JP4351777B2 - Deposition assist deposition apparatus and thin film forming method - Google Patents

Deposition assist deposition apparatus and thin film forming method Download PDF

Info

Publication number
JP4351777B2
JP4351777B2 JP32323799A JP32323799A JP4351777B2 JP 4351777 B2 JP4351777 B2 JP 4351777B2 JP 32323799 A JP32323799 A JP 32323799A JP 32323799 A JP32323799 A JP 32323799A JP 4351777 B2 JP4351777 B2 JP 4351777B2
Authority
JP
Japan
Prior art keywords
boat
evaporation source
substrate
thin film
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32323799A
Other languages
Japanese (ja)
Other versions
JP2001140061A (en
Inventor
貴博 大蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Optec Co Ltd
Original Assignee
Kyocera Optec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Optec Co Ltd filed Critical Kyocera Optec Co Ltd
Priority to JP32323799A priority Critical patent/JP4351777B2/en
Publication of JP2001140061A publication Critical patent/JP2001140061A/en
Application granted granted Critical
Publication of JP4351777B2 publication Critical patent/JP4351777B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は基材へ直接高周波を加える高周波イオンプレーティング蒸着を行う新規なデポジションアシスト蒸着装置及び当該装置により改良された条件で良質な薄膜を形成する方法に関する。
【0002】
【従来の技術】
基材へ直接高周波を加えるイオンプレーティング蒸着法及びその装置は特許公報平1−48347に「無ガスイオンプレーティング蒸着機」として開示されている。この蒸着機はアルゴンなどの不活性ガスを使わず、蒸発材料からなる分子若しくは原子の粒子を基材近傍で高周波により励起し、分布のよいプラズマを形成させ、基材に付着させる蒸着機である。この時形成されるプラズマを異常放電などのゆらぎから守り放電を安定させるため、基材を固定するホルダーにコンデンサーを形成させ、その静電容量で電気的ゆらぎを吸収させることで、高真空での無ガスイオンプレーティング蒸着を実現している。(図4参照)
【0003】
しかし、前記開示例を含め従来技術においては、蒸発源から被膜形成材料を蒸発させるための熱源による輻射熱などで、薄膜を形成すべき基材は、その温度を上昇させる環境に曝される。この温度上昇は、蒸着時間を長く取る必要のあるプロセスでは、基材表面で150℃近くまで達する。従って、高い温度で変質し易い材質の基材に被膜形成するような場合、輻射熱の影響を受けない金属ミラーの単層コートなどのごとき、極く限られた薄膜しか形成できていなかった。
【0004】
一方、蒸発源の物質を蒸発せしめるエネルギーとして、熱エネルギーに限らず最近では電子線を用いる方法も考案されている。しかし、無ガスイオンプレーティング装置や、それに類似したイオンプレーティング装置に本方法を用いるとき、電子線にゆらぎが発生したり、発生させる電子銃の熱電子発生用フィラメントの寿命が実用に絶えないほど短くなる。即ち、基材と蒸発源との間に形成されたプラズマ中の粒子の内、蒸着粒子は基材に引き寄せられ付着するが、一方の電子は電子銃フィラメントに引き寄せられ、プラズマ放電を安定化しようとするほど、また放電パワーを上げれば上げるほど、電子はフィラメントに集中し、フィラメント付加が大となり、電子ビームの照射位置の不安定化とともにフィラメント寿命の短縮化を来す。
【0005】
【発明が解決しようとする課題】
本発明はかかる従来技術の難点を解決せんとしたもので、基材温度を上昇させることなく基材上に薄膜を形成させうるイオンプレーティング装置の提供を目的とする。
【0006】
更に、本発明は通常の材質なら言うまでもなく、高い温度で変質し易い材質の基材が対象であっても、広範な材料から選択できる所望の被膜を当該基材上に形成可能な装置と方法の提供を目的とする。更に本発明は緻密で、密着性の高い被膜を広範な材質の基材上に広範な被膜形成材料をもってして形成しうる装置と方法の提供を目的とする。
【0007】
更に本発明は安定したプラズマを形成して、被膜形成速度の高い条件を容易に持続設定可能な操作性にすぐれたイオンプレーティング装置の提供を目的とする。
【0008】
【課題を解決するための手段】
本発明は少なくとも蒸着材料のみからなるプラズマを形成する高周波イオンプレーティング蒸着装置である。従来の技術では例えばアルゴンなどの希ガス元素のプラズマのエネルギーを利用する方法であったが、本発明では蒸着材料のみのプラズマでも可能なことが特徴である。勿論これら希ガス元素を併用することがあっても、各種の選択条件のなかで好ましい場合は一向に差し支えない。従って、本発明の装置にはこれら希ガス元素などの不活性ガスを供給する手段をそなえていてもよい。
【0009】
本発明は本発明の蒸着がその内部で行われ、必要な各種部材若しくは手段が配置される真空となるチャンバーを具える。当該チャンバーは接地されていないことが特徴であって、これは後述する本発明の更に特徴とするところの電子を蒸発源ボートに集中させるための重要な構成の一つである。
【0010】
当該チャンバー内には、蒸着被膜の原料となるべき蒸発源を収納する接地されたボートが配置されている。当該ボートが接地されていることは、前記した電子を蒸発源ボートに集中させるための重要な尚一つの構成である。
【0011】
当該ボートにはボートを加熱する手段を具えており、ボートに収納された蒸発材料を加熱蒸発させることが可能である。当該加熱手段は特にその構成方法を選ばないが、ボートを電気抵抗体で作り、ボート自体に電流を流してジュール熱を発生せしめる構成としてもよく、ボート内に発熱体を埋め込み若しくはボート裏面に発熱体を密着させ、伝熱させるなどの構成をとればよい。
【0012】
当該チャンバー内には、更に蒸着被膜を形成すべき基材を保持する導電性部材からなる基材保持手段を具える。当該基材保持手段はチャンバーからは絶縁されており、絶縁部材を挟んで支持手段によってチャンバー略上部中央に支持される。
【0013】
支持手段は導電性部材からなり、チャンバーとは同電位としてあり前記基材保持手段と対をなし絶縁性部材挟んでコンデンサーを形成し、高周波電力の安定な供給を果たしながら基材保持手段をチャンバー中に支持する。
【0014】
更に本発明はチャンバーの外部に配置され、その出力の片極が高周波電力供給用インピーダンスマッチング装置を経、直流遮蔽フイルターを介して基材保持手段へ接続された高周波電力供給電源を具える。当該高周波電力供給電源の出力の他の片極は接地されている。これにより基材保持手段に保持された基材に直接高周波電力を供給することができ、チャンバー内所望部分に安定なプラズマを形成させることが可能となる。勿論高周波出力は可変として所望の操作条件を設定できるようにするのがよい。インピーダンスマッチング装置は周知のインダクタンスとコンダクタンスを組み合わせた同調回路であってよく、その他の等価回路であっても差し支えない。
【0015】
更に本発明は陰極が高周波遮蔽フィルターを介して基材保持手段へ接続され陽極が接地された直流電圧印加電源を具える。これにより、蒸発源から蒸発し、プラスに帯電した若しくは陽イオン化した粒子は加速的に基材方向へ飛来し、基材と衝突・堆積して被膜形成がなされる。一方のマイナス荷電粒子である電子は基材保持手段の対極であって接地されていることによりプラスに印加されている蒸発源ボート方向に加速的且つ集中的に飛来し該ボート上の蒸発源に衝突し蒸発源にエネルギーを与える。かくして、熱エネルギーに代わる高いエネルギーを得た蒸発源は低温でも容易にチャンバー内プラズマ形成領域へと蒸発していく。勿論当該直流電圧印加電源の印加電圧は可変として、粒子の飛来エネルギーを調節するなど所望の操作条件を設定できるようにするのがよい。
【0016】
なお、本発明の構成を採るときは、蒸発源ボート等が内部に配置されているチャンバー自体は電極とは無関係に接地から絶縁されているので、チャンバー内電子はチャンバー器壁上へ分散飛来して中和消滅するようなことはなく、実質的にほとんどの電子が蒸発源ボートへと集中し高密度な電子ビームとなる。
【0017】
また、本発明ではこのようにしてコントロール可能な豊富な量の蒸発源粒子をコントロール可能なエネルギーで基材に衝突させるので、蒸着物質の基材表面上への単なる飛来堆積だけでなく、基材表面上で形成された蒸着物質層の分子若しくは原子配列を安定な状態に再配列できるエネルギーを持っているので、若しくは基材内に浸透順応さえする余裕もあるので、形成される被膜は緻密で密着性に優れた良質なものが得られるのが特徴である。
【0018】
上記の構成により上記のような本発明の特徴を発現可能とすることにより、本発明は従来にない優れたイオンプレーティング装置即ちデポジションアシスト蒸着装置を提供するものである。
【0019】
本発明のボート加熱手段には温度調節手段がまた蒸発源ボートには電子集中調節手段を具えることが望ましい。加熱手段の温度調節手段は単にボート又は加熱体へ流す電流若しくは加える電圧の調節であっても差し支えない。これにより基材の耐熱性などを考慮した操作条件の設定が可能となる。電子集中調節手段は、蒸発源の電子線照射面積を調節するためのボートの平面面積を調節してもよいし、ボート前面に絞り若しくはスリットを置くのもよい。場合によっては、電場・磁場を組み合わせた電子レンズ若しくは行路変更手段も可能である。このようにして加熱エネルギーと電子照射エネルギーの組み合わせを自在に設定できるようにすれば、広範な材質の基材に対して、広範な材質の蒸発源を蒸着することができ、各種材料に各種薄膜を形成した材料の提供が可能となり、工業的利用価値が高まる。
【0020】
更に本発明は、少なくとも蒸着材料のみからなるプラズマを形成する高周波イオンプレーティング蒸着による薄膜形成方法であって、真空にしたチャンバー内において蒸発源を加熱すること及び電子を衝突させることにより蒸発源を蒸発させ、該チャンバー内に配置された基材にプラズマ形成エネルギーとして高周波電力を供給し、粒子運動エネルギーとして直流電圧を印加し且つチャンバー内プラズマの電子をボート上の蒸発源に集中して衝突させることにより低温度で蒸発源を蒸発可能として、基材温度を上昇させないように蒸着材料を基材に蒸着させて、緻密かつ基材に密着した薄膜を形成することを特徴とする。
【0021】
電子を蒸発源に集中して衝突させる方法を更に具体的にのべると基材を高周波電源の片極及び直流電圧の陰極とし、蒸発源ボートを蒸発源高周波電源のもう一方の片極及び直流電源の陽極として接地し、チャンバーを該接地から絶縁して行うことを特徴とする。
【0022】
供給する高周波電力の周波数は13.5MHz近辺などが一般的だが、特に限定するものではなく、対象となる基材の材質、蒸発源の物質、形成すべき薄膜の設定仕様、必要な被膜形成速度などに応じて操作性のよい周波数を選ぶべきである。同時にその出力も例えば150乃至200mWが一般的だが、前記同様の観点からこの範囲を出ても差し支えない。
【0023】
基材に印加する直流電圧は前記した作用効果をもたらすものであるが、本発明ではその電圧を特に限定しないが、やはり前記した対象となる基材の材質、蒸発源の物質、形成すべき薄膜の設定仕様、必要な被膜形成速度など及び他の操作条件との関係に応じて選択すべきである。
【0024】
本発明の大きな特徴は基材の温度を上昇させずに、基材に薄膜を形成させうることであり、略常温、更に詳しくは100°C以下、好ましくは40°C以下の温度で薄膜を形成させることを特徴とする。これにより、プラスチック製の光学部材の新規な表面コート、例えばカメラ用レンズ、眼鏡用レンズへの新規な反射防止用コーティング、新規なハードコーティングなど実用的用途に望まれる技術として意義がある。
【0025】
本発明のチャンバー化内プラズマは蒸発材料だけからなるプラズマで可能だが、他に少なくとも一種の不活性ガスのプラズマが更に加わることがあっても、その目的によっては構わない。更に、希ガスのみならず窒素のようなガスを導入して窒化物被膜を形成をせしむるのも、またシランなど化合物ガスを導入して関連化合物被膜を形成をせしむるのも可能でありそれを妨げるものではない。
【0026】
本発明は基材温度を制御できるのが特徴であるが、基材温度に影響するのは専らと言えるほど蒸発源ボートから発する輻射熱によるものであるから、基材温度を適度に調節する必要がある。しかし所定速度で基材に蒸着し被膜が形成されるには蒸発源から所定速度で蒸発源を蒸発させる必要がある。そこで電子線の集中量を調節する必要性も生じる。即ち本発明では、電子線のエネルギーと加熱エネルギーとの適切なバランスを図るところに特徴がある。よって、本発明は蒸発源ボートの温度と蒸発源ボートへ集中する電子の量を調節して、所望の基材温度における薄膜形成速度若しくは所望の薄膜形成速度における基材温度を制御することを特徴とする。例えば弗化マグネシウム、二酸化珪素などの低融点蒸発源による薄膜形成の場合は蒸発源の面積を広くして、アルミナ、酸化チタン、ジルコニアなど高融点蒸発源による薄膜形成の場合は蒸発源の面積を狭くして電子によるアシストの度合いを調節することができる。
【0027】
本発明は前記したように広い条件での薄膜形成が可能なため広い範囲の蒸発源、広い範囲の基材を選択可能である。更に詳しくは本発明は基材がガラス、セラミックス、金属、プラスチックスであり、蒸発源が金属、金属酸化物、金属塩類、等の無機化合物及びオルガノポリシロキサンなどの有機金属高分子化合物を含む高分子化合物であることを特徴とする。
【0028】
【発明の実施の形態】
以下に図面を参照しながら、実施例に基づいて本発明を詳しく説明する。図4は従来のイオンプレーティング蒸着機を示す概念図である。
【0029】
【実施例1】
図1は本発明のデポジションアシスト蒸着装置を示す概念図である。11は真空にすることが可能なチャンバーで、接地されていない。1は蒸発源ボートで接地されていて、ボート自体に加熱電源3により電流を流し発熱させる。9は蒸発源で、ボートから熱を受けて真空中のチャンバー内に蒸発する。2は基材保持手段及び支持手段であって、基材10をチャンバー内に保持すると共に基材10へ高周波電力を供給及び直流電圧を印加する端子となる。5は高周波電源で4のマッチング装置と7の直流遮蔽フイルターであるコンデンサーを経て基材保持手段に接続し、もう一方は接地する。6は直流電源でそのマイナス側を高周波遮蔽フィルターであるコイルを通じて基材保持手段に接続し、プラス側を接地する。
【0030】
蒸発源ボート1に乗せられた蒸発源即ち蒸着材料9は加熱電源3の電流で加熱されて蒸発し、蒸発源即ちコート材料からなる蒸発粒子が生成する。当該基材には前記構成により出力50〜800mW、周波数13.56Mhzの高周波を付加し、基材近傍金に達した蒸発粒子をイオン化する。イオン化された粒子を含む蒸発粒子は、基材に印加された直流バイアスにより基材表面へ引き寄せられ付着する。
【0031】
一方解離した電子は基材との反対側の蒸発源側に引き寄せられる。この時、蒸発源からは次々と蒸発材料が蒸発しているので、引き寄せられた電子と衝突して、プラズマの足が蒸発源に下りたような形に発光体が蒸発源近傍に見られる。そして蒸発源近傍に集まった電子は接地されている蒸発源ボートに吸い込まれていく。この時、蒸発源ボートの上には蒸発材料が乗せられ加熱蒸発が進行しているが、飛来した電子が吸い込まれときに蒸発材料をスパッタしより蒸発が促進される。
【0032】
このような状況が出現して、プラズマが安定すると蒸発源の蒸着材料はプラズマに吸い上げられるように蒸発するので基材に付着する蒸発材料の付着速度を一定に保つために、ボートの加熱電流を下げて、加熱による蒸発速度を調節する。スパッタされて蒸発した粒子は同様にしてイオン化され基材に付着する。解離した電子は蒸発源に飛来して次のスパッタに寄与する。この繰り返しにより安定化すると、加熱源電流値は低く押さえることができ、従来よりも低い加熱温度で蒸着材料の蒸発が継続して保持され、本発明のデポジションアシスト効果が発揮されることになる。
【0033】
即ち、蒸発速度=(加熱による蒸発速度)+(デポジションアシスト効果による蒸発速度)が保たれ、デポジションアシスト効果が大きくなると、蒸発源からの輻射熱は抑えられ、基材への影響が小さくなるので、基材の温度を上昇させないで薄膜の形成ができ、本実施例の場合30℃以下の温度を保持しながらコーティングを持続できた。
【0034】
本発明を実施してコートした薄膜の基材への密着性と緻密性を従来技術の方法と比較するために、両方法で酸化チタン/酸化珪素多層被膜の蒸着を行ったサンプルについて、摩耗試験の結果を写真で示したものを図2に掲げる。Aが従来法、Bが本発明の方法である。試験方法は、検査用標準消しゴムに2kgの荷重を加え、200回往復させた後の表面の顕微鏡写真である。これにより、本発明のコート膜は若干の傷の発生はあるものの、剥離は全く生じていないこが判り、硬さ密着性が著しく改善された。
【0035】
又図3は従来技術と本発明の技術との比較において、蒸発源と基材の温度変化を操作の経時に応じて追跡したグラフせある。これにより、本発明の装置及び方法がいかに低温度に保って蒸着を進行させることが可能かわかる。
【0036】
【実施例2】
本発明において、蒸発源の面積を変えることで、飛来する電子の密度を変えてデポジションアシスト効果を任意に設定できた。
【0037】
面積の小さな蒸発源を使用した場合は、飛来する電子の密度が高くなるのでスパッタによるデポジションアシスト効果が大きくなり高融点材料の蒸着に良好な結果が得られた。また、広い面積の蒸発源では飛来する電子が分散して低くなるので、デポジションアシスト効果が緩やかに作用するので、低融点コート材料や高分子有機材料の蒸着に良好な結果が得られた。
【0038】
【発明の効果】
本発明は高い温度で変質し易い材質の基材が対象であっても、広範な材料から選択できる所望の被膜を当該基材上に形成可能な装置と方法の提供を可能にした。更に本発明は緻密で、密着性の高い被膜を広範な材質の基材上に広範な被膜形成材料をもってして形成しうる装置と方法の提供を可能にした。更に本発明は安定したプラズマを形成して、被膜形成速度の高い条件を容易に持続設定可能な操作性にすぐれたイオンプレーティング装置の提供をも可能にした。
【図面の簡単な説明】
【図1】 本発明を実施するための装置の一例の概念図である。
【図2】 本発明の実施によりコートした薄膜の基材への密着性と緻密性を従来の技術による方法と比較する顕微鏡写真である。
【図3】 本発明と従来技術を比較実施して、蒸発源及び基材の温度変化を径時的に追跡したグラフである。
【図4】 従来技術を実施するための装置の一例の概念図である。
【符号の説明】
1 蒸発源ボート
2 基材保持手段及び支持手段
3 加熱電源
4 高周波インピーダンスマッチング装置
5 高周波電源
6 直流電源
7 直流遮蔽フィルター
8 高周波遮蔽フィルター
9 蒸発源
10 基材
A 従来技術によるコート面のテスト結果を示す顕微鏡写真
B 本発明の実施によるコート面のテスト結果を示す顕微鏡写真
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel deposition assist deposition apparatus for performing high-frequency ion plating deposition that directly applies a high frequency to a substrate, and a method for forming a high-quality thin film under conditions improved by the apparatus.
[0002]
[Prior art]
An ion plating vapor deposition method and apparatus for directly applying a high frequency to a substrate are disclosed in Japanese Patent Publication No. Hei 1-448347 as a “gasless ion plating vapor deposition machine”. This vapor deposition machine is a vapor deposition machine that does not use an inert gas such as argon and excites molecules or atomic particles made of an evaporation material by high frequency near the base material to form a well-distributed plasma and adhere to the base material. . In order to protect the plasma formed at this time from fluctuations such as abnormal discharge and stabilize the discharge, a capacitor is formed on the holder that fixes the base material, and the electric fluctuation is absorbed by the capacitance, so that the high vacuum can be used. Achieves gas-free ion plating deposition. (See Figure 4)
[0003]
However, in the prior art including the disclosed example, the substrate on which the thin film is to be formed is exposed to an environment in which the temperature is increased by radiation heat from a heat source for evaporating the film forming material from the evaporation source. This temperature rise reaches nearly 150 ° C. on the substrate surface in a process that requires a long deposition time. Therefore, when a film is formed on a base material that easily changes in quality at a high temperature, only a very limited thin film can be formed, such as a single layer coating of a metal mirror that is not affected by radiant heat.
[0004]
On the other hand, as an energy for evaporating the material of the evaporation source, not only thermal energy but also a method using an electron beam has been devised recently. However, when this method is used in a gas-free ion plating apparatus or similar ion plating apparatus, fluctuations in the electron beam occur, and the lifetime of the thermoelectron generating filament of the electron gun to be generated is continually practical. It gets shorter. That is, among the particles in the plasma formed between the substrate and the evaporation source, the vapor deposition particles are attracted and attached to the substrate, but one electron is attracted to the electron gun filament to stabilize the plasma discharge. The more the discharge power is increased, the more the electrons are concentrated on the filament, and the filament addition becomes large, leading to the destabilization of the irradiation position of the electron beam and the shortening of the filament life.
[0005]
[Problems to be solved by the invention]
The present invention has been made to solve the problems of the prior art, and an object of the present invention is to provide an ion plating apparatus capable of forming a thin film on a substrate without increasing the substrate temperature.
[0006]
Furthermore, the present invention is an apparatus and method capable of forming a desired film on a base material that can be selected from a wide range of materials, even if the base material is a material that easily changes in quality at a high temperature, not to mention an ordinary material. The purpose is to provide. It is another object of the present invention to provide an apparatus and a method capable of forming a dense and highly adhesive film on a wide variety of base materials with a wide range of film forming materials.
[0007]
It is another object of the present invention to provide an ion plating apparatus which has excellent operability by which stable plasma can be formed and conditions for high film formation speed can be set easily and continuously.
[0008]
[Means for Solving the Problems]
The present invention is a high-frequency ion plating vapor deposition apparatus that forms plasma consisting of at least a vapor deposition material. The conventional technique uses a plasma energy of a rare gas element such as argon, but the present invention is characterized in that it is possible to use only the plasma of the vapor deposition material. Of course, even if these rare gas elements are used in combination, there is no problem if it is preferable among various selection conditions. Therefore, the apparatus of the present invention may be provided with means for supplying an inert gas such as these rare gas elements.
[0009]
The present invention includes a vacuum chamber in which the vapor deposition of the present invention is performed and various necessary members or means are arranged. The chamber is not grounded, and this is one of the important structures for concentrating the electrons in the evaporation source boat, which is further characterized in the present invention described later.
[0010]
In the chamber, a grounded boat for storing an evaporation source to be a raw material for the deposited film is disposed. The fact that the boat is grounded is another important configuration for concentrating the aforementioned electrons on the evaporation source boat.
[0011]
The boat includes a means for heating the boat, and the evaporation material stored in the boat can be heated and evaporated. The heating means is not particularly limited in its configuration method, but the boat may be made of an electric resistor, and a current may be supplied to the boat itself to generate Joule heat. A heating element is embedded in the boat or heat is generated on the back of the boat. What is necessary is just to take the structure of sticking a body and making it heat-transfer.
[0012]
The chamber further includes a substrate holding means made of a conductive member that holds a substrate on which a vapor deposition film is to be formed. The base material holding means is insulated from the chamber, and is supported at a substantially upper center of the chamber by a supporting means with an insulating member interposed therebetween.
[0013]
The support means is made of a conductive member, and has the same potential as the chamber. The support means is paired with the base material holding means to form a capacitor with the insulating member sandwiched between them. Support in.
[0014]
The present invention further includes a high-frequency power supply power source disposed outside the chamber, and having one output pole connected to the substrate holding means via a DC shielding filter via an impedance matching device for supplying high-frequency power. The other one pole of the output of the high frequency power supply power source is grounded. As a result, high frequency power can be directly supplied to the substrate held by the substrate holding means, and stable plasma can be formed at a desired portion in the chamber. Of course, it is desirable that the high-frequency output is variable so that desired operation conditions can be set. The impedance matching device may be a well-known tuning circuit combining inductance and conductance, or may be another equivalent circuit.
[0015]
The present invention further includes a DC voltage application power source in which the cathode is connected to the substrate holding means via the high frequency shielding filter and the anode is grounded. As a result, the positively charged or cationized particles evaporated from the evaporation source fly in the direction of the base material, collide with the base material, and deposit to form a film. One electron, which is a negatively charged particle, is the counter electrode of the substrate holding means and is grounded, so that it flies intensively and intensively in the direction of the evaporation source boat that is applied positively, and reaches the evaporation source on the boat. Collides and gives energy to the evaporation source. Thus, the evaporation source that has obtained high energy instead of thermal energy easily evaporates into the plasma formation region in the chamber even at a low temperature. Of course, it is desirable that the applied voltage of the DC voltage application power source be variable so that desired operation conditions can be set, such as adjustment of the flying energy of particles.
[0016]
When the configuration of the present invention is adopted, the chamber itself in which the evaporation source boat and the like are disposed is insulated from the ground regardless of the electrode, so that the electrons in the chamber are scattered and scattered on the chamber wall. As a result, the electron beam is not neutralized and disappears, and substantially all of the electrons are concentrated on the evaporation source boat, resulting in a high-density electron beam.
[0017]
Further, in the present invention, a large amount of evaporation source particles that can be controlled in this way are collided with the substrate with controllable energy, so that not only mere flying deposition of the vapor deposition material on the substrate surface but also the substrate The film formed is dense because it has the energy to rearrange the molecules or atomic arrangement of the deposited material layer formed on the surface in a stable state, or even has room to adapt to penetration into the substrate. It is characterized in that a high quality product with excellent adhesion can be obtained.
[0018]
By enabling the above-described features of the present invention to be expressed by the above-described configuration, the present invention provides an excellent ion plating apparatus, that is, a deposition assist vapor deposition apparatus, which has never been obtained.
[0019]
The boat heating means of the present invention preferably includes a temperature adjusting means, and the evaporation source boat preferably includes an electronic concentration adjusting means. The temperature adjusting means of the heating means may be simply adjusting the current or voltage applied to the boat or the heating element. This makes it possible to set operating conditions in consideration of the heat resistance of the substrate. The electron concentration adjusting means may adjust the plane area of the boat for adjusting the electron beam irradiation area of the evaporation source, or may be provided with a diaphragm or a slit in front of the boat. In some cases, an electron lens or a path changing means combining an electric field and a magnetic field is also possible. If the combination of heating energy and electron irradiation energy can be set freely in this way, a wide range of evaporation sources can be deposited on a wide range of materials, and various thin films can be applied to various materials. It is possible to provide a material that forms the material, and the industrial utility value is increased.
[0020]
Furthermore, the present invention relates to a thin film formation method by high-frequency ion plating vapor deposition that forms a plasma consisting of at least a vapor deposition material. The vaporization source is heated by colliding electrons in the vacuum chamber. Evaporate, supply high-frequency power as plasma formation energy to the substrate disposed in the chamber, apply a DC voltage as particle kinetic energy, and cause electrons in the chamber plasma to concentrate and collide with the evaporation source on the boat Thus, the evaporation source can be evaporated at a low temperature, and a vapor deposition material is vapor-deposited on the base material so as not to raise the base material temperature, thereby forming a dense and closely adhered thin film.
[0021]
More specifically, the method of concentrating and colliding electrons with the evaporation source is described as follows: the base material is a single pole of a high-frequency power supply and a cathode of a DC voltage, and the evaporation source boat is the other single-pole of the evaporation source high-frequency power supply and a DC power supply. The anode is grounded as an anode, and the chamber is insulated from the ground.
[0022]
The frequency of the high-frequency power to be supplied is generally around 13.5 MHz, but is not particularly limited. The material of the target substrate, the material of the evaporation source, the setting specification of the thin film to be formed, the required film formation speed A frequency with good operability should be selected according to the above. At the same time, the output is generally 150 to 200 mW, for example, but it may be out of this range from the same viewpoint as described above.
[0023]
The direct-current voltage applied to the base material brings about the above-described effects. In the present invention, the voltage is not particularly limited. However, the base material, the evaporation source substance, and the thin film to be formed are also defined. Should be selected according to the relationship between the set specifications, the required film formation speed, and other operating conditions.
[0024]
A major feature of the present invention is that a thin film can be formed on a base material without increasing the temperature of the base material. The thin film can be formed at a substantially normal temperature, more specifically 100 ° C. or lower, preferably 40 ° C. or lower. It is formed. Thereby, it is significant as a technique desired for practical use such as a new surface coating of a plastic optical member, for example, a new anti-reflection coating or a new hard coating on a camera lens or a spectacle lens.
[0025]
The in-chamber plasma of the present invention can be a plasma made only of an evaporation material, but at least one kind of inert gas plasma may be further added depending on the purpose. Furthermore, it is possible to form not only a rare gas but also a gas such as nitrogen to form a nitride film, or to introduce a compound gas such as silane to form a related compound film. There is no hindrance.
[0026]
The present invention is characterized in that the substrate temperature can be controlled. However, since the influence on the substrate temperature is due to the radiant heat generated from the evaporation source boat, it is necessary to adjust the substrate temperature appropriately. is there. However, it is necessary to evaporate the evaporation source from the evaporation source at a predetermined speed in order to deposit the film on the substrate at a predetermined speed. Therefore, it becomes necessary to adjust the concentration of electron beams. That is, the present invention is characterized in that an appropriate balance between electron beam energy and heating energy is achieved. Therefore, the present invention adjusts the temperature of the evaporation source boat and the amount of electrons concentrated on the evaporation source boat to control the thin film formation rate at the desired substrate temperature or the substrate temperature at the desired thin film formation rate. And For example, when forming a thin film with a low melting point evaporation source such as magnesium fluoride or silicon dioxide, increase the area of the evaporation source. When forming a thin film with a high melting point evaporation source such as alumina, titanium oxide or zirconia, increase the area of the evaporation source. The degree of assist by electrons can be adjusted by narrowing.
[0027]
Since the present invention can form a thin film under a wide range of conditions as described above, a wide range of evaporation sources and a wide range of substrates can be selected. More specifically, in the present invention, the base material is glass, ceramics, metal, plastics, and the evaporation source is an inorganic compound such as a metal, metal oxide, or metal salt, and an organometallic polymer compound such as organopolysiloxane. It is a molecular compound.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on examples with reference to the drawings. FIG. 4 is a conceptual diagram showing a conventional ion plating vapor deposition machine.
[0029]
[Example 1]
FIG. 1 is a conceptual diagram showing a deposition assist vapor deposition apparatus of the present invention. 11 is a chamber that can be evacuated and is not grounded. 1 is grounded by an evaporation source boat, and a current is supplied to the boat by a heating power source 3 to generate heat. An evaporation source 9 receives heat from the boat and evaporates into a vacuum chamber. Reference numeral 2 denotes a base material holding means and a support means, which serve as terminals for holding the base material 10 in the chamber and supplying high frequency power to the base material 10 and applying a DC voltage. A high frequency power source 5 is connected to the substrate holding means through a matching device 4 and a condenser 7 as a DC shielding filter, and the other is grounded. 6 is a direct current power source, the negative side of which is connected to the substrate holding means through a coil which is a high frequency shielding filter, and the positive side is grounded.
[0030]
The evaporation source, that is, the vapor deposition material 9 placed on the evaporation source boat 1 is heated by the current of the heating power source 3 to evaporate, thereby generating evaporation particles composed of the evaporation source, that is, the coating material. A high frequency with an output of 50 to 800 mW and a frequency of 13.56 Mhz is added to the base material according to the above configuration, and the evaporated particles that have reached the base metal are ionized. The evaporated particles including the ionized particles are attracted and attached to the surface of the substrate by a DC bias applied to the substrate.
[0031]
On the other hand, the dissociated electrons are attracted to the evaporation source side opposite to the substrate. At this time, since the evaporation material is evaporating one after another from the evaporation source, the light emitter is seen in the vicinity of the evaporation source in such a form that it collides with the attracted electrons and the plasma foot falls to the evaporation source. The electrons collected near the evaporation source are sucked into the evaporation source boat that is grounded. At this time, the evaporation material is placed on the evaporation source boat and the heating and evaporation is proceeding. However, when the flying electrons are sucked, the evaporation material is sputtered and the evaporation is further promoted.
[0032]
When such a situation appears and the plasma stabilizes, the evaporation material of the evaporation source evaporates so that it is sucked up by the plasma. Therefore, in order to keep the deposition rate of the evaporation material adhering to the substrate constant, the heating current of the boat is set. And adjust the evaporation rate by heating. The sputtered and evaporated particles are similarly ionized and adhere to the substrate. The dissociated electrons fly to the evaporation source and contribute to the next sputtering. When stabilized by this repetition, the heating source current value can be kept low, evaporation of the vapor deposition material is continuously maintained at a lower heating temperature than the conventional one, and the deposition assist effect of the present invention is exhibited. .
[0033]
That is, if the evaporation rate = (evaporation rate by heating) + (evaporation rate by the deposition assist effect) is maintained and the deposition assist effect is increased, the radiant heat from the evaporation source is suppressed and the influence on the substrate is reduced. Therefore, a thin film could be formed without increasing the temperature of the substrate, and in the case of this example, the coating could be continued while maintaining a temperature of 30 ° C. or lower.
[0034]
In order to compare the adhesion and denseness of the thin film coated in accordance with the present invention to the base material with the method of the prior art, a wear test was performed on a sample on which a titanium oxide / silicon oxide multilayer coating was deposited by both methods. The results of the above are shown in FIG. A is the conventional method and B is the method of the present invention. The test method is a photomicrograph of the surface after applying a load of 2 kg to the standard eraser for inspection and reciprocating 200 times. As a result, it was found that although the coating film of the present invention had some scratches, no peeling occurred, and the hardness adhesion was remarkably improved.
[0035]
FIG. 3 is a graph in which the temperature change of the evaporation source and the substrate is traced according to the time of operation in comparison between the prior art and the technique of the present invention. Thus, it can be seen how the apparatus and method of the present invention can proceed with vapor deposition while maintaining a low temperature.
[0036]
[Example 2]
In the present invention, the deposition assist effect can be arbitrarily set by changing the density of the flying electrons by changing the area of the evaporation source.
[0037]
When an evaporation source with a small area is used, the density of flying electrons increases, so the deposition assist effect by sputtering increases, and good results are obtained for vapor deposition of refractory materials. In addition, since the flying electrons are dispersed and lowered in an evaporation source having a large area, the deposition assist effect acts gently, and good results were obtained for the deposition of a low melting point coating material or a polymer organic material.
[0038]
【The invention's effect】
The present invention has made it possible to provide an apparatus and a method capable of forming a desired film on a base material, which can be selected from a wide range of materials, even when the base material is easily deformed at a high temperature. Furthermore, the present invention has made it possible to provide an apparatus and a method capable of forming a dense and highly adhesive film on a wide variety of materials with a wide range of film forming materials. Furthermore, the present invention has made it possible to provide an ion plating apparatus with excellent operability that can form a stable plasma and can easily and continuously set conditions at a high film formation rate.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of an example of an apparatus for carrying out the present invention.
FIG. 2 is a photomicrograph comparing the adhesion and denseness of a thin film coated by the practice of the present invention to a substrate according to a conventional technique.
FIG. 3 is a graph in which the temperature change of the evaporation source and the substrate is traced over time by comparing the present invention with the prior art.
FIG. 4 is a conceptual diagram of an example of an apparatus for carrying out the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Evaporation source boat 2 Base material holding means and support means 3 Heating power source 4 High frequency impedance matching device 5 High frequency power source 6 DC power source 7 DC shielding filter 8 High frequency shielding filter 9 Evaporation source 10 Base material A Photomicrograph B showing photomicrograph showing test results of coated surface according to the present invention

Claims (8)

少なくとも一種類の蒸着材料の蒸発粒子ガスのみからなるプラズマを形成する高周波イオンプレーティング蒸着装置において、
真空となる接地されていないチャンバー、当該チャンバー内に配置されている蒸着被膜の原料となるべき蒸発材料を収納する接地されたボート、該ボートを加熱する手段、蒸着被膜を形成すべき基材を保持する導電性部材からなる基材保持手段及びチャンバーと同電位の導電性部材からなり絶縁性部材を介して該基材保持手段を支持する支持手段並びに、高周波電力供給電源であって片極が接地され片極が高周波電力供給用インピーダンスマッチング装置を経、直流遮蔽フイルターを介して高周波基材保持手段へ接続することにより直接基材に高周波電力を供給するように構成した高周波電力供給電源、陽極を接地し陰極を高周波遮蔽フィルターを介して基材保持手段へ接続することにより基材・ボート間に直流電圧を印加するように構成した直流電圧印加電源及び前記高周波電力供給用インピーダンスマッチング装置を具えた、チャンバー内プラズマの電子がボート上の蒸発源に集中して衝突するようにしたことを特徴とするデポジションアシスト蒸着装置。
In a high-frequency ion plating vapor deposition apparatus that forms a plasma consisting only of evaporated particle gas of at least one vapor deposition material,
An ungrounded chamber to be a vacuum, a grounded boat for storing an evaporation material to be a raw material for the vapor deposition film disposed in the chamber, a means for heating the boat, and a substrate on which the vapor deposition film is to be formed A substrate holding means comprising a conductive member to be held; a support means comprising a conductive member having the same potential as the chamber; and supporting the substrate holding means via an insulating member; and a high-frequency power supply power source, A high-frequency power supply power source and an anode which are configured to supply a high-frequency power directly to a base material by connecting to a high-frequency base material holding means via a direct current shielding filter via an impedance matching device for supplying a high-frequency power and grounding one pole By connecting the cathode and the cathode to the substrate holding means via a high frequency shielding filter, a DC voltage is applied between the substrate and the boat. Equipped with DC voltage source and the high frequency power supply for impedance matching apparatus, deposition assisted vapor deposition apparatus characterized by electrons chamber plasma was made to collide concentrated in the evaporation source on the boat.
少なくとも一種類の不活性ガスのプラズマが更に加わることを特徴とし、少なくとも一種の不活性ガスの供給手段を更に具えた請求項1記載のデポジションアシスト蒸着装置。  2. The deposition assist deposition apparatus according to claim 1, further comprising plasma of at least one kind of inert gas, and further comprising means for supplying at least one kind of inert gas. ボート加熱手段の温度調節手段及び蒸発源の電子集中調節手段を具えた請求項1及び2記載のデポジションアシスト蒸着装置。  3. The deposition assist deposition apparatus according to claim 1, further comprising a temperature adjusting means for the boat heating means and an electron concentration adjusting means for the evaporation source. 少なくとも一種類の蒸着材料のみからなるプラズマを形成する高周波イオンプレーティング蒸着による薄膜形成方法において、真空にしたチャンバー内において蒸発源を加熱すること及び電子を衝突させることにより蒸発材料を蒸発させ、当該チャンバー内に配置された基材にプラズマ形成エネルギーとして高周波電力を供給し、粒子運動エネルギーとして直流電圧を印加し且つチャンバー内プラズマの電子をボート上の蒸発材料に集中して衝突させることにより低温度で蒸発材料を蒸発可能として、基材温度を上昇させないように蒸着材料を基材に蒸着させることを特徴とする薄膜形成方法。  In a thin film formation method by high-frequency ion plating vapor deposition that forms plasma consisting of at least one kind of vapor deposition material, the vaporization material is evaporated by heating an evaporation source and colliding electrons in a vacuum chamber. Low temperature by supplying high-frequency power as plasma forming energy to the substrate placed in the chamber, applying DC voltage as particle kinetic energy, and causing the electrons in the chamber to collide with the evaporation material on the boat. A method of forming a thin film, characterized in that the evaporation material can be evaporated in step (a), and the evaporation material is evaporated on the substrate so as not to raise the substrate temperature. 電子を蒸発源に集中して衝突させる方法が、基材を高周波電源の片極及び直流電圧の陰極とし、蒸発源ボートを蒸発源高周波電源のもう一方の片極及び直流電源の陽極とすることからなる請求項記載の薄膜形成方法。The method of concentrating and colliding electrons with the evaporation source is to use the base material as one pole of a high-frequency power source and a DC voltage cathode, and the evaporation source boat as the other one pole of the evaporation source high-frequency power source and the anode of the DC power source. The thin film forming method according to claim 4, comprising: 少なくとも一種類の不活性ガスのプラズマが更に加わることを特徴とする請求項4及び5記載の薄膜形成方法。  6. The thin film forming method according to claim 4, wherein plasma of at least one kind of inert gas is further added. 蒸発源ボートの温度と蒸発源ボートへ集中する電子の量を調節して、所望の基材温度における薄膜形成速度若しくは所望の薄膜形成速度における基材温度を制御することを特徴とする請求項4乃至6記載の薄膜形成方法。  5. The temperature of the evaporation source boat and the amount of electrons concentrated on the evaporation source boat are adjusted to control the thin film formation rate at a desired substrate temperature or the substrate temperature at a desired thin film formation rate. The thin film formation method of thru | or 6. 基材がガラス、セラミックス、金属、プラスチックスであり、蒸発源が金属、金属酸化物、金属塩類、等の無機化合物及びオルガノポリシロキサンなどの有機金属高分子化合物を含む高分子化合物である請求項4乃至7記載の薄膜形成方法。  The base material is glass, ceramics, metal, or plastics, and the evaporation source is a polymer compound including an inorganic compound such as metal, metal oxide, or metal salt, and an organometallic polymer compound such as organopolysiloxane. The thin film forming method according to 4 to 7.
JP32323799A 1999-11-12 1999-11-12 Deposition assist deposition apparatus and thin film forming method Expired - Fee Related JP4351777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32323799A JP4351777B2 (en) 1999-11-12 1999-11-12 Deposition assist deposition apparatus and thin film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32323799A JP4351777B2 (en) 1999-11-12 1999-11-12 Deposition assist deposition apparatus and thin film forming method

Publications (2)

Publication Number Publication Date
JP2001140061A JP2001140061A (en) 2001-05-22
JP4351777B2 true JP4351777B2 (en) 2009-10-28

Family

ID=18152545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32323799A Expired - Fee Related JP4351777B2 (en) 1999-11-12 1999-11-12 Deposition assist deposition apparatus and thin film forming method

Country Status (1)

Country Link
JP (1) JP4351777B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4251080B2 (en) * 2003-04-15 2009-04-08 セイコーエプソン株式会社 Film forming method, electronic device manufacturing method, film forming apparatus and electronic device, and electronic apparatus
JP2021075734A (en) * 2018-03-14 2021-05-20 株式会社ニコン Film deposition method and film deposition apparatus
JP7203147B2 (en) * 2020-11-09 2023-01-12 ホヤ レンズ タイランド リミテッド Spectacle lens manufacturing method
CN115354289B (en) * 2022-08-26 2023-09-05 松山湖材料实验室 Ion source auxiliary deposition system, deposition method and vacuum coating equipment

Also Published As

Publication number Publication date
JP2001140061A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
US6579428B2 (en) Arc evaporator, method for driving arc evaporator, and ion plating apparatus
US20100206713A1 (en) PZT Depositing Using Vapor Deposition
US7678241B2 (en) Film forming apparatus, substrate for forming oxide thin film and production method thereof
US5078847A (en) Ion plating method and apparatus
US5677012A (en) Plasma processing method and plasma processing apparatus
US5662741A (en) Process for the ionization of thermally generated material vapors and a device for conducting the process
JP4351777B2 (en) Deposition assist deposition apparatus and thin film forming method
JP2946402B2 (en) Plasma processing method and plasma processing apparatus
JPH02280310A (en) Manufacture of electrode material for electrolytic capacitor
JP2002047559A (en) Ito film, and film deposition method thereof
JP2001355068A (en) Sputtering apparatus, and deposited film forming method
JPH0639707B2 (en) Thin film forming equipment
JP2002220657A (en) Apparatus and method for forming thin film
JP2857743B2 (en) Thin film forming apparatus and thin film forming method
JPH07122133B2 (en) Ion plating method and apparatus
JP2000026953A (en) Plasma treating method and plasma treating device
JPS628409A (en) Formation of transparent conducting metal oxide film
JP3364692B2 (en) Film forming method and apparatus for electromagnetic wave shielding
RU2676719C1 (en) Method of low-temperature application of nanocrystalline coating from alpha-oxide aluminum
JP2023175267A (en) Ion plating device and method
JPH083735A (en) Production of thin film
JP2001355064A (en) High frequency ion plating apparatus
JPH06306588A (en) Film forming device and production of film consisting of plural substances using the same
JPH048506B2 (en)
JP2955667B2 (en) Method and apparatus for preparing a mixture thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150731

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees