JP2000273620A - Formation of transparent electrically conductive thin film-coated film - Google Patents

Formation of transparent electrically conductive thin film-coated film

Info

Publication number
JP2000273620A
JP2000273620A JP7791299A JP7791299A JP2000273620A JP 2000273620 A JP2000273620 A JP 2000273620A JP 7791299 A JP7791299 A JP 7791299A JP 7791299 A JP7791299 A JP 7791299A JP 2000273620 A JP2000273620 A JP 2000273620A
Authority
JP
Japan
Prior art keywords
thin film
film
conductive thin
plastic film
mhz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7791299A
Other languages
Japanese (ja)
Inventor
Yasuyoshi Yamada
泰美 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP7791299A priority Critical patent/JP2000273620A/en
Publication of JP2000273620A publication Critical patent/JP2000273620A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To continuously form a high performance electrically conductive thin film on a plastic film in such a manner that damage to a base material is suppressed by vaor-depositing electrically conductive metallic oxide via high frequency plasma of discharge frequency in a specified range in an oxygen atmosphere. SOLUTION: The discharge frequency is controlled to the range of 14 to 100 MHz. A vapor depositing material 6 held in a crucible 7 set to the lower part of a vacuum chamber 1 in which the degree of vacuum is controlled to <=1×10-5 Torr is evaporated by an electron beam irradiated from an electron gun 8, the evaporated particles 11 pass through the inside of the region of oxygen plasma introduced from a gas introducing port 10 into the space between a plastic film 2 and the crucible 7 to form a transparent electrically conductive thin film on the plastic film 2. Continuous film formation is executed to the surface of the plastic film unwound from the roll state. As to the base material, forced heating is not executed so that it can correspond to all plastics regardless of the stocks. As the base material, pglyolefine, polyester, polyamide or the like is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する分野】本発明は液晶ディスプレイや太陽
電池などの透明電極、電磁波遮蔽膜などとして利用され
る低抵抗透明導電性薄膜被覆フィルムの形成方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a low-resistance transparent conductive thin film coating film used as a transparent electrode for a liquid crystal display or a solar cell, an electromagnetic wave shielding film and the like.

【0002】[0002]

【従来の技術】従来から透明導電性薄膜を成膜するに
は、導電性を有する材料を抵抗加熱や電子ビームを用い
て蒸着する形成法が多く用いられてきた。蒸着法はスパ
ッタリング法や気相化学堆積(CVD)法などに比べ成
膜速度が速く、生産性の高い成膜法である。この導電性
薄膜には主に酸化錫やITO(酸化錫添加酸化インジウ
ム)のような酸化物が利用されている。その蒸着法の中
でも、蒸着の際プラズマを介するプラズマアシスト蒸着
法が有効となる。
2. Description of the Related Art Conventionally, in order to form a transparent conductive thin film, a forming method in which a conductive material is deposited by resistance heating or using an electron beam has been often used. The vapor deposition method has a higher film formation rate and higher productivity than a sputtering method, a vapor phase chemical deposition (CVD) method, or the like. An oxide such as tin oxide or ITO (tin oxide added indium oxide) is mainly used for the conductive thin film. Among the vapor deposition methods, a plasma-assisted vapor deposition method using plasma during vapor deposition is effective.

【0003】この蒸着法はプラズマを介することで蒸発
粒子を高活性化し、密着性、結晶性および反応性を向上
させる効果がある。
[0003] This vapor deposition method has the effect of increasing the activity of evaporated particles through plasma and improving adhesion, crystallinity and reactivity.

【0004】上記のようなプラズマアシスト蒸着法の効
果を向上させるためには、プラズマの高密度化が必要で
ある。従来のプラズマアシスト蒸着法ではその簡易性か
ら主に高周波プラズマが利用されている。高周波プラズ
マは1×10**−4Torr程度の高真空下でも発生
可能で、かつ基材への熱的ダメージが低いことを特徴と
している。
In order to improve the effect of the above-described plasma-assisted deposition method, it is necessary to increase the density of plasma. In the conventional plasma-assisted deposition method, high-frequency plasma is mainly used due to its simplicity. The high-frequency plasma is characterized in that it can be generated even under a high vacuum of about 1 × 10 **-4 Torr and has low thermal damage to the substrate.

【0005】従来高周波プラズマは13.56MHzが
主に利用されていた。この場合プラズマ密度の向上には
高放電出力が必要となるが、実用上には限界があった。
Conventionally, 13.56 MHz has been mainly used for high frequency plasma. In this case, a high discharge output is required to improve the plasma density, but there is a limit in practical use.

【0006】そこで最近、特開平9−71858に代表
される六化ホウ素ランタンからなる陰極を含むプラズマ
ガンによる高密度プラズマをアシストとして利用した蒸
着方法が報告されている。この蒸着方法により高性能透
明導電性薄膜の成膜が可能となった。しかし従来の1
3.56MHzプラズマよりプラズマ密度が1〜2桁も
高いため基材への熱的ダメージが大きく、プラスチック
フィルムなど耐熱性の低い基材にはその利用が困難であ
る。
Therefore, recently, a vapor deposition method using a high-density plasma by a plasma gun including a cathode made of lanthanum borohydride as an assist, as represented by Japanese Patent Application Laid-Open No. 9-71858, has been reported. By this vapor deposition method, a high-performance transparent conductive thin film can be formed. However, conventional 1
Since the plasma density is one to two orders of magnitude higher than that of 3.56 MHz plasma, thermal damage to the substrate is large, and its use is difficult for a substrate having low heat resistance such as a plastic film.

【0007】近年、透明導電性薄膜の利用範囲は広くな
り、それに応じて成膜される基材のニーズも多種多様に
なっている。したがってあらゆる基材への成膜が望まれ
る。また基材へのダメージにより薄膜との密着性が損な
われる。
[0007] In recent years, the range of use of transparent conductive thin films has been widened, and the needs for substrates to be formed in response have been diversified. Therefore, film formation on any substrate is desired. Further, the adhesion to the thin film is impaired due to damage to the base material.

【0008】また高密度プラズマビームを磁場で制御し
ているため比較的複雑な制御システムが必要となり、既
存の装置になどに組み込むことが困難で簡易性に欠けて
いた。
In addition, since a high-density plasma beam is controlled by a magnetic field, a relatively complicated control system is required, and it is difficult to incorporate it into an existing device or the like, and it lacks simplicity.

【0009】[0009]

【発明が解決しようとする課題】上記のことを鑑みて本
発明は、導電性金属酸化物よりなる高性能透明導電性薄
膜をプラスチックフィルム上に連続的に成膜し、基材へ
のダメージを極力抑えた、高性能透明導電性薄膜の形成
方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above, the present invention provides a method for continuously forming a high-performance transparent conductive thin film made of a conductive metal oxide on a plastic film to reduce damage to a substrate. An object of the present invention is to provide a method for forming a high-performance transparent conductive thin film that is suppressed as much as possible.

【0010】[0010]

【課題を解決するための手段】前記課題を解決するた
め、請求項1記載の発明では、酸素雰囲気下にて高周波
プラズマを介した導電性金属酸化物の蒸着により、基材
上に透明導電性薄膜を形成する方法であって、放電周波
数が14MHzから100MHzの範囲であることを特
徴とする透明導電性薄膜被覆フィルムの形成方法を提供
する。
According to the first aspect of the present invention, a transparent conductive metal oxide is deposited on a substrate by high-frequency plasma deposition in an oxygen atmosphere. A method for forming a thin film, wherein the discharge frequency is in the range of 14 MHz to 100 MHz.

【0011】請求項2記載の発明では、前記の基材がロ
ール状態から巻き出されたプラスチックフィルムである
ことを特徴とする透明導電性薄膜被覆フィルムの形成方
法を提供する。
According to a second aspect of the present invention, there is provided a method for forming a transparent conductive thin film covering film, wherein the substrate is a plastic film unwound from a roll.

【0012】請求項3記載の発明では、基材であるプラ
スチックフィルムが強制加熱されていないことを特徴と
する透明導電性薄膜被覆フィルムの形成方法を提供す
る。
According to a third aspect of the present invention, there is provided a method for forming a transparent conductive thin film-coated film, wherein a plastic film as a substrate is not forcibly heated.

【0013】従来利用されている13.56MHzから
放電周波数を増加させることで、プラズマ活性種(電
子、イオン、ラジカルなど)と蒸着粒子との衝突確率を
増加させ、高活性状態を作り出し、高性能透明導電性薄
膜を高速で成膜できる。また高周波プラズマを用いるこ
とで、蒸着装置として簡易であり、また基材への熱的ダ
メージを抑制できる。
By increasing the discharge frequency from 13.56 MHz conventionally used, the probability of collision between plasma active species (electrons, ions, radicals, etc.) and the deposited particles is increased, and a high active state is created, and high performance is achieved. A transparent conductive thin film can be formed at a high speed. Further, by using high-frequency plasma, the vapor deposition apparatus can be simplified and thermal damage to the base material can be suppressed.

【0014】上限を100MHzとした理由は、100
MHz以上の周波数になると放電装置の回路構成が複雑
になり、装置の簡易性が失われることによる。
The reason for setting the upper limit to 100 MHz is that
At frequencies higher than MHz, the circuit configuration of the discharge device becomes complicated, and the simplicity of the device is lost.

【0015】またロール状態から巻き出されたプラスチ
ックフィルム上に連続成膜を行うことで生産性を向上さ
せることができる。
The productivity can be improved by forming a continuous film on the plastic film unwound from the roll state.

【0016】また上記基材として、素材にかかわらずあ
らゆるプラスチックフィルムに対応できるように強制加
熱しない。
Further, the substrate is not forcibly heated so as to be applicable to any plastic film regardless of the material.

【0017】本発明に使用する基材としては、例えばポ
リオレフィン(ポリエチレン、ポリプロピレンなど)、
ポリエステル(ポリエチレンテレフタレートなど)、ポ
リアミド(ナイロン66など)の厚さ10〜200μm
程度の透明性の高いプラスチックフィルムであれば本発
明の目的を逸脱するものではない。
As the base material used in the present invention, for example, polyolefin (polyethylene, polypropylene, etc.),
Polyester (polyethylene terephthalate, etc.), polyamide (nylon 66, etc.) thickness 10 to 200 μm
A plastic film having a high degree of transparency does not depart from the object of the present invention.

【0018】[0018]

【発明の実施の形態】以下本発明の実施形態を図面を用
いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】本発明は図1のような巻き取り式真空蒸着
装置を用いて行うもので、この装置は、真空チャンバー
1内にプラスチックフィルム2を流すための巻き出し機
3、巻き取り機4およびクーリングキャン5、蒸着材料
である導電性金属酸化物6を保持するるつぼ7と蒸着材
料に対して電子ビームを照射する電子銃8、プラスチッ
クフィルム2とるつぼ7との間でプラズマを発生させる
ための放電コイル9、酸素を導入するための導入口10
から構成されている。
The present invention is carried out by using a take-up type vacuum evaporation apparatus as shown in FIG. 1. This apparatus comprises an unwinder 3 for feeding a plastic film 2 into a vacuum chamber 1, a winder 4, and A cooling can 5, a crucible 7 for holding a conductive metal oxide 6 as a vapor deposition material, an electron gun 8 for irradiating the vapor deposition material with an electron beam, and a plasma for generating a plasma between the plastic film 2 and the crucible 7. Discharge coil 9, inlet 10 for introducing oxygen
It is composed of

【0020】上記巻き取り式真空蒸着装置を用いて行わ
れる本発明の透明導電性薄膜被覆フィルムの形成方法
は、まず真空度1×10**−5torr以下とした真
空チャンバー1下部に設置されているるつぼ7内に保持
された蒸着材料6を電子銃8から照射される電子ビーム
により蒸発させ、その蒸発された蒸発粒子11が前記プ
ラスチックフィルム2とるつぼ7との間にガス導入口1
0から導入された酸素のプラズマ領域中を通過して、プ
ラスチックフィルム2上に透明導電性薄膜を成膜させ
る。
In the method of forming a transparent conductive thin film coating film of the present invention, which is carried out by using the above-mentioned roll-up type vacuum evaporation apparatus, first, the film is installed in the lower portion of the vacuum chamber 1 having a degree of vacuum of 1 × 10 **-5 torr or less. The vapor deposition material 6 held in the crucible 7 is evaporated by an electron beam emitted from an electron gun 8, and the evaporated particles 11 evaporate between the plastic film 2 and the crucible 7.
A transparent conductive thin film is formed on the plastic film 2 by passing through the plasma region of oxygen introduced from zero.

【0021】このとき酸素分圧は3×10**−4to
rrに設定した。
At this time, the oxygen partial pressure is 3 × 10 **-4 to
rr.

【0022】前記プラスチックフィルム2は、巻き出し
機3からクーリングキャン5に沿って前記供給され放電
コイル9上に供給され、ここで酸化物の透明導電性薄膜
を形成させる。成膜されたプラスチックフィルム2は巻
き取り機4によりクーリングキャン5に沿って巻き取ら
れる。
The plastic film 2 is supplied from the unwinder 3 along the cooling can 5 and supplied onto the discharge coil 9, where a transparent conductive thin film of oxide is formed. The formed plastic film 2 is taken up along a cooling can 5 by a take-up machine 4.

【0023】[0023]

【実施例】この実施例では図1に示す装置によりプラス
チックフィルム上にITO薄膜を形成させた。放電コイ
ル9に放電周波数として13.56MHz、27.12
MHzおよび40.68MHzを印可し、プラズマを発
生させた。蒸着材料としてITO粒子を用いた。この
際、プラスチックフィルムに強制加熱は施さなかった。
EXAMPLE In this example, an ITO thin film was formed on a plastic film by the apparatus shown in FIG. 13.56 MHz, 27.12 as a discharge frequency to the discharge coil 9
MHz and 40.68 MHz were applied to generate plasma. ITO particles were used as a deposition material. At this time, no forced heating was applied to the plastic film.

【0024】以下の実施例は、放電周波数が27.12
MHzおよび40.68MHzの場合、13.56MH
zと比べ、放電出力に対し効率的に蒸発粒子を活性化
し、比抵抗および基材との密着性を改善できるか検討す
ることを目的とした。
In the following embodiment, the discharge frequency is 27.12.
13.56 MHZ for MHz and 40.68 MHz
The purpose of the present invention was to investigate whether the evaporating particles can be more efficiently activated with respect to the discharge output than z, and whether the specific resistance and the adhesion to the substrate can be improved.

【0025】基材との密着性はテープ剥離試験により評
価した。これはセロハンテープを成膜基材に密着させ、
テープを基材表面から垂直に一気に引き剥がし、膜の剥
離状態を検討するものである。
The adhesion to the substrate was evaluated by a tape peel test. This makes the cellophane tape adhere to the film-forming substrate,
The tape is peeled off vertically from the surface of the base material at a stretch, and the state of peeling of the film is examined.

【0026】プラスチックフィルム上に形成されたIT
O薄膜の比抵抗の放電出力に対する依存性を検討した。
図2は、放電周波数が13.56MHz、27.12M
Hz及び40.68MHzの場合のITO薄膜の比抵抗
を、放電出力を200Wから400Wまでの範囲で示し
たものである。
IT formed on plastic film
The dependence of the specific resistance of the O thin film on the discharge output was examined.
FIG. 2 shows that the discharge frequency is 13.56 MHz, 27.12 M
3 shows the specific resistance of the ITO thin film in the case of Hz and 40.68 MHz in the range of the discharge output from 200 W to 400 W.

【0027】図2から、放電周波数27.12MHz及
び40.68MHzで成膜されたITO薄膜の比抵抗
は、放電周波数13.56MHzで成膜されたそれに比
べ、1から2桁低くなることがわかった。この結果から
放電周波数を14MHz以上とすることで、従来の1
3.56MHzに比べ、低抵抗な透明導電性薄膜を成膜
できることがわかった。
FIG. 2 shows that the specific resistance of the ITO thin film formed at the discharge frequencies of 27.12 MHz and 40.68 MHz is lower by one to two orders of magnitude than that of the ITO thin film formed at the discharge frequency of 13.56 MHz. Was. From this result, by setting the discharge frequency to 14 MHz or more, the conventional 1
It was found that a transparent conductive thin film having lower resistance than 3.56 MHz could be formed.

【0028】またITO薄膜と基材の密着性は放電周波
数27.12MHz及び40.68MHzで成膜された
ITO薄膜が、放電周波数13.56MHzで成膜され
たそれに比べ、剥離状態も少なく、密着性の向上を示し
た。
The adhesion between the ITO thin film and the substrate is smaller than that of the ITO thin film formed at the discharge frequencies of 27.12 MHz and 40.68 MHz. The improvement of the property was shown.

【0029】[0029]

【発明の効果】以上のように本発明の透明導電性薄膜被
覆フィルムの形成方法によれば、酸素雰囲気下にて放電
周波数が14MHzから100MHzの範囲である高周
波プラズマを介した導電性金属酸化物の蒸着により、従
来の放電周波数13.56MHzのプラズマに比べ、基
材との密着性が良好な高性能透明導電性薄膜被覆フィル
ムを形成することができる。
As described above, according to the method for forming a transparent conductive thin film-coated film of the present invention, a conductive metal oxide via a high-frequency plasma having a discharge frequency of 14 MHz to 100 MHz in an oxygen atmosphere. By vapor deposition, it is possible to form a high-performance transparent conductive thin film-coated film having better adhesion to a substrate than conventional plasma having a discharge frequency of 13.56 MHz.

【0030】また前記透明導電性薄膜被覆フィルムをロ
ール状態から巻き出された、強制加熱しないプラスチッ
クフィルム上に形成できることで、生産性の高い連続成
膜が可能となった。
Further, since the transparent conductive thin film-coated film can be formed on a plastic film which is unwound from a roll state and is not forcibly heated, continuous film formation with high productivity can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態を説明するための巻き取
り式高周波プラズマアシスト蒸着装置の概略断面図であ
る。
FIG. 1 is a schematic sectional view of a winding type high frequency plasma assisted vapor deposition apparatus for explaining an embodiment of the present invention.

【図2】本発明の実施例の放電出力に対するITO薄膜
の比抵抗の関係図
FIG. 2 is a diagram showing the relationship between the discharge output and the specific resistance of an ITO thin film according to the embodiment of the present invention

【符号の説明】[Explanation of symbols]

1…真空チャンバー 2…プラスチックフィルム 3…巻き出し機 4…巻き取り機 5…クーリングキャン 6…導電性金属酸化物材料 7…るつぼ 8…電子銃 9…放電コイル 10…酸素導入口 11…蒸発粒子 DESCRIPTION OF SYMBOLS 1 ... Vacuum chamber 2 ... Plastic film 3 ... Unwinder 4 ... Winding machine 5 ... Cooling can 6 ... Conductive metal oxide material 7 ... Crucible 8 ... Electron gun 9 ... Discharge coil 10 ... Oxygen inlet 11 ... Evaporated particles

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】酸素雰囲気下にて高周波プラズマを介した
導電性金属酸化物の蒸着により、基材上に透明導電性薄
膜を形成する方法であって、放電周波数が14MHzか
ら100MHzの範囲であることを特徴とする透明導電
性薄膜被覆フィルムの形成方法。
1. A method for forming a transparent conductive thin film on a substrate by vapor deposition of a conductive metal oxide through high frequency plasma in an oxygen atmosphere, wherein a discharge frequency is in a range of 14 MHz to 100 MHz. A method for forming a transparent conductive thin film-coated film, characterized in that:
【請求項2】請求項1記載の基材がロール状態から巻き
出されたプラスチックフィルムであることを特徴とする
透明導電性薄膜被覆フィルムの形成方法。
2. A method according to claim 1, wherein the substrate is a plastic film unwound from a roll.
【請求項3】請求項1および2に記載の基材であるプラ
スチックフィルムが強制加熱されていないことを特徴と
する透明導電性薄膜被覆フィルムの形成方法。
3. A method for forming a transparent conductive thin film-coated film, wherein the plastic film as a substrate according to claim 1 or 2 is not forcibly heated.
JP7791299A 1999-03-23 1999-03-23 Formation of transparent electrically conductive thin film-coated film Pending JP2000273620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7791299A JP2000273620A (en) 1999-03-23 1999-03-23 Formation of transparent electrically conductive thin film-coated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7791299A JP2000273620A (en) 1999-03-23 1999-03-23 Formation of transparent electrically conductive thin film-coated film

Publications (1)

Publication Number Publication Date
JP2000273620A true JP2000273620A (en) 2000-10-03

Family

ID=13647299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7791299A Pending JP2000273620A (en) 1999-03-23 1999-03-23 Formation of transparent electrically conductive thin film-coated film

Country Status (1)

Country Link
JP (1) JP2000273620A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258157A (en) * 2007-04-05 2008-10-23 Samsung Sdi Co Ltd Organic electroluminescent element equipped with cathode of transparent conductive oxide film, and manufacturing method thereof
WO2012147571A1 (en) * 2011-04-27 2012-11-01 旭硝子株式会社 Method for producing laminate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258157A (en) * 2007-04-05 2008-10-23 Samsung Sdi Co Ltd Organic electroluminescent element equipped with cathode of transparent conductive oxide film, and manufacturing method thereof
US7838327B2 (en) 2007-04-05 2010-11-23 Samsung Mobile Display Co., Ltd. Organic light-emitting device including transparent conducting oxide layer as cathode and method of manufacturing the same
WO2012147571A1 (en) * 2011-04-27 2012-11-01 旭硝子株式会社 Method for producing laminate
JPWO2012147571A1 (en) * 2011-04-27 2014-07-28 旭硝子株式会社 Manufacturing method of laminate

Similar Documents

Publication Publication Date Title
CA1242165A (en) Method and apparatus for plasma-assisted deposition of thin films
US4740385A (en) Apparatus for producing coils from films of insulating material, conductively coated in a vacuum
US5013416A (en) Process for manufacturing transparent, conductive film
EP0041850B1 (en) A method of vacuum depositing a layer on a plastics film substrate
US6787441B1 (en) Method for pretreating a polymer substrate using an ion beam for subsequent deposition of indium oxide or indium tin oxide
JPH07109571A (en) Electron-beam continuous vapor deposition device
JPH0813143A (en) Plasma treatment and treating device
EP0046090B1 (en) Process fpr producing a magnetic recording medium
US20040083969A1 (en) Film forming apparatus, substrate for forming oxide thin film, and production method thereof
JP2007297712A (en) Metallization through thin seed layer deposited using plasma
JP2000273620A (en) Formation of transparent electrically conductive thin film-coated film
JP2004197207A (en) Thin film deposition system
CN116334571A (en) Roll-to-roll magnetron sputtering equipment and control method
JPH02280310A (en) Manufacture of electrode material for electrolytic capacitor
US5631050A (en) Process of depositing thin film coatings
JP2778955B2 (en) Continuous multi-stage ion plating equipment
KR20040031719A (en) Continuous surface-treating apparatus for film shape polymer and continuous surface-treating method thereof
WO2003080890A1 (en) Production metod and production device for thin film
JP2000249801A (en) Formation of optical thin-film coating film
JP2000171606A (en) Production of titanium oxide-coated plastic film and titanium oxide-coated plastic film
JP2000006297A (en) Gas barrier film and its manufacture, and laminated material in which gas barrier film is used
JPS6353261B2 (en)
JP3364692B2 (en) Film forming method and apparatus for electromagnetic wave shielding
JPS58100672A (en) Method and device for formation of thin film
KR20060077548A (en) Multi-layered ito deposited on polymer substrate, manufacturing method of the same and manufacturing apparatus of the same