JPS60184674A - Vacuum device for forming continuous thin film - Google Patents

Vacuum device for forming continuous thin film

Info

Publication number
JPS60184674A
JPS60184674A JP3980384A JP3980384A JPS60184674A JP S60184674 A JPS60184674 A JP S60184674A JP 3980384 A JP3980384 A JP 3980384A JP 3980384 A JP3980384 A JP 3980384A JP S60184674 A JPS60184674 A JP S60184674A
Authority
JP
Japan
Prior art keywords
substrate
thin film
cathode
roller
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3980384A
Other languages
Japanese (ja)
Inventor
Kazuo Iwaoka
和男 岩岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3980384A priority Critical patent/JPS60184674A/en
Publication of JPS60184674A publication Critical patent/JPS60184674A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To provide a titled device which forms a uniform thin film having high adhesion and good quality by installing an electron ray accelerator in addition to a heating source to the inside of a vacuum vessel and irradiating an electron ray to the surface of a substrate prior to formation of the thin film thereby making pretreatment. CONSTITUTION:A vacuum device for forming a continuous thin film heats a metal such as Co contained in a crucible 19 to evaporate by a heating source 21 and deposits the same by evaporation on a substrate 16 of a high polymer molding such as PE which is unrolled from a core 10 and is moved by a free roller 11 while said substrate is wound on a vapor deposition roller 12 in a vacuum vessel 1. An electron ray accelerator for pretreatment of the substrate consisting of a cathode 23, an anode 24 and an electron reflecting plate 22, etc. is installed to the above-mentioned vacuum device, in addition to the above-mentioned heating source 21. The cathode 23 which faces the substrate 16 consists of a wire having >=1mm. diameter longer than the width thereof and is preferably impressed with about -30kV acceleration voltage which is of the same potential as the potential of the above-mentioned plate 22. Electrons are irradiated to the substrate surface just prior to formation of the thin film to remove oil, etc. from the substrate surface and to charge electrostatically said surface by the above-mentioned constitution by which the adhesion strength between the substrate and the roller 12 is increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は減圧され°だ真空容器内で高分子成形物基板(
以後基板と記す)表面上に金属、金属酸化物の薄膜を連
続して形成するだめの真空装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the production of polymer molded substrates (
This invention relates to a vacuum device for continuously forming thin films of metals and metal oxides on the surface (hereinafter referred to as a substrate).

従来例の構成とその問題点 基板上に連続して薄膜を形成する技術は近年産業上に多
く使用されるに至った。コンデンサ用、装飾、包装9反
射膜等へのアルミニウムや亜鉛等の薄膜、可撓性電子回
路基板への銅薄膜の形成、磁気記録媒体用にコバルト、
ニッケル、クロム。
Conventional Structures and Their Problems Techniques for continuously forming thin films on a substrate have come into widespread use in industry in recent years. Thin films such as aluminum and zinc for capacitors, decorations, and packaging 9 reflective films, copper thin films for flexible electronic circuit boards, cobalt for magnetic recording media, etc.
Nickel, chrome.

鉄等の薄膜形成と多くの分野で利用されている。It is used in many fields to form thin films of iron, etc.

上述のコンデンサ、装飾、包装1反射膜、磁気記録媒体
等連続して薄膜を形成する基板は一般的には長尺の基板
が用いられる。従来から行なわれている長尺基板への薄
膜形成は以下の方法で行なわれる。
Long substrates are generally used as substrates on which thin films are continuously formed, such as the above-mentioned capacitors, decorations, packaging 1 reflective films, and magnetic recording media. The conventional method of forming a thin film on a long substrate is as follows.

第1図には真空蒸着法による長尺基板の形成に用いる装
置の要部を示す。基板41は捲回された姿で巻出軸40
にセットされる。基板41は図示されてないフリーロー
ラ、エキスパンダーを経て蒸着ローラ42の外周に沿い
1図示されていない他17)71J−ローラ、エキスパ
ンダーを経て巻取軸44に巻取られる。薄膜の形成は、
基板41が蒸着ローラ42と同期して走行している間に
蒸発源43からの蒸発原子が基板41表面に何着して形
成される。イオンブレーティングも真空蒸着装置はぼ同
一の方法であり、スパッターについては蒸発源43がタ
ーゲットになる。
FIG. 1 shows the main parts of an apparatus used for forming a long substrate by vacuum evaporation. The board 41 is in a wound state on the unwinding shaft 40.
is set to The substrate 41 passes through a free roller (not shown) and an expander, and then is wound around the take-up shaft 44 along the outer periphery of the vapor deposition roller 42 (17) 71J-roller (not shown), and an expander. The formation of a thin film is
While the substrate 41 is running in synchronization with the vapor deposition roller 42, evaporated atoms from the evaporation source 43 are deposited on the surface of the substrate 41. Ion blating is almost the same method for vacuum evaporation equipment, and for sputtering, the evaporation source 43 is the target.

これらの真空蒸着法、イオンブレーティング。These vacuum evaporation methods, ion blating.

スパッター法等による従来からの薄膜形成方法は、基板
と薄膜の付着力や蒸発源、ターゲ7)からの輻射熱によ
る基板の熱ダメージが問題になっている0 付着力強化には基板表面の洗浄や、プラズマ照射等が、
また輻射熱の低減には基板裏面に冷却ローラを接して基
板の熱を吸収する等の方法が用いられているが今だ十分
でなく、特に高融点材料である、鉄、コバルト、ニッケ
ル等の材料による磁性薄膜の形成では重要な問題であっ
た〇発明の目的 本発明は上記問題点を解決するもので薄膜形成に関して
基板の熱ダメージを無くしかつ基板、薄膜の付着力を強
くした薄膜形成用真空装置を提供するものである。
Conventional thin film forming methods such as sputtering have problems with the adhesion between the substrate and the thin film, as well as thermal damage to the substrate due to radiant heat from evaporation sources and targets.0 To strengthen adhesion, it is necessary to clean the substrate surface and , plasma irradiation, etc.
In addition, methods used to reduce radiant heat include placing a cooling roller in contact with the back of the board to absorb the heat from the board, but this is still not sufficient, especially for materials with high melting points such as iron, cobalt, and nickel. This was an important problem in the formation of magnetic thin films using the method.Objective of the InventionThe present invention solves the above problems, and provides a vacuum for forming thin films that eliminates thermal damage to the substrate and strengthens the adhesion between the substrate and the thin film. It provides equipment.

発明の構成 本発明は真空蒸着装置やイオンブレーティング装置、ス
パッター装置に、基板表面処理をするための電子線加速
器を設けたものであり、電子線加速器は基板の幅方向に
同一もしくはそれ以上の長さを有する陰極、陽極、電子
反射板から構成されていて、基板表面への薄膜形成過程
の前で基板表面に電子照射を行なうよう設置されている
。他に基板走行系、真空排気系、加速器電源1等により
全体構成がされている。
Structure of the Invention The present invention is a vacuum evaporation device, an ion blating device, or a sputtering device equipped with an electron beam accelerator for treating the surface of a substrate. It consists of a long cathode, an anode, and an electron reflection plate, and is installed to irradiate the substrate surface with electrons before the process of forming a thin film on the substrate surface. The overall structure also includes a substrate transport system, a vacuum evacuation system, an accelerator power supply 1, etc.

実施例の説明 第2図は本発明の一実施例の側面図である。真空槽1は
上部を開閉弁6を介して真空排気管4により真空排気さ
れ下部は開閉弁6を介して真空排気管7により真空排気
される。真空槽の致達圧力は5X10’p@である。真
空槽を形成する側壁2.3は真空槽内Vこ設けた構成部
品の支持板として共角した。幅500編、厚さ10μm
のポリエチレン基板(以下基板と記す)16はコア10
に捲回されて巻出軸9にセットされている。巻出軸9は
固定具8により保持されている。基板16はフリーロー
ラ11を経て直径600悲1幅700賜の蒸着ローラ1
2の外周に沿って蒸発ローラの周速と同期しヤ走行し図
示されて埴ないフリーローラを経て巻取軸」このコアに
巻き取られる。
DESCRIPTION OF THE EMBODIMENT FIG. 2 is a side view of an embodiment of the present invention. The upper part of the vacuum chamber 1 is evacuated by an evacuation pipe 4 through an on-off valve 6, and the lower part is evacuated through an evacuation pipe 7 through an on-off valve 6. The ultimate pressure of the vacuum chamber is 5×10'p@. The side walls 2.3 forming the vacuum chamber were coplanar as supporting plates for the components provided inside the vacuum chamber. Width: 500 stitches, thickness: 10 μm
The polyethylene substrate (hereinafter referred to as substrate) 16 is the core 10
It is wound up and set on the unwinding shaft 9. The unwinding shaft 9 is held by a fixture 8. The substrate 16 passes through a free roller 11 and is transferred to a deposition roller 1 with a diameter of 600 mm and a width of 700 mm.
The material runs along the outer periphery of the evaporating roller 2 in synchronization with the circumferential speed of the evaporating roller, and is wound onto the winding shaft via a free roller (not shown).

蒸着ローラ12は回転軸15の一方を側板2にベアリン
グ13を介して固定他方を側板3にベアリング、オイル
ノール14を介して固定してあり、蒸着ローラの温度は
30℃一定とした。薄膜形゛成ハヘース18上に置かれ
たルツボ19内のコバルト20を加熱源21にて加熱溶
解させコバルト原子を蒸発させ連続走行している蒸着ロ
ーラ12上の基板16表面にシャッター17を開いて差
し向けてコバルトの薄膜を形成する。
The vapor deposition roller 12 had one rotating shaft 15 fixed to the side plate 2 via a bearing 13 and the other fixed to the side plate 3 via a bearing and an oil noll 14, and the temperature of the vapor deposition roller was kept constant at 30°C. The cobalt 20 in the crucible 19 placed on the thin film formation haze 18 is heated and melted by the heat source 21 to evaporate the cobalt atoms, and the shutter 17 is opened on the surface of the substrate 16 on the continuously running vapor deposition roller 12. A thin film of cobalt is formed.

電子線加速器は簿膜形成前に基板表面に電子照射を行な
うだめ両端を絶縁碍子25で支持されたに陽極24を設
けて陰極23から放出された電子が蒸着ローラ12外周
に沿った基板16表面に照射されるように構成しである
。第3図は正面から見た電子線加速器部分の構成図であ
る。11はフリーローラである。電子線加速器は、陽極
24゜陰極23.電子反射板22の順で配置され、陰極
23には直径0.51mのタングステン線を用い、加速
器用電源3oは高圧ケーブル27で真空槽への導入端子
27を経て導入した。
In order to irradiate the substrate surface with electrons before film formation, the electron beam accelerator is equipped with an anode 24 supported at both ends by insulators 25, and the electrons emitted from the cathode 23 are applied to the substrate 16 surface along the outer periphery of the vapor deposition roller 12. It is configured so that it is irradiated with light. FIG. 3 is a configuration diagram of the electron beam accelerator section seen from the front. 11 is a free roller. The electron beam accelerator has an anode of 24 degrees and a cathode of 23 degrees. The electron reflecting plate 22 was arranged in this order, a tungsten wire with a diameter of 0.51 m was used as the cathode 23, and the accelerator power source 3o was introduced via a high voltage cable 27 through an introduction terminal 27 into the vacuum chamber.

第4図、第6図は電子線加速器陰極の他の実施例を示す
。第4図は、螺旋形陰極23aの中に直径2Bのタング
ステン線31を入れ、該タングステン線31の両端を絶
縁碍子26にて固定した。
4 and 6 show other embodiments of the electron beam accelerator cathode. In FIG. 4, a tungsten wire 31 having a diameter of 2B was inserted into a spiral cathode 23a, and both ends of the tungsten wire 31 were fixed with insulators 26.

第6図においては両☆:111を絶縁碍子25により固
定した直径2韻のタングステン線32から懸垂した支持
線33により直線状の陰極23bを支持した。
In FIG. 6, a straight cathode 23b is supported by a support wire 33 suspended from a tungsten wire 32 with a diameter of 2 to which both ☆:111 are fixed with an insulator 25.

以」−のようVCji7を成さ、lしだ本実施例で、真
空槽内のれ空席を1012paに保って基板を1oom
/minの定速で連続走行させながら基板表面に厚さ1
000人のコバルト薄膜を形成した。このときして、電
流はQ〜600mAまで変化できる電源を使用した。
In this example, the VCji7 is constructed as shown below, and the board is placed at 1012 pa by keeping the empty space in the vacuum chamber at 1012 pa.
While running continuously at a constant speed of /min, a thickness of 1.
000 cobalt thin films were formed. At this time, a power source was used that could change the current from Q to 600 mA.

以」一本実施例によれば、基板表面を薄膜形成直前に電
子照射することにより、基板表面の油、水分、吸着ガス
成分等を除去することができ基板と薄膜のイ」着力が向
上するとともに、磁性材料を薄膜形成した磁気記録媒体
では、特に周波数特性が電子照射のない磁気記録媒体に
比べて良かった。
Therefore, according to this embodiment, by irradiating the substrate surface with electrons immediately before forming the thin film, oil, moisture, adsorbed gas components, etc. on the substrate surface can be removed, and the adhesion between the substrate and the thin film is improved. In addition, a magnetic recording medium in which a thin film of magnetic material was formed had particularly good frequency characteristics compared to a magnetic recording medium without electron irradiation.

さらに基板への電子照射により基板表面はマイナスに帯
電し、基板と蒸着ローラ間で静電引力として作用するこ
とりこより、基板と蒸着ローラ間の密着力が向上するこ
とにより蒸着過程での基板に加わる熱エネルギーを基板
から蒸着ローラへ熱伝導により除去する効果が犬となり
基板の温度上層を防止する効果もある。したがって 1)基板の熱ダメージが無くなった。
In addition, electron irradiation on the substrate causes the surface of the substrate to become negatively charged, which acts as an electrostatic attraction between the substrate and the deposition roller. This improves the adhesion between the substrate and the deposition roller, which increases the bonding force between the substrate and the deposition roller during the deposition process. The effect of removing the applied thermal energy from the substrate to the deposition roller by heat conduction also has the effect of preventing the substrate from becoming too hot. Therefore, 1) Thermal damage to the board is eliminated.

2)基板温度上列が少なく基板からのアウトガスが少な
く、薄膜の付着方向上や磁気特性の向上がはかれる。
2) There is less substrate temperature, less outgassing from the substrate, and improvements in the direction of thin film deposition and magnetic properties.

さらに 3)装置が簡単で安価である。moreover 3) The device is simple and inexpensive.

4)基板幅方向に均一に電子照射が出来るので薄膜の均
一性が良い。
4) Since electrons can be irradiated uniformly in the width direction of the substrate, the uniformity of the thin film is good.

等の効果がある。There are other effects.

尚本実施例においては真空蒸着法について詳細を説明し
だが、同様の電子線加速器をイオンブレーティング、ス
パッター装置内に設置した場合でも本実施例効果と同一
の効果が得られた。また実施例では具体的な形状2寸法
、薄膜材料等を掲げて詳細々説明を行なったが本発明は
これらに限定されるものではkいことは明白である。
Although the details of the vacuum evaporation method are explained in this example, the same effects as those of this example were obtained even when a similar electron beam accelerator was installed in an ion blating or sputtering device. Further, although the embodiments have been described in detail with reference to two specific shapes, two dimensions, thin film materials, etc., it is clear that the present invention is not limited to these.

発明の効果 本発明は、電子線加速器を備え、薄膜形成直前に基板表
面に電子照射をすることにより、基板表面を清浄にして
蒸着粒子の付着力を向上させ、均一 −で4=J着力の
大きい薄膜を形成することができる。
Effects of the Invention The present invention is equipped with an electron beam accelerator and irradiates the substrate surface with electrons immediately before forming a thin film, thereby cleaning the substrate surface and improving the adhesion of the vapor deposited particles. Large thin films can be formed.

さらに基板の帯電により蒸着ローラに基板が密着し、基
板の受ける熱を効率よく蒸着ローラに伝導でき、基板自
体の温度上昇が少なく良質の薄膜を形成できるなど、工
業的効果が非常に大きいものである。
Furthermore, the electrification of the substrate brings the substrate into close contact with the deposition roller, allowing the heat received by the substrate to be efficiently transferred to the deposition roller, resulting in the formation of a high-quality thin film with little temperature rise on the substrate itself, which has great industrial effects. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の連続薄膜形成用真空装置の要部上―j図
、第2図は本発明の一実施例の連続薄膜形成用真空装置
の側面図、第3図は要部旧面図、第4図、第6図はそれ
ぞれ電子線加速器の他の実施例の斜視図である。 12・・・・蒸着ローラ、16・・・・基板、22・・
・・・電子反射板、23−・・・・陰極、24・・・・
・・陽極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 第3図 第4図 第5図
Fig. 1 is a top view of main parts of a conventional vacuum apparatus for forming continuous thin films, Fig. 2 is a side view of a vacuum apparatus for forming continuous thin films according to an embodiment of the present invention, and Fig. 3 is an old view of main parts. , FIG. 4, and FIG. 6 are perspective views of other embodiments of the electron beam accelerator. 12... Vapor deposition roller, 16... Substrate, 22...
...Electron reflector, 23-...Cathode, 24...
··anode. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 3 Figure 4 Figure 5

Claims (5)

【特許請求の範囲】[Claims] (1)高分子成形物基板上に連続に薄膜を形成する真空
装置であって真空槽内に加熱源以外に基板前処理用の電
子線加速器を設置して成る連続薄膜形成用真空装置。
(1) A vacuum apparatus for continuously forming a thin film on a polymer molded substrate, which comprises an electron beam accelerator for substrate pretreatment installed in a vacuum chamber in addition to a heating source.
(2)電子線加速器の陰極は高分子成形物基板と対向し
て成る特許請求の範囲第1項記載の連続薄膜形成用真空
装置。
(2) A vacuum apparatus for forming a continuous thin film according to claim 1, wherein the cathode of the electron beam accelerator faces the polymer molded substrate.
(3)電子線加速器の陰極が直径1malt以上の線で
あり線の長さは高分子成形物基板の幅方向長より長いこ
とを特徴とする特許請求の範囲第1項記載の連続簿膜形
成用真空装置。
(3) Continuous film formation according to claim 1, wherein the cathode of the electron beam accelerator is a wire with a diameter of 1 malt or more, and the length of the wire is longer than the length in the width direction of the polymer molded substrate. vacuum equipment.
(4)電子線加速器の陰極と高分子成形物基板間に陽極
、まだは陰極上で高分子成形物基板に対向した電子反射
用金属板のどちらか一方もしくは両者を設けたことを特
徴とする特許請求の範囲第1項記載の連続薄膜形成用真
空装置。
(4) An anode is provided between the cathode of the electron beam accelerator and the polymer molded substrate, and either or both of an electron reflecting metal plate is provided on the cathode and facing the polymer molded substrate. A vacuum apparatus for forming a continuous thin film according to claim 1.
(5)電子線加速器の陰極と電子反射用金属板は同電位
であることを特徴とする特許請求の範囲第4項記載の連
続薄膜形成用真空装置。
(5) The vacuum apparatus for forming a continuous thin film according to claim 4, wherein the cathode of the electron beam accelerator and the metal plate for electron reflection are at the same potential.
JP3980384A 1984-03-01 1984-03-01 Vacuum device for forming continuous thin film Pending JPS60184674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3980384A JPS60184674A (en) 1984-03-01 1984-03-01 Vacuum device for forming continuous thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3980384A JPS60184674A (en) 1984-03-01 1984-03-01 Vacuum device for forming continuous thin film

Publications (1)

Publication Number Publication Date
JPS60184674A true JPS60184674A (en) 1985-09-20

Family

ID=12563110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3980384A Pending JPS60184674A (en) 1984-03-01 1984-03-01 Vacuum device for forming continuous thin film

Country Status (1)

Country Link
JP (1) JPS60184674A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0387904A2 (en) * 1989-03-17 1990-09-19 Matsushita Electric Industrial Co., Ltd. Method of producing thin film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819334A (en) * 1981-07-27 1983-02-04 Fujimori Kogyo Kk Production of packaging material
JPS5864381A (en) * 1981-10-09 1983-04-16 Matsushita Electric Ind Co Ltd Vacuum depositing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819334A (en) * 1981-07-27 1983-02-04 Fujimori Kogyo Kk Production of packaging material
JPS5864381A (en) * 1981-10-09 1983-04-16 Matsushita Electric Ind Co Ltd Vacuum depositing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0387904A2 (en) * 1989-03-17 1990-09-19 Matsushita Electric Industrial Co., Ltd. Method of producing thin film

Similar Documents

Publication Publication Date Title
US4740385A (en) Apparatus for producing coils from films of insulating material, conductively coated in a vacuum
US4393091A (en) Method of vacuum depositing a layer on a plastic film substrate
JPH055894B2 (en)
US5258074A (en) Evaporation apparatus comprising film substrate voltage applying means and current measurement means
EP0035894B1 (en) Process for producing a magnetic recording medium
JPS60184674A (en) Vacuum device for forming continuous thin film
CN113215543B (en) Method and device for depositing film on whole surface of ball
JPS59124038A (en) Manufacture of magnetic recording medium
JP2009263773A (en) Manufacturing method of double-sided vapor-deposited film, and double-sided vapor-deposited film
JPS6240373A (en) Semi-continuous take-up type vacuum deposition device
JP2594935B2 (en) Sputter film forming method and apparatus
JPH10265946A (en) Vapor deposition device and manufacture of thin film using the same
JP3361456B2 (en) Vibrating membrane for electroacoustic transducer, method and apparatus for manufacturing the same
JPH02232365A (en) Method and device for forming thin film
JP3818719B2 (en) Vapor deposition method on flexible support
JPH02239428A (en) Production of metal thin film
JPS6147221B2 (en)
JPS5897135A (en) Manufacture for magnetic recording medium
JPS6112992B2 (en)
JPH03100175A (en) Thin film forming device
JPH03294473A (en) Ion plating apparatus
JPH07150355A (en) Take-up vapor deposition device of electron beam heating type
JPS6046181B2 (en) Vacuum deposition method
JPH0121537B2 (en)
JPS59129944A (en) Method and device for manufacturing magnetic recording medium