JPH0330410A - Manufacture of aluminum electrode for electrolytic capacitor - Google Patents

Manufacture of aluminum electrode for electrolytic capacitor

Info

Publication number
JPH0330410A
JPH0330410A JP16576989A JP16576989A JPH0330410A JP H0330410 A JPH0330410 A JP H0330410A JP 16576989 A JP16576989 A JP 16576989A JP 16576989 A JP16576989 A JP 16576989A JP H0330410 A JPH0330410 A JP H0330410A
Authority
JP
Japan
Prior art keywords
arc
vapor
cathode
target
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16576989A
Other languages
Japanese (ja)
Inventor
Yutaka Yokoyama
豊 横山
Susumu Ando
進 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP16576989A priority Critical patent/JPH0330410A/en
Publication of JPH0330410A publication Critical patent/JPH0330410A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve both close adhesiveness and minuteness of a vapor deposited film, to sharply cut down the period of treatment, and to obtain a cathode electrode on which electrostatic capacitance can be increased by a method wherein a platinum vapor-deposited layer is formed on the surface of high purity aluminum using a cathode arc vapor-deposition method. CONSTITUTION:A plutinum vapor-deposited layer is formed on the surface of high purity aluminum using a cathode arc vapor-deposition method. For example, when arc discharge is generated by the device as shown in the diagram using the metal target (evaporation source) 10, which is substantially vacuum and consisting of platinum, as a cathode, an arc spot is formed on the surface of the target 10, the target 10 is fused and evaporated in a moment by the energy of the arc current concentrated at the arc spot, and at the same time, the target material 10 is turned into metal ions 12, and they are discharged into vacuum. At that time, by applying bias voltage to the material 14 to be treated consisting of high purity aluminum, the metal ions 12 arc closely adhered to the surface of the material 14 to be treated together with the accelerated reaction gas particles 16, and a minute film is grown.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は電解コンデンサに用いられるアルミニウム電
極の製造方法に関し、さらに詳しくは陰極用電極に用い
られる高純度アルミニウムの表面に蒸着によって白金層
を形成させるアルミニウム電極の製造方法に関する。
The present invention relates to a method for manufacturing an aluminum electrode used in an electrolytic capacitor, and more particularly to a method for manufacturing an aluminum electrode in which a platinum layer is formed by vapor deposition on the surface of high-purity aluminum used for a cathode electrode.

【従来の技術】[Conventional technology]

電解コンデンサは、小型、大容量、安価で整流出力の平
滑用などの用途に優れた特性を示し、各種の電気・電子
機器の重要な構成要素の一つである。 電解コンデンサは、一般にアルミニウム等の絶縁性酸化
皮膜が形成され得る、いわゆる弁金属を陽極に用い、前
記絶縁性酸化皮膜を誘電体層として、集電用の陰極電極
との間に電解液を介在させて作成される。 陽極材料は前述したように、アルミニウムをはじめ、タ
ンタル、ニオブ、チタンなどが使用される。また集電の
ための陰極電極材料には、陽極材料と同種の金属が用い
られる。 ところが、弁金属は一般に自然酸化による酸化皮膜層が
表面に形成される。この傾向はアルミニウムにおいて特
に顕著である。そしてこの自然酸化皮膜は極めて薄い絶
縁層のため、陰極側にも静電容量が形成され、電解コン
デンサは陽極側の静電容量および、陰極側の静電容量が
直列に接続された合成容量となり、所望の静電容量が得
られない場合がある。また所望の静電容量を得るため、
陽極側の静電容量を必要以上に大きく設定する必要があ
る。 これの影響を少なくするためには、陽極側の静電容量値
に比べ陰極側の静電容量値を著しく高くすれば、陰極側
の静電容量による影響は殆ど無視できることになるが、
低電圧用の電解コンデンサの陽極はの単位面積あたりの
静電容量は相当に高く合成容量による静電容量値の低下
は免れ得ない。 そこで陰極側の静電容量値をより高くするために、陰極
電極表面をエツチング処理して表面積を拡大する方法が
ある。しかしこの表面積を拡大する技術は、現在では高
度に洗練されているが、この技術のみによって電解コン
デンサの静電容量を増加させるのは次第に困難になりつ
つある。 むしろ陰極との合成容量による静電容量の低下の問題は
、少なくとも陰極の表面部に自然酸化皮膜が形成されな
い形態をとるのが望ましい。 このためには、陰極材料に弁金属以外の金属を用いれば
、絶縁性の酸化皮膜が形成されない。しかし、電解コン
デンサは内部に電解液が含浸されており、電解液との反
応によって腐食等の不都合が発生することから、陰極材
料として弁金属以外には白金、金、パラジウム等の安定
性の高い貴金属に限られる。しかしこれら貴金属を集電
用の陰極としてそのまま用いることは、経済的理由ゆえ
、まず不可能である。 そこでこれを解決する手段として、アルミニウムの表面
に、これら貴金属を付着または溶着させることが考えら
れている(例えば特開昭604826号公報)。このよ
うな手段としては、例えば真空蒸着法、イオンブレーテ
ィング法またはスバ・ンタリング法のような物理的方法
により、アルミニウム表面に所望の蒸着金属層を形成す
ることで、電解コンデンサの静電容量を増加させること
ができる。 しかしながら前述した方法では、アルミニウム表面にお
ける白金等の金属の蒸着膜の密着性は必ずしも十分では
なく、特に蒸着技術を改良してより優れた電解コンデン
サ用アルミニウム陰極電極を製造する余地が残されてい
た。 また前記した蒸着技術を用いる方法では、処理時間が長
くかかるため、生産効率の点でも不十分であった。
Electrolytic capacitors are small, large-capacitance, inexpensive, and have excellent characteristics for applications such as smoothing rectified output, and are one of the important components of various electrical and electronic devices. Electrolytic capacitors generally use a so-called valve metal such as aluminum on which an insulating oxide film can be formed as an anode, and an electrolyte is interposed between the insulating oxide film as a dielectric layer and a cathode electrode for current collection. It is created by As mentioned above, the anode materials used include aluminum, tantalum, niobium, and titanium. Further, the same type of metal as the anode material is used for the cathode electrode material for current collection. However, valve metals generally have an oxide film layer formed on their surfaces due to natural oxidation. This tendency is particularly noticeable in aluminum. Since this natural oxide film is an extremely thin insulating layer, capacitance is also formed on the cathode side, and an electrolytic capacitor is a composite capacitance in which the capacitance on the anode side and the capacitance on the cathode side are connected in series. , the desired capacitance may not be obtained. Also, in order to obtain the desired capacitance,
It is necessary to set the capacitance on the anode side to be larger than necessary. In order to reduce this effect, if the capacitance value on the cathode side is made significantly higher than the capacitance value on the anode side, the effect of the capacitance on the cathode side can be almost ignored.
The capacitance per unit area of the anode of a low-voltage electrolytic capacitor is quite high, and the capacitance value inevitably decreases due to the combined capacitance. Therefore, in order to increase the capacitance value on the cathode side, there is a method of enlarging the surface area by etching the surface of the cathode electrode. However, although this technique of increasing surface area is now highly sophisticated, it is becoming increasingly difficult to increase the capacitance of electrolytic capacitors by this technique alone. Rather, to solve the problem of a reduction in capacitance due to the combined capacitance with the cathode, it is preferable to take a form in which no natural oxide film is formed at least on the surface of the cathode. For this purpose, if a metal other than the valve metal is used as the cathode material, an insulating oxide film will not be formed. However, electrolytic capacitors are impregnated with an electrolytic solution, and reactions with the electrolytic solution can cause problems such as corrosion. Limited to precious metals. However, for economic reasons, it is almost impossible to use these noble metals as they are as cathodes for current collection. Therefore, as a means to solve this problem, it has been considered to attach or weld these noble metals to the surface of aluminum (for example, Japanese Patent Laid-Open No. 604826). Such means include forming a desired vapor-deposited metal layer on the aluminum surface by physical methods such as vacuum evaporation, ion-blating, or sputtering, thereby increasing the electrostatic capacitance of the electrolytic capacitor. can be increased. However, with the method described above, the adhesion of the vapor-deposited film of platinum or other metal to the aluminum surface is not necessarily sufficient, and there is still room to improve the vapor-deposition technology to produce better aluminum cathode electrodes for electrolytic capacitors. . Further, the method using the above-mentioned vapor deposition technique requires a long processing time, and therefore is insufficient in terms of production efficiency.

【発明が解決しようとする課題】[Problem to be solved by the invention]

この発明は、高純度アルミニウムの表面に蒸着により白
金を付着させて、表面に白金層の蒸着膜を形成させるこ
とからなる、電解コンデンサ用アルミニウム電掻の製造
方法を改良することにより、蒸着膜の密着性および緻密
性を向上させ、処理時間を大幅に短縮させることを目的
とするとともに、静電容量を増加させ得る電解コンデン
サ用アルミニウム電極を得ることを目的としている。
This invention improves the method for manufacturing aluminum electric scrapers for electrolytic capacitors, which involves depositing platinum on the surface of high-purity aluminum by vapor deposition to form a vapor-deposited platinum layer on the surface. The purpose of this invention is to improve adhesion and density, significantly shorten processing time, and to obtain an aluminum electrode for electrolytic capacitors that can increase capacitance.

【課題を解決するための手段】[Means to solve the problem]

この発明によれば、電解コンデンサ用アルミニウム電極
を製造するに際し、高純度アルミニウム表面に、陰極ア
ーク蒸着法によって白金の蒸着層を形成することを特徴
とする電解コンデンサ用アルミニウム電極の製造方法が
提供される。 陰極アーク蒸着法は、ターゲット側を陰極とした陰極ア
ーク放電現象を利用して、ターゲット材料を局所的に溶
融蒸発させ、被処理材料表面に蒸着をおこなうもので、
陰極アーク放電の特性として、陰極側(ターゲット)に
非常に小さな陰極輝点を生じ、大きなアーク電流がこの
小さい点に流れ込むことから、陰極点の近傍は極めて高
温に熱せられて、白金等の高融点材料も瞬時に溶融蒸発
させる。 そして溶融蒸発した、ターゲツト材は同時に金属イオン
となり、真空中に放出される。この際バイアス電圧を被
処理材料に印加することにより、この金属イオンは、加
速された反応ガス粒子と共に被処理材料の表面に密着し
、緻密な蒸着Iりを生成する。 この発明によれば、被処理材料としては、通常の電解コ
ンデンサの陰極に用いる高純度で箔状あるいは板状のア
ルミニウムを用いる。このアルミニウム表面は、あらか
じめ脱脂処理等にをより表面を清浄化しておく。またア
ルミニウム表面はエツチング処理を施しても良いし、ブ
レーンのままであってもよい。 この発明における、陰極アーク蒸着の好ましい条件とし
ては、真空度については、10−7ないし10”3To
rrの圧力でおこなえば好適である。また不活性ガスと
しては、アルゴン、ヘリウム、窒素ガスの雰囲気中でお
こなえばよい。蒸発距離は100ないし500M、ター
ゲットの蒸発速度はlXl0−3ないしI Xl0−’
mg/c+a 1秒、蒸着量は、1xio−3ないし1
1ng/c111で蒸着をおこなえば好適である。更に
蒸着膜の厚さは、0.005ないし3μm1蒸着時間は
、0.05分ないし30分程度である。
According to the present invention, there is provided a method for manufacturing an aluminum electrode for an electrolytic capacitor, which comprises forming a deposited layer of platinum on the surface of high-purity aluminum by cathodic arc evaporation. Ru. The cathodic arc evaporation method uses cathodic arc discharge phenomenon with the target side as the cathode to locally melt and evaporate the target material and deposit it on the surface of the material to be processed.
As a characteristic of cathodic arc discharge, a very small cathode bright spot is created on the cathode side (target), and a large arc current flows into this small spot, so the area near the cathode spot is heated to an extremely high temperature, and high-grade materials such as platinum are heated to extremely high temperatures. Melting point materials are also instantly melted and vaporized. The target material that is melted and evaporated simultaneously turns into metal ions and is released into the vacuum. At this time, by applying a bias voltage to the material to be processed, the metal ions, together with the accelerated reaction gas particles, adhere to the surface of the material to be processed, producing a dense vapor deposition layer. According to this invention, the material to be treated is high-purity foil- or plate-shaped aluminum, which is used for the cathode of ordinary electrolytic capacitors. This aluminum surface is cleaned in advance by degreasing or the like. Further, the aluminum surface may be subjected to an etching treatment or may be left blank. In this invention, the preferred conditions for cathodic arc evaporation include a vacuum degree of 10-7 to 10''3 To
It is preferable to carry out the process at a pressure of rr. The inert gas may be argon, helium, or nitrogen gas. Evaporation distance is 100 to 500M, target evaporation rate is lXl0-3 to IXl0-'
mg/c+a 1 second, deposition amount is 1xio-3 to 1
It is preferable to perform the vapor deposition at 1 ng/c111. Furthermore, the thickness of the deposited film is about 0.005 to 3 μm, and the deposition time is about 0.05 to 30 minutes.

【作   用】[For production]

この発明の陰極アーク蒸着法により白金の蒸着層を高純
度アルミニウムの表面に形成できる。 この発明の方法によれば、粒子のイオン化率が高いため
、イオンボンバード効果が強く、またコーティング中の
バイアス効果も強いため、被処理材との密着性が極めて
高い皮膜が低温で容易に得られる。 この発明の陰極アーク蒸着法と、従来のイオンブレーテ
ィング法およびスパッタリング法について、白金の被処
理材上のイオン化率および粒子エネルギーを比較したも
のを、第1表に示す。 第1表 このように、陰極アーク蒸着法によれば、イオン化率が
他の方法に比べて著しく大きく、高イオンエネルギであ
るため、反応効率が向上し、アルミニウム電極と白金と
の密着性ならびに緻密性を顕著に向上させることができ
る。 また処理時間についても、この発明の陰極アーク蒸着法
によれば長くとも10分程度で処理が終わるのに対し、
イオンブレーティング法では20分程度、スパッタリン
グ法によれば50分程度と、何れもこの発明の方法に比
べ相当の時間を要する。
By the cathodic arc deposition method of the present invention, a deposited layer of platinum can be formed on the surface of high-purity aluminum. According to the method of this invention, since the ionization rate of particles is high, the ion bombardment effect is strong, and the bias effect during coating is also strong, so a film with extremely high adhesion to the treated material can be easily obtained at low temperatures. . Table 1 shows a comparison of the ionization rate and particle energy of platinum on the treated material between the cathodic arc evaporation method of the present invention and the conventional ion blating method and sputtering method. As shown in Table 1, the cathodic arc evaporation method has a significantly higher ionization rate and higher ion energy than other methods, which improves the reaction efficiency and improves the adhesion between the aluminum electrode and platinum. can significantly improve performance. Regarding the processing time, according to the cathodic arc evaporation method of the present invention, the processing can be completed in about 10 minutes at the most.
The ion blasting method takes about 20 minutes, and the sputtering method takes about 50 minutes, both of which take a considerable amount of time compared to the method of the present invention.

【実 施 例】【Example】

以下実施例に基づいて、この発明を更に詳細に説明する
。 一1! まずこの発明の実施例として、高純度のアルミニウム箔
(純度99.95%)を50X 100uニ切断したも
のを被処理材として使用し、この表面に白金を蒸着した
。 図面は、陰極アーク蒸着に使用する装置の概略を説明し
たものである。この発明は図面の装置により、実質的に
真空で白金からなる金属ターゲット(蒸発源)10を陰
極としてアーク放電を起こすと、アークはターゲラ目0
の表面にアークスポットを形成し、アークスポットに集
中するアーク電流のエネルギーにより、ターゲツト材1
oは瞬時に溶融蒸発すると同時に金属イオン12となり
、真空中に放出される。 この際、高純度のアルミニウムからなる被処理材14に
対しバイアス電圧を印加することにより、この金属イオ
ン12は、加速された反応ガス粒子16と共に被処理材
14の表面に密着し、緻密な膜を生成する。なお、図面
中18および2oはアーク電源、22はバイアス電源、
24は回転テーブル、26はガス入口、28はガス出口
、30は真空チャンバである。 トータルのチャンバ圧力を5 Xl0−’Torr、蒸
発距離200層、アーク電源の電流値100A、形成速
度0.1um/分とし、5分間陰極アーク蒸着をおこな
い、白金蒸着膜4約0.05μmの蒸着膜を形成させた
。 一土較■土− 被処理材の高純度アルミニウムは実施例1と同一のもの
を使用し、これをI X 10− ’Torrのアルゴ
ン雰囲気中で、蒸発距離200M、形成速度0.05μ
m/分で、イオンブレーティング法による白金蒸着をお
こない蒸着膜を形成させた。 −比較ILL− スパッタリング法による以外は、比較例1と同様に白金
の蒸着膜を形成させた。 形成条件は、I X IF ”Torrのアルゴン雰囲
気中で白金をターゲットとして、形成速度0.02μm
/分で蒸着をおこなった。 一比較、Ll 被処理材の高純度アルミニウムは、実施例1と同−のも
のを用いた。この比較例では、表面に蒸着膜を形成せず
、常法によってアルミニウム箔表面をエツチング処理し
、表面積を拡大して、単位面積あたりの静電容量を増大
させた。この比較例では、400 u F / c+l
lであった。 これら実施例および比較例のアルミニウム箔について、
まず蒸着処理をしたものについて、蒸着された白金膜の
付着力を測定し、密着性を調べた。 この結果を第2表に示す。 第2表 この結果かられかるように、この発明の方法による蒸着
膜は、比較例に比べ密着性に優れることがわかる。 次に、これら実施例、各比較例の箔の静電容量を測定し
た結果を第3表に示す。 第3表 二の結果から明らかなように、この発明の方法により作
成された電解コンデンサは高い静電容量を得られること
がわかる。 ■発明の効果】 以上述べたようにこの発明によれば、電解コンデンサ用
アルミニウム電極の表面に白金を付着させて蒸着膜の形
成する製造方法を改良することにより、蒸着膜の密着性
ならびに緻密性を向上させ、しかも処理時間を大幅に短
縮させることができる。 またアルミニウム電極表面に自然酸化皮膜によって形成
される静電容量によって電解コンデンサの静電容量値が
減少することが防止でき、小型大容量の電解コンデンサ
を得ることができる。
The present invention will be described in more detail below based on Examples. One eleven! First, as an example of the present invention, high-purity aluminum foil (purity 99.95%) cut into 50×100 μ pieces was used as a material to be treated, and platinum was vapor-deposited on the surface. The drawings schematically illustrate an apparatus used for cathodic arc deposition. According to the present invention, when an arc discharge is caused by using the apparatus shown in the drawings in a substantially vacuum state using a metal target (evaporation source) 10 made of platinum as a cathode, the arc reaches 0.
An arc spot is formed on the surface of the target material 1, and the energy of the arc current concentrated on the arc spot causes the target material 1 to
o instantaneously melts and evaporates, turning into metal ions 12 and being released into vacuum. At this time, by applying a bias voltage to the material to be processed 14 made of high-purity aluminum, the metal ions 12, together with the accelerated reaction gas particles 16, adhere to the surface of the material to be processed 14, forming a dense film. generate. In addition, in the drawing, 18 and 2o are arc power supplies, 22 is a bias power supply,
24 is a rotary table, 26 is a gas inlet, 28 is a gas outlet, and 30 is a vacuum chamber. The total chamber pressure was 5 Xl0-' Torr, the evaporation distance was 200 layers, the current value of the arc power source was 100 A, and the formation rate was 0.1 um/min, and cathodic arc evaporation was performed for 5 minutes to deposit a platinum evaporated film of about 0.05 μm. A film was formed. The same high-purity aluminum as in Example 1 was used as the material to be treated, and it was evaporated in an argon atmosphere at I x 10-'Torr with an evaporation distance of 200M and a formation rate of 0.05μ.
Platinum was deposited by ion blating at a rate of m/min to form a deposited film. -Comparative ILL- A platinum vapor deposited film was formed in the same manner as in Comparative Example 1 except that the sputtering method was used. The formation conditions were platinum as a target in an argon atmosphere of I
/min. Comparison: Ll The same high-purity aluminum as in Example 1 was used as the material to be treated. In this comparative example, no vapor deposited film was formed on the surface, and the surface of the aluminum foil was etched by a conventional method to expand the surface area and increase the capacitance per unit area. In this comparative example, 400 uF/c+l
It was l. Regarding the aluminum foils of these examples and comparative examples,
First, the adhesion force of the deposited platinum film was measured and the adhesion was examined for the material that had been subjected to the vapor deposition process. The results are shown in Table 2. Table 2 As can be seen from the results, the film deposited by the method of the present invention has superior adhesion compared to the comparative example. Next, Table 3 shows the results of measuring the capacitance of the foils of these Examples and Comparative Examples. As is clear from the results in Table 3, Table 2, it can be seen that the electrolytic capacitor produced by the method of the present invention has a high capacitance. ■Effects of the Invention As described above, according to the present invention, by improving the manufacturing method of depositing platinum on the surface of an aluminum electrode for an electrolytic capacitor to form a deposited film, the adhesion and density of the deposited film can be improved. can be improved, and the processing time can be significantly shortened. Further, it is possible to prevent the capacitance value of the electrolytic capacitor from decreasing due to the capacitance formed by the natural oxide film on the surface of the aluminum electrode, and it is possible to obtain a small-sized, large-capacity electrolytic capacitor.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明で用いる陰極アーク蒸着装置の概略を表
した説明図である。 18;アークll源
The drawing is an explanatory diagram schematically showing a cathodic arc evaporation apparatus used in the present invention. 18; arc ll source

Claims (1)

【特許請求の範囲】[Claims] (1)高純度アルミニウム表面に、陰極アーク蒸着法に
よって白金の蒸着層を形成することを特徴とする電解コ
ンデンサ用アルミニウム電極の製造方法。
(1) A method for producing an aluminum electrode for an electrolytic capacitor, which comprises forming a platinum vapor deposited layer on the surface of high-purity aluminum by cathodic arc evaporation.
JP16576989A 1989-06-28 1989-06-28 Manufacture of aluminum electrode for electrolytic capacitor Pending JPH0330410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16576989A JPH0330410A (en) 1989-06-28 1989-06-28 Manufacture of aluminum electrode for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16576989A JPH0330410A (en) 1989-06-28 1989-06-28 Manufacture of aluminum electrode for electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH0330410A true JPH0330410A (en) 1991-02-08

Family

ID=15818689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16576989A Pending JPH0330410A (en) 1989-06-28 1989-06-28 Manufacture of aluminum electrode for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0330410A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371675A (en) * 2001-06-14 2002-12-26 Ig Tech Res Inc Roof structure
JP2003013563A (en) * 2001-06-29 2003-01-15 Ig Tech Res Inc Roof structure
US10580562B2 (en) 2015-03-27 2020-03-03 Epcos Ag Inductive component and method for producing an inductive component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371675A (en) * 2001-06-14 2002-12-26 Ig Tech Res Inc Roof structure
JP2003013563A (en) * 2001-06-29 2003-01-15 Ig Tech Res Inc Roof structure
US10580562B2 (en) 2015-03-27 2020-03-03 Epcos Ag Inductive component and method for producing an inductive component

Similar Documents

Publication Publication Date Title
US5777438A (en) Apparatus for implanting metal ions in metals and ceramics
JPH0471213A (en) Aluminum electrode for electrolytic capacitor and its manufacture
JP2968800B2 (en) Method for producing electrode material for electrolytic capacitor
JPH0330410A (en) Manufacture of aluminum electrode for electrolytic capacitor
JP2618281B2 (en) Aluminum electrode for electrolytic capacitor and method of manufacturing the same
JPH0330409A (en) Manufacture of aluminum electrode for electrolytic capacitor
US3356912A (en) Porous electrode
GB2056503A (en) Porous metal films
JP2687299B2 (en) Method for manufacturing aluminum electrode for electrolytic capacitor
JPH03131014A (en) Manufacture of aluminum electrode for electrolytic capacitor
JP3155750B2 (en) Method for producing aluminum electrode for electrolytic capacitor
JPH0444204A (en) Aluminum electrode for electrolytic capacitor
JPH0332012A (en) Manufacture of aluminum electrode for electrolytic capacitor
DE10005124C2 (en) Electrode and process for its manufacture
JPH03147310A (en) Manufacture of aluminum electrode for electrolytic capacitor use
JPH03131013A (en) Manufacture of aluminum electrode for electrolytic capacitor
JPH0414809A (en) Manufacture of aluminum electrode for electrolytic capacitor use
JPH0332013A (en) Manufacture of aluminum electrode foil for electrolytic capacitor
JPH03147312A (en) Manufacture of aluminum electrode for electrolytic capacitor use
JPH0748463B2 (en) Method for manufacturing aluminum electrode for electrolytic capacitor
JPH059710A (en) Production of aluminum electrode for electrolytic capacitor
US4089990A (en) Battery plate and method of making
JPS5937564B2 (en) Method for forming end face electrodes of electronic components
JPH03150828A (en) Manufacture of aluminum electrode for electrolytic capacitor
JPH03150829A (en) Manufacture of aluminum electrode for electrolytic capacitor