing a metal film 2 formed by the method of the present invention, Fig. 2 is a schematic diagram showing the form of a conventional metal film 2, and Fig. 3 is a schematic diagram showing the form of a conventional metal film 2. A schematic explanatory diagram showing the apparatus, FIG. 4 is a schematic explanatory diagram showing a cathodic arc plasma deposition apparatus configured to carry out the method of the present invention, and FIG. 5 is a principle showing the state of metal evaporation in the cathodic arc plasma deposition method. 6 are schematic explanatory diagrams showing other examples of a cathodic arc plasma deposition apparatus configured to carry out the method of the present invention. 1.31...Base material 2...Metal coating 10...
Vacuum container 13... Evaporation source 5... Evaporation substance
17...Arc power supply 8...Bias power supply 19.
...Cathode point 0...Anode 1...Macro particles

Claims (1)

【特許請求の範囲】[Claims] 基材表面にTi皮膜を形成して電解コンデンサ用電極材
料を製造するに当たり、陰極アークプラズマ蒸着法を適
用し、ベース圧力を1×10^−^4Torr以下とす
ると共に、反応ガスおよび不活性ガスのいずれも導入し
ない状態でアーク放電々流を80〜120Aとし、基材
表面にTi皮膜を厚さ0.1〜1.0μm形成する工程
を含むことを特徴とする電解コンデンサ用電極材料の製
造方法。
In manufacturing electrode materials for electrolytic capacitors by forming a Ti film on the surface of the base material, we apply cathodic arc plasma deposition, keep the base pressure to 1 x 10^-^4 Torr or less, and use reactive gas and inert gas. Manufacture of an electrode material for an electrolytic capacitor, characterized in that it includes a step of setting an arc discharge current to 80 to 120 A without introducing any of the above, and forming a Ti film with a thickness of 0.1 to 1.0 μm on the surface of a base material. Method.
JP1101881A 1989-04-21 1989-04-21 Method for producing electrode material for electrolytic capacitor Expired - Fee Related JP2968800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1101881A JP2968800B2 (en) 1989-04-21 1989-04-21 Method for producing electrode material for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1101881A JP2968800B2 (en) 1989-04-21 1989-04-21 Method for producing electrode material for electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH02280310A true JPH02280310A (en) 1990-11-16
JP2968800B2 JP2968800B2 (en) 1999-11-02

Family

ID=14312287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1101881A Expired - Fee Related JP2968800B2 (en) 1989-04-21 1989-04-21 Method for producing electrode material for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2968800B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036010A (en) * 1989-06-02 1991-01-11 Nippon Chemicon Corp Manufacture of aluminum electrode for electrolytic capacitor
US7428139B2 (en) 2002-11-19 2008-09-23 Sanyo Electric Co., Ltd. Solid electrolytic capacitor
US8241699B2 (en) 2007-03-09 2012-08-14 Panasonic Corporation Deposition apparatus and method for manufacturing film by using deposition apparatus
JP2012523929A (en) * 2009-04-16 2012-10-11 ヴィシェイ スプラーグ インコーポレイテッド Sealed wet electrolytic capacitor
US9418796B2 (en) 2011-02-21 2016-08-16 Japan Capacitor Industrial Co., Ltd. Electrode foil, current collector, electrode, and electric energy storage element using same
WO2017033994A1 (en) * 2015-08-25 2017-03-02 国立大学法人熊本大学 Metal foil catalyst, method for producing same and catalyst converter
US10176930B2 (en) 2016-01-14 2019-01-08 Vishay Sprague, Inc. Low profile flat wet electrolytic tantalum capacitor
US11189431B2 (en) 2018-07-16 2021-11-30 Vishay Sprague, Inc. Low profile wet electrolytic tantalum capacitor
US11742149B2 (en) 2021-11-17 2023-08-29 Vishay Israel Ltd. Hermetically sealed high energy electrolytic capacitor and capacitor assemblies with improved shock and vibration performance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583033A (en) * 1981-06-30 1983-01-08 Fujitsu Ltd Tree structure retrieval processor
JPS61180420A (en) * 1985-02-05 1986-08-13 昭和アルミニウム株式会社 Cathode material for electrolytic capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583033A (en) * 1981-06-30 1983-01-08 Fujitsu Ltd Tree structure retrieval processor
JPS61180420A (en) * 1985-02-05 1986-08-13 昭和アルミニウム株式会社 Cathode material for electrolytic capacitor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036010A (en) * 1989-06-02 1991-01-11 Nippon Chemicon Corp Manufacture of aluminum electrode for electrolytic capacitor
US7428139B2 (en) 2002-11-19 2008-09-23 Sanyo Electric Co., Ltd. Solid electrolytic capacitor
US8241699B2 (en) 2007-03-09 2012-08-14 Panasonic Corporation Deposition apparatus and method for manufacturing film by using deposition apparatus
JP2012523929A (en) * 2009-04-16 2012-10-11 ヴィシェイ スプラーグ インコーポレイテッド Sealed wet electrolytic capacitor
US10522298B2 (en) 2009-04-16 2019-12-31 Vishay Sprague, Inc. Methods of manufacturing a hermetically sealed wet electrolytic capacitor and a hermetically sealed wet electrolytic capacitor
US9418796B2 (en) 2011-02-21 2016-08-16 Japan Capacitor Industrial Co., Ltd. Electrode foil, current collector, electrode, and electric energy storage element using same
WO2017033994A1 (en) * 2015-08-25 2017-03-02 国立大学法人熊本大学 Metal foil catalyst, method for producing same and catalyst converter
US10176930B2 (en) 2016-01-14 2019-01-08 Vishay Sprague, Inc. Low profile flat wet electrolytic tantalum capacitor
US10614963B2 (en) 2016-01-14 2020-04-07 Vishay Sprague, Inc. Low profile flat wet electrolytic tantalum capacitor
US11189431B2 (en) 2018-07-16 2021-11-30 Vishay Sprague, Inc. Low profile wet electrolytic tantalum capacitor
US11742149B2 (en) 2021-11-17 2023-08-29 Vishay Israel Ltd. Hermetically sealed high energy electrolytic capacitor and capacitor assemblies with improved shock and vibration performance

Also Published As

Publication number Publication date
JP2968800B2 (en) 1999-11-02

Similar Documents

Publication Publication Date Title
US5069770A (en) Sputtering process employing an enclosed sputtering target
JPH02280310A (en) Manufacture of electrode material for electrolytic capacitor
CN111235532A (en) Coating device combining ion coating and electron beam evaporation coating and coating method thereof
JPH08287901A (en) Manufacture of positive electrode for lithium secondary battery
GB2056503A (en) Porous metal films
JPH03260063A (en) Formation of oxide thin film
KR100954287B1 (en) apparatus and method for coating conductive carbon
JP4351777B2 (en) Deposition assist deposition apparatus and thin film forming method
JP3155750B2 (en) Method for producing aluminum electrode for electrolytic capacitor
JPH0444204A (en) Aluminum electrode for electrolytic capacitor
EP1591553A1 (en) Process for producing an electrode coated with titanium nitride
JPH0330410A (en) Manufacture of aluminum electrode for electrolytic capacitor
JPH0332012A (en) Manufacture of aluminum electrode for electrolytic capacitor
JP3291088B2 (en) Coating method
JPH04276062A (en) Arc deposition device
JPH0330409A (en) Manufacture of aluminum electrode for electrolytic capacitor
JPS6053113B2 (en) Film formation method
JPS628409A (en) Formation of transparent conducting metal oxide film
JPH04191364A (en) Method and device for ion plating
US20040129557A1 (en) Method of forming non-oxide thin films using negative sputter ion beam source
JPS6353261B2 (en)
JPH06450Y2 (en) Coil movable ion plating device
JPH03147312A (en) Manufacture of aluminum electrode for electrolytic capacitor use
JPH03131014A (en) Manufacture of aluminum electrode for electrolytic capacitor
JP2000273620A (en) Formation of transparent electrically conductive thin film-coated film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees